aboutsummaryrefslogtreecommitdiff
path: root/drivers/dma/mxs-dma.c
blob: dc147cc2436e9e35566fffba413ba539baa9e05f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
// SPDX-License-Identifier: GPL-2.0
//
// Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
//
// Refer to drivers/dma/imx-sdma.c

#include <linux/init.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/stmp_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/list.h>
#include <linux/dma/mxs-dma.h>

#include <asm/irq.h>

#include "dmaengine.h"

/*
 * NOTE: The term "PIO" throughout the mxs-dma implementation means
 * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
 * dma can program the controller registers of peripheral devices.
 */

#define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
#define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)

#define HW_APBHX_CTRL0				0x000
#define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
#define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
#define BP_APBH_CTRL0_RESET_CHANNEL		16
#define HW_APBHX_CTRL1				0x010
#define HW_APBHX_CTRL2				0x020
#define HW_APBHX_CHANNEL_CTRL			0x030
#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
/*
 * The offset of NXTCMDAR register is different per both dma type and version,
 * while stride for each channel is all the same 0x70.
 */
#define HW_APBHX_CHn_NXTCMDAR(d, n) \
	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
#define HW_APBHX_CHn_SEMA(d, n) \
	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
#define HW_APBHX_CHn_BAR(d, n) \
	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
#define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)

/*
 * ccw bits definitions
 *
 * COMMAND:		0..1	(2)
 * CHAIN:		2	(1)
 * IRQ:			3	(1)
 * NAND_LOCK:		4	(1) - not implemented
 * NAND_WAIT4READY:	5	(1) - not implemented
 * DEC_SEM:		6	(1)
 * WAIT4END:		7	(1)
 * HALT_ON_TERMINATE:	8	(1)
 * TERMINATE_FLUSH:	9	(1)
 * RESERVED:		10..11	(2)
 * PIO_NUM:		12..15	(4)
 */
#define BP_CCW_COMMAND		0
#define BM_CCW_COMMAND		(3 << 0)
#define CCW_CHAIN		(1 << 2)
#define CCW_IRQ			(1 << 3)
#define CCW_WAIT4RDY		(1 << 5)
#define CCW_DEC_SEM		(1 << 6)
#define CCW_WAIT4END		(1 << 7)
#define CCW_HALT_ON_TERM	(1 << 8)
#define CCW_TERM_FLUSH		(1 << 9)
#define BP_CCW_PIO_NUM		12
#define BM_CCW_PIO_NUM		(0xf << 12)

#define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)

#define MXS_DMA_CMD_NO_XFER	0
#define MXS_DMA_CMD_WRITE	1
#define MXS_DMA_CMD_READ	2
#define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */

struct mxs_dma_ccw {
	u32		next;
	u16		bits;
	u16		xfer_bytes;
#define MAX_XFER_BYTES	0xff00
	u32		bufaddr;
#define MXS_PIO_WORDS	16
	u32		pio_words[MXS_PIO_WORDS];
};

#define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
#define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))

struct mxs_dma_chan {
	struct mxs_dma_engine		*mxs_dma;
	struct dma_chan			chan;
	struct dma_async_tx_descriptor	desc;
	struct tasklet_struct		tasklet;
	unsigned int			chan_irq;
	struct mxs_dma_ccw		*ccw;
	dma_addr_t			ccw_phys;
	int				desc_count;
	enum dma_status			status;
	unsigned int			flags;
	bool				reset;
#define MXS_DMA_SG_LOOP			(1 << 0)
#define MXS_DMA_USE_SEMAPHORE		(1 << 1)
};

#define MXS_DMA_CHANNELS		16
#define MXS_DMA_CHANNELS_MASK		0xffff

enum mxs_dma_devtype {
	MXS_DMA_APBH,
	MXS_DMA_APBX,
};

enum mxs_dma_id {
	IMX23_DMA,
	IMX28_DMA,
};

struct mxs_dma_engine {
	enum mxs_dma_id			dev_id;
	enum mxs_dma_devtype		type;
	void __iomem			*base;
	struct clk			*clk;
	struct dma_device		dma_device;
	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
	struct platform_device		*pdev;
	unsigned int			nr_channels;
};

struct mxs_dma_type {
	enum mxs_dma_id id;
	enum mxs_dma_devtype type;
};

static struct mxs_dma_type mxs_dma_types[] = {
	{
		.id = IMX23_DMA,
		.type = MXS_DMA_APBH,
	}, {
		.id = IMX23_DMA,
		.type = MXS_DMA_APBX,
	}, {
		.id = IMX28_DMA,
		.type = MXS_DMA_APBH,
	}, {
		.id = IMX28_DMA,
		.type = MXS_DMA_APBX,
	}
};

static const struct of_device_id mxs_dma_dt_ids[] = {
	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], },
	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], },
	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], },
	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);

static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
{
	return container_of(chan, struct mxs_dma_chan, chan);
}

static void mxs_dma_reset_chan(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	int chan_id = mxs_chan->chan.chan_id;

	/*
	 * mxs dma channel resets can cause a channel stall. To recover from a
	 * channel stall, we have to reset the whole DMA engine. To avoid this,
	 * we use cyclic DMA with semaphores, that are enhanced in
	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
	 * into the semaphore counter.
	 */
	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
			mxs_chan->flags & MXS_DMA_SG_LOOP) {
		mxs_chan->reset = true;
	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
	} else {
		unsigned long elapsed = 0;
		const unsigned long max_wait = 50000; /* 50ms */
		void __iomem *reg_dbg1 = mxs_dma->base +
				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);

		/*
		 * On i.MX28 APBX, the DMA channel can stop working if we reset
		 * the channel while it is in READ_FLUSH (0x08) state.
		 * We wait here until we leave the state. Then we trigger the
		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
		 * because of this.
		 */
		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
			udelay(100);
			elapsed += 100;
		}

		if (elapsed >= max_wait)
			dev_err(&mxs_chan->mxs_dma->pdev->dev,
					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
					chan_id);

		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
	}

	mxs_chan->status = DMA_COMPLETE;
}

static void mxs_dma_enable_chan(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	int chan_id = mxs_chan->chan.chan_id;

	/* set cmd_addr up */
	writel(mxs_chan->ccw_phys,
		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));

	/* write 1 to SEMA to kick off the channel */
	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
			mxs_chan->flags & MXS_DMA_SG_LOOP) {
		/* A cyclic DMA consists of at least 2 segments, so initialize
		 * the semaphore with 2 so we have enough time to add 1 to the
		 * semaphore if we need to */
		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
	} else {
		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
	}
	mxs_chan->reset = false;
}

static void mxs_dma_disable_chan(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);

	mxs_chan->status = DMA_COMPLETE;
}

static int mxs_dma_pause_chan(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	int chan_id = mxs_chan->chan.chan_id;

	/* freeze the channel */
	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
		writel(1 << chan_id,
			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
	else
		writel(1 << chan_id,
			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);

	mxs_chan->status = DMA_PAUSED;
	return 0;
}

static int mxs_dma_resume_chan(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	int chan_id = mxs_chan->chan.chan_id;

	/* unfreeze the channel */
	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
		writel(1 << chan_id,
			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
	else
		writel(1 << chan_id,
			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);

	mxs_chan->status = DMA_IN_PROGRESS;
	return 0;
}

static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
	return dma_cookie_assign(tx);
}

static void mxs_dma_tasklet(struct tasklet_struct *t)
{
	struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet);

	dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
}

static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
{
	int i;

	for (i = 0; i != mxs_dma->nr_channels; ++i)
		if (mxs_dma->mxs_chans[i].chan_irq == irq)
			return i;

	return -EINVAL;
}

static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
{
	struct mxs_dma_engine *mxs_dma = dev_id;
	struct mxs_dma_chan *mxs_chan;
	u32 completed;
	u32 err;
	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);

	if (chan < 0)
		return IRQ_NONE;

	/* completion status */
	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
	completed = (completed >> chan) & 0x1;

	/* Clear interrupt */
	writel((1 << chan),
			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);

	/* error status */
	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);

	/*
	 * error status bit is in the upper 16 bits, error irq bit in the lower
	 * 16 bits. We transform it into a simpler error code:
	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
	 */
	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);

	/* Clear error irq */
	writel((1 << chan),
			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);

	/*
	 * When both completion and error of termination bits set at the
	 * same time, we do not take it as an error.  IOW, it only becomes
	 * an error we need to handle here in case of either it's a bus
	 * error or a termination error with no completion. 0x01 is termination
	 * error, so we can subtract err & completed to get the real error case.
	 */
	err -= err & completed;

	mxs_chan = &mxs_dma->mxs_chans[chan];

	if (err) {
		dev_dbg(mxs_dma->dma_device.dev,
			"%s: error in channel %d\n", __func__,
			chan);
		mxs_chan->status = DMA_ERROR;
		mxs_dma_reset_chan(&mxs_chan->chan);
	} else if (mxs_chan->status != DMA_COMPLETE) {
		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
			mxs_chan->status = DMA_IN_PROGRESS;
			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
				writel(1, mxs_dma->base +
					HW_APBHX_CHn_SEMA(mxs_dma, chan));
		} else {
			mxs_chan->status = DMA_COMPLETE;
		}
	}

	if (mxs_chan->status == DMA_COMPLETE) {
		if (mxs_chan->reset)
			return IRQ_HANDLED;
		dma_cookie_complete(&mxs_chan->desc);
	}

	/* schedule tasklet on this channel */
	tasklet_schedule(&mxs_chan->tasklet);

	return IRQ_HANDLED;
}

static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	int ret;

	mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev,
					   CCW_BLOCK_SIZE,
					   &mxs_chan->ccw_phys, GFP_KERNEL);
	if (!mxs_chan->ccw) {
		ret = -ENOMEM;
		goto err_alloc;
	}

	ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
			  0, "mxs-dma", mxs_dma);
	if (ret)
		goto err_irq;

	ret = clk_prepare_enable(mxs_dma->clk);
	if (ret)
		goto err_clk;

	mxs_dma_reset_chan(chan);

	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;

	/* the descriptor is ready */
	async_tx_ack(&mxs_chan->desc);

	return 0;

err_clk:
	free_irq(mxs_chan->chan_irq, mxs_dma);
err_irq:
	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
			mxs_chan->ccw, mxs_chan->ccw_phys);
err_alloc:
	return ret;
}

static void mxs_dma_free_chan_resources(struct dma_chan *chan)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;

	mxs_dma_disable_chan(chan);

	free_irq(mxs_chan->chan_irq, mxs_dma);

	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
			mxs_chan->ccw, mxs_chan->ccw_phys);

	clk_disable_unprepare(mxs_dma->clk);
}

/*
 * How to use the flags for ->device_prep_slave_sg() :
 *    [1] If there is only one DMA command in the DMA chain, the code should be:
 *            ......
 *            ->device_prep_slave_sg(DMA_CTRL_ACK);
 *            ......
 *    [2] If there are two DMA commands in the DMA chain, the code should be
 *            ......
 *            ->device_prep_slave_sg(0);
 *            ......
 *            ->device_prep_slave_sg(DMA_CTRL_ACK);
 *            ......
 *    [3] If there are more than two DMA commands in the DMA chain, the code
 *        should be:
 *            ......
 *            ->device_prep_slave_sg(0);                                // First
 *            ......
 *            ->device_prep_slave_sg(DMA_CTRL_ACK]);
 *            ......
 *            ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
 *            ......
 */
static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction direction,
		unsigned long flags, void *context)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	struct mxs_dma_ccw *ccw;
	struct scatterlist *sg;
	u32 i, j;
	u32 *pio;
	int idx = 0;

	if (mxs_chan->status == DMA_IN_PROGRESS)
		idx = mxs_chan->desc_count;

	if (sg_len + idx > NUM_CCW) {
		dev_err(mxs_dma->dma_device.dev,
				"maximum number of sg exceeded: %d > %d\n",
				sg_len, NUM_CCW);
		goto err_out;
	}

	mxs_chan->status = DMA_IN_PROGRESS;
	mxs_chan->flags = 0;

	/*
	 * If the sg is prepared with append flag set, the sg
	 * will be appended to the last prepared sg.
	 */
	if (idx) {
		BUG_ON(idx < 1);
		ccw = &mxs_chan->ccw[idx - 1];
		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
		ccw->bits |= CCW_CHAIN;
		ccw->bits &= ~CCW_IRQ;
		ccw->bits &= ~CCW_DEC_SEM;
	} else {
		idx = 0;
	}

	if (direction == DMA_TRANS_NONE) {
		ccw = &mxs_chan->ccw[idx++];
		pio = (u32 *) sgl;

		for (j = 0; j < sg_len;)
			ccw->pio_words[j++] = *pio++;

		ccw->bits = 0;
		ccw->bits |= CCW_IRQ;
		ccw->bits |= CCW_DEC_SEM;
		if (flags & MXS_DMA_CTRL_WAIT4END)
			ccw->bits |= CCW_WAIT4END;
		ccw->bits |= CCW_HALT_ON_TERM;
		ccw->bits |= CCW_TERM_FLUSH;
		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
		if (flags & MXS_DMA_CTRL_WAIT4RDY)
			ccw->bits |= CCW_WAIT4RDY;
	} else {
		for_each_sg(sgl, sg, sg_len, i) {
			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
						sg_dma_len(sg), MAX_XFER_BYTES);
				goto err_out;
			}

			ccw = &mxs_chan->ccw[idx++];

			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
			ccw->bufaddr = sg->dma_address;
			ccw->xfer_bytes = sg_dma_len(sg);

			ccw->bits = 0;
			ccw->bits |= CCW_CHAIN;
			ccw->bits |= CCW_HALT_ON_TERM;
			ccw->bits |= CCW_TERM_FLUSH;
			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
					COMMAND);

			if (i + 1 == sg_len) {
				ccw->bits &= ~CCW_CHAIN;
				ccw->bits |= CCW_IRQ;
				ccw->bits |= CCW_DEC_SEM;
				if (flags & MXS_DMA_CTRL_WAIT4END)
					ccw->bits |= CCW_WAIT4END;
			}
		}
	}
	mxs_chan->desc_count = idx;

	return &mxs_chan->desc;

err_out:
	mxs_chan->status = DMA_ERROR;
	return NULL;
}

static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
		size_t period_len, enum dma_transfer_direction direction,
		unsigned long flags)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	u32 num_periods = buf_len / period_len;
	u32 i = 0, buf = 0;

	if (mxs_chan->status == DMA_IN_PROGRESS)
		return NULL;

	mxs_chan->status = DMA_IN_PROGRESS;
	mxs_chan->flags |= MXS_DMA_SG_LOOP;
	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;

	if (num_periods > NUM_CCW) {
		dev_err(mxs_dma->dma_device.dev,
				"maximum number of sg exceeded: %d > %d\n",
				num_periods, NUM_CCW);
		goto err_out;
	}

	if (period_len > MAX_XFER_BYTES) {
		dev_err(mxs_dma->dma_device.dev,
				"maximum period size exceeded: %zu > %d\n",
				period_len, MAX_XFER_BYTES);
		goto err_out;
	}

	while (buf < buf_len) {
		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];

		if (i + 1 == num_periods)
			ccw->next = mxs_chan->ccw_phys;
		else
			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);

		ccw->bufaddr = dma_addr;
		ccw->xfer_bytes = period_len;

		ccw->bits = 0;
		ccw->bits |= CCW_CHAIN;
		ccw->bits |= CCW_IRQ;
		ccw->bits |= CCW_HALT_ON_TERM;
		ccw->bits |= CCW_TERM_FLUSH;
		ccw->bits |= CCW_DEC_SEM;
		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);

		dma_addr += period_len;
		buf += period_len;

		i++;
	}
	mxs_chan->desc_count = i;

	return &mxs_chan->desc;

err_out:
	mxs_chan->status = DMA_ERROR;
	return NULL;
}

static int mxs_dma_terminate_all(struct dma_chan *chan)
{
	mxs_dma_reset_chan(chan);
	mxs_dma_disable_chan(chan);

	return 0;
}

static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
			dma_cookie_t cookie, struct dma_tx_state *txstate)
{
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	u32 residue = 0;

	if (mxs_chan->status == DMA_IN_PROGRESS &&
			mxs_chan->flags & MXS_DMA_SG_LOOP) {
		struct mxs_dma_ccw *last_ccw;
		u32 bar;

		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;

		bar = readl(mxs_dma->base +
				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
		residue -= bar;
	}

	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
			residue);

	return mxs_chan->status;
}

static int mxs_dma_init(struct mxs_dma_engine *mxs_dma)
{
	int ret;

	ret = clk_prepare_enable(mxs_dma->clk);
	if (ret)
		return ret;

	ret = stmp_reset_block(mxs_dma->base);
	if (ret)
		goto err_out;

	/* enable apbh burst */
	if (dma_is_apbh(mxs_dma)) {
		writel(BM_APBH_CTRL0_APB_BURST_EN,
			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
		writel(BM_APBH_CTRL0_APB_BURST8_EN,
			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
	}

	/* enable irq for all the channels */
	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);

err_out:
	clk_disable_unprepare(mxs_dma->clk);
	return ret;
}

struct mxs_dma_filter_param {
	unsigned int chan_id;
};

static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
{
	struct mxs_dma_filter_param *param = fn_param;
	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
	int chan_irq;

	if (chan->chan_id != param->chan_id)
		return false;

	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
	if (chan_irq < 0)
		return false;

	mxs_chan->chan_irq = chan_irq;

	return true;
}

static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
			       struct of_dma *ofdma)
{
	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
	struct mxs_dma_filter_param param;

	if (dma_spec->args_count != 1)
		return NULL;

	param.chan_id = dma_spec->args[0];

	if (param.chan_id >= mxs_dma->nr_channels)
		return NULL;

	return __dma_request_channel(&mask, mxs_dma_filter_fn, &param,
				     ofdma->of_node);
}

static int mxs_dma_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct mxs_dma_type *dma_type;
	struct mxs_dma_engine *mxs_dma;
	struct resource *iores;
	int ret, i;

	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
	if (!mxs_dma)
		return -ENOMEM;

	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
	if (ret) {
		dev_err(&pdev->dev, "failed to read dma-channels\n");
		return ret;
	}

	dma_type = (struct mxs_dma_type *)of_device_get_match_data(&pdev->dev);
	mxs_dma->type = dma_type->type;
	mxs_dma->dev_id = dma_type->id;

	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
	if (IS_ERR(mxs_dma->base))
		return PTR_ERR(mxs_dma->base);

	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(mxs_dma->clk))
		return PTR_ERR(mxs_dma->clk);

	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);

	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);

	/* Initialize channel parameters */
	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];

		mxs_chan->mxs_dma = mxs_dma;
		mxs_chan->chan.device = &mxs_dma->dma_device;
		dma_cookie_init(&mxs_chan->chan);

		tasklet_setup(&mxs_chan->tasklet, mxs_dma_tasklet);


		/* Add the channel to mxs_chan list */
		list_add_tail(&mxs_chan->chan.device_node,
			&mxs_dma->dma_device.channels);
	}

	ret = mxs_dma_init(mxs_dma);
	if (ret)
		return ret;

	mxs_dma->pdev = pdev;
	mxs_dma->dma_device.dev = &pdev->dev;

	/* mxs_dma gets 65535 bytes maximum sg size */
	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);

	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
	mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
	mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
	mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
	mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
	mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
	mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;

	ret = dmaenginem_async_device_register(&mxs_dma->dma_device);
	if (ret) {
		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
		return ret;
	}

	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
	if (ret) {
		dev_err(mxs_dma->dma_device.dev,
			"failed to register controller\n");
	}

	dev_info(mxs_dma->dma_device.dev, "initialized\n");

	return 0;
}

static struct platform_driver mxs_dma_driver = {
	.driver		= {
		.name	= "mxs-dma",
		.of_match_table = mxs_dma_dt_ids,
	},
	.probe = mxs_dma_probe,
};

builtin_platform_driver(mxs_dma_driver);