aboutsummaryrefslogtreecommitdiff
path: root/drivers/firmware/dmi_scan.c
blob: d51ca0428bb82c8b7e1e76b3735d8f024013161a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/types.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/memblock.h>
#include <linux/random.h>
#include <asm/dmi.h>
#include <asm/unaligned.h>

#ifndef SMBIOS_ENTRY_POINT_SCAN_START
#define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
#endif

struct kobject *dmi_kobj;
EXPORT_SYMBOL_GPL(dmi_kobj);

/*
 * DMI stands for "Desktop Management Interface".  It is part
 * of and an antecedent to, SMBIOS, which stands for System
 * Management BIOS.  See further: https://www.dmtf.org/standards
 */
static const char dmi_empty_string[] = "";

static u32 dmi_ver __initdata;
static u32 dmi_len;
static u16 dmi_num;
static u8 smbios_entry_point[32];
static int smbios_entry_point_size;

/* DMI system identification string used during boot */
static char dmi_ids_string[128] __initdata;

static struct dmi_memdev_info {
	const char *device;
	const char *bank;
	u64 size;		/* bytes */
	u16 handle;
	u8 type;		/* DDR2, DDR3, DDR4 etc */
} *dmi_memdev;
static int dmi_memdev_nr;

static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
{
	const u8 *bp = ((u8 *) dm) + dm->length;
	const u8 *nsp;

	if (s) {
		while (--s > 0 && *bp)
			bp += strlen(bp) + 1;

		/* Strings containing only spaces are considered empty */
		nsp = bp;
		while (*nsp == ' ')
			nsp++;
		if (*nsp != '\0')
			return bp;
	}

	return dmi_empty_string;
}

static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
{
	const char *bp = dmi_string_nosave(dm, s);
	char *str;
	size_t len;

	if (bp == dmi_empty_string)
		return dmi_empty_string;

	len = strlen(bp) + 1;
	str = dmi_alloc(len);
	if (str != NULL)
		strcpy(str, bp);

	return str;
}

/*
 *	We have to be cautious here. We have seen BIOSes with DMI pointers
 *	pointing to completely the wrong place for example
 */
static void dmi_decode_table(u8 *buf,
			     void (*decode)(const struct dmi_header *, void *),
			     void *private_data)
{
	u8 *data = buf;
	int i = 0;

	/*
	 * Stop when we have seen all the items the table claimed to have
	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
	 * >= 3.0 only) OR we run off the end of the table (should never
	 * happen but sometimes does on bogus implementations.)
	 */
	while ((!dmi_num || i < dmi_num) &&
	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
		const struct dmi_header *dm = (const struct dmi_header *)data;

		/*
		 *  We want to know the total length (formatted area and
		 *  strings) before decoding to make sure we won't run off the
		 *  table in dmi_decode or dmi_string
		 */
		data += dm->length;
		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
			data++;
		if (data - buf < dmi_len - 1)
			decode(dm, private_data);

		data += 2;
		i++;

		/*
		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
		 * For tables behind a 64-bit entry point, we have no item
		 * count and no exact table length, so stop on end-of-table
		 * marker. For tables behind a 32-bit entry point, we have
		 * seen OEM structures behind the end-of-table marker on
		 * some systems, so don't trust it.
		 */
		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
			break;
	}

	/* Trim DMI table length if needed */
	if (dmi_len > data - buf)
		dmi_len = data - buf;
}

static phys_addr_t dmi_base;

static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
		void *))
{
	u8 *buf;
	u32 orig_dmi_len = dmi_len;

	buf = dmi_early_remap(dmi_base, orig_dmi_len);
	if (buf == NULL)
		return -ENOMEM;

	dmi_decode_table(buf, decode, NULL);

	add_device_randomness(buf, dmi_len);

	dmi_early_unmap(buf, orig_dmi_len);
	return 0;
}

static int __init dmi_checksum(const u8 *buf, u8 len)
{
	u8 sum = 0;
	int a;

	for (a = 0; a < len; a++)
		sum += buf[a];

	return sum == 0;
}

static const char *dmi_ident[DMI_STRING_MAX];
static LIST_HEAD(dmi_devices);
int dmi_available;

/*
 *	Save a DMI string
 */
static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
		int string)
{
	const char *d = (const char *) dm;
	const char *p;

	if (dmi_ident[slot] || dm->length <= string)
		return;

	p = dmi_string(dm, d[string]);
	if (p == NULL)
		return;

	dmi_ident[slot] = p;
}

static void __init dmi_save_release(const struct dmi_header *dm, int slot,
		int index)
{
	const u8 *minor, *major;
	char *s;

	/* If the table doesn't have the field, let's return */
	if (dmi_ident[slot] || dm->length < index)
		return;

	minor = (u8 *) dm + index;
	major = (u8 *) dm + index - 1;

	/* As per the spec, if the system doesn't support this field,
	 * the value is FF
	 */
	if (*major == 0xFF && *minor == 0xFF)
		return;

	s = dmi_alloc(8);
	if (!s)
		return;

	sprintf(s, "%u.%u", *major, *minor);

	dmi_ident[slot] = s;
}

static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
		int index)
{
	const u8 *d;
	char *s;
	int is_ff = 1, is_00 = 1, i;

	if (dmi_ident[slot] || dm->length < index + 16)
		return;

	d = (u8 *) dm + index;
	for (i = 0; i < 16 && (is_ff || is_00); i++) {
		if (d[i] != 0x00)
			is_00 = 0;
		if (d[i] != 0xFF)
			is_ff = 0;
	}

	if (is_ff || is_00)
		return;

	s = dmi_alloc(16*2+4+1);
	if (!s)
		return;

	/*
	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
	 * the UUID are supposed to be little-endian encoded.  The specification
	 * says that this is the defacto standard.
	 */
	if (dmi_ver >= 0x020600)
		sprintf(s, "%pUl", d);
	else
		sprintf(s, "%pUb", d);

	dmi_ident[slot] = s;
}

static void __init dmi_save_type(const struct dmi_header *dm, int slot,
		int index)
{
	const u8 *d;
	char *s;

	if (dmi_ident[slot] || dm->length <= index)
		return;

	s = dmi_alloc(4);
	if (!s)
		return;

	d = (u8 *) dm + index;
	sprintf(s, "%u", *d & 0x7F);
	dmi_ident[slot] = s;
}

static void __init dmi_save_one_device(int type, const char *name)
{
	struct dmi_device *dev;

	/* No duplicate device */
	if (dmi_find_device(type, name, NULL))
		return;

	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
	if (!dev)
		return;

	dev->type = type;
	strcpy((char *)(dev + 1), name);
	dev->name = (char *)(dev + 1);
	dev->device_data = NULL;
	list_add(&dev->list, &dmi_devices);
}

static void __init dmi_save_devices(const struct dmi_header *dm)
{
	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;

	for (i = 0; i < count; i++) {
		const char *d = (char *)(dm + 1) + (i * 2);

		/* Skip disabled device */
		if ((*d & 0x80) == 0)
			continue;

		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
	}
}

static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
{
	int i, count;
	struct dmi_device *dev;

	if (dm->length < 0x05)
		return;

	count = *(u8 *)(dm + 1);
	for (i = 1; i <= count; i++) {
		const char *devname = dmi_string(dm, i);

		if (devname == dmi_empty_string)
			continue;

		dev = dmi_alloc(sizeof(*dev));
		if (!dev)
			break;

		dev->type = DMI_DEV_TYPE_OEM_STRING;
		dev->name = devname;
		dev->device_data = NULL;

		list_add(&dev->list, &dmi_devices);
	}
}

static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
{
	struct dmi_device *dev;
	void *data;

	data = dmi_alloc(dm->length);
	if (data == NULL)
		return;

	memcpy(data, dm, dm->length);

	dev = dmi_alloc(sizeof(*dev));
	if (!dev)
		return;

	dev->type = DMI_DEV_TYPE_IPMI;
	dev->name = "IPMI controller";
	dev->device_data = data;

	list_add_tail(&dev->list, &dmi_devices);
}

static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
					int devfn, const char *name, int type)
{
	struct dmi_dev_onboard *dev;

	/* Ignore invalid values */
	if (type == DMI_DEV_TYPE_DEV_SLOT &&
	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
		return;

	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
	if (!dev)
		return;

	dev->instance = instance;
	dev->segment = segment;
	dev->bus = bus;
	dev->devfn = devfn;

	strcpy((char *)&dev[1], name);
	dev->dev.type = type;
	dev->dev.name = (char *)&dev[1];
	dev->dev.device_data = dev;

	list_add(&dev->dev.list, &dmi_devices);
}

static void __init dmi_save_extended_devices(const struct dmi_header *dm)
{
	const char *name;
	const u8 *d = (u8 *)dm;

	if (dm->length < 0x0B)
		return;

	/* Skip disabled device */
	if ((d[0x5] & 0x80) == 0)
		return;

	name = dmi_string_nosave(dm, d[0x4]);
	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
			     DMI_DEV_TYPE_DEV_ONBOARD);
	dmi_save_one_device(d[0x5] & 0x7f, name);
}

static void __init dmi_save_system_slot(const struct dmi_header *dm)
{
	const u8 *d = (u8 *)dm;

	/* Need SMBIOS 2.6+ structure */
	if (dm->length < 0x11)
		return;
	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
			     d[0x10], dmi_string_nosave(dm, d[0x4]),
			     DMI_DEV_TYPE_DEV_SLOT);
}

static void __init count_mem_devices(const struct dmi_header *dm, void *v)
{
	if (dm->type != DMI_ENTRY_MEM_DEVICE)
		return;
	dmi_memdev_nr++;
}

static void __init save_mem_devices(const struct dmi_header *dm, void *v)
{
	const char *d = (const char *)dm;
	static int nr;
	u64 bytes;
	u16 size;

	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
		return;
	if (nr >= dmi_memdev_nr) {
		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
		return;
	}
	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
	dmi_memdev[nr].type = d[0x12];

	size = get_unaligned((u16 *)&d[0xC]);
	if (size == 0)
		bytes = 0;
	else if (size == 0xffff)
		bytes = ~0ull;
	else if (size & 0x8000)
		bytes = (u64)(size & 0x7fff) << 10;
	else if (size != 0x7fff || dm->length < 0x20)
		bytes = (u64)size << 20;
	else
		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;

	dmi_memdev[nr].size = bytes;
	nr++;
}

static void __init dmi_memdev_walk(void)
{
	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
		if (dmi_memdev)
			dmi_walk_early(save_mem_devices);
	}
}

/*
 *	Process a DMI table entry. Right now all we care about are the BIOS
 *	and machine entries. For 2.5 we should pull the smbus controller info
 *	out of here.
 */
static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
{
	switch (dm->type) {
	case 0:		/* BIOS Information */
		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
		break;
	case 1:		/* System Information */
		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
		break;
	case 2:		/* Base Board Information */
		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
		break;
	case 3:		/* Chassis Information */
		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
		break;
	case 9:		/* System Slots */
		dmi_save_system_slot(dm);
		break;
	case 10:	/* Onboard Devices Information */
		dmi_save_devices(dm);
		break;
	case 11:	/* OEM Strings */
		dmi_save_oem_strings_devices(dm);
		break;
	case 38:	/* IPMI Device Information */
		dmi_save_ipmi_device(dm);
		break;
	case 41:	/* Onboard Devices Extended Information */
		dmi_save_extended_devices(dm);
	}
}

static int __init print_filtered(char *buf, size_t len, const char *info)
{
	int c = 0;
	const char *p;

	if (!info)
		return c;

	for (p = info; *p; p++)
		if (isprint(*p))
			c += scnprintf(buf + c, len - c, "%c", *p);
		else
			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
	return c;
}

static void __init dmi_format_ids(char *buf, size_t len)
{
	int c = 0;
	const char *board;	/* Board Name is optional */

	c += print_filtered(buf + c, len - c,
			    dmi_get_system_info(DMI_SYS_VENDOR));
	c += scnprintf(buf + c, len - c, " ");
	c += print_filtered(buf + c, len - c,
			    dmi_get_system_info(DMI_PRODUCT_NAME));

	board = dmi_get_system_info(DMI_BOARD_NAME);
	if (board) {
		c += scnprintf(buf + c, len - c, "/");
		c += print_filtered(buf + c, len - c, board);
	}
	c += scnprintf(buf + c, len - c, ", BIOS ");
	c += print_filtered(buf + c, len - c,
			    dmi_get_system_info(DMI_BIOS_VERSION));
	c += scnprintf(buf + c, len - c, " ");
	c += print_filtered(buf + c, len - c,
			    dmi_get_system_info(DMI_BIOS_DATE));
}

/*
 * Check for DMI/SMBIOS headers in the system firmware image.  Any
 * SMBIOS header must start 16 bytes before the DMI header, so take a
 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
 * takes precedence) and return 0.  Otherwise return 1.
 */
static int __init dmi_present(const u8 *buf)
{
	u32 smbios_ver;

	if (memcmp(buf, "_SM_", 4) == 0 &&
	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
		smbios_ver = get_unaligned_be16(buf + 6);
		smbios_entry_point_size = buf[5];
		memcpy(smbios_entry_point, buf, smbios_entry_point_size);

		/* Some BIOS report weird SMBIOS version, fix that up */
		switch (smbios_ver) {
		case 0x021F:
		case 0x0221:
			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
				 smbios_ver & 0xFF, 3);
			smbios_ver = 0x0203;
			break;
		case 0x0233:
			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
			smbios_ver = 0x0206;
			break;
		}
	} else {
		smbios_ver = 0;
	}

	buf += 16;

	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
		if (smbios_ver)
			dmi_ver = smbios_ver;
		else
			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
		dmi_ver <<= 8;
		dmi_num = get_unaligned_le16(buf + 12);
		dmi_len = get_unaligned_le16(buf + 6);
		dmi_base = get_unaligned_le32(buf + 8);

		if (dmi_walk_early(dmi_decode) == 0) {
			if (smbios_ver) {
				pr_info("SMBIOS %d.%d present.\n",
					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
			} else {
				smbios_entry_point_size = 15;
				memcpy(smbios_entry_point, buf,
				       smbios_entry_point_size);
				pr_info("Legacy DMI %d.%d present.\n",
					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
			}
			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
			pr_info("DMI: %s\n", dmi_ids_string);
			return 0;
		}
	}

	return 1;
}

/*
 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
 */
static int __init dmi_smbios3_present(const u8 *buf)
{
	if (memcmp(buf, "_SM3_", 5) == 0 &&
	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
		dmi_num = 0;			/* No longer specified */
		dmi_len = get_unaligned_le32(buf + 12);
		dmi_base = get_unaligned_le64(buf + 16);
		smbios_entry_point_size = buf[6];
		memcpy(smbios_entry_point, buf, smbios_entry_point_size);

		if (dmi_walk_early(dmi_decode) == 0) {
			pr_info("SMBIOS %d.%d.%d present.\n",
				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
				dmi_ver & 0xFF);
			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
			pr_info("DMI: %s\n", dmi_ids_string);
			return 0;
		}
	}
	return 1;
}

static void __init dmi_scan_machine(void)
{
	char __iomem *p, *q;
	char buf[32];

	if (efi_enabled(EFI_CONFIG_TABLES)) {
		/*
		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
		 * allowed to define both the 64-bit entry point (smbios3) and
		 * the 32-bit entry point (smbios), in which case they should
		 * either both point to the same SMBIOS structure table, or the
		 * table pointed to by the 64-bit entry point should contain a
		 * superset of the table contents pointed to by the 32-bit entry
		 * point (section 5.2)
		 * This implies that the 64-bit entry point should have
		 * precedence if it is defined and supported by the OS. If we
		 * have the 64-bit entry point, but fail to decode it, fall
		 * back to the legacy one (if available)
		 */
		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
			p = dmi_early_remap(efi.smbios3, 32);
			if (p == NULL)
				goto error;
			memcpy_fromio(buf, p, 32);
			dmi_early_unmap(p, 32);

			if (!dmi_smbios3_present(buf)) {
				dmi_available = 1;
				return;
			}
		}
		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
			goto error;

		/* This is called as a core_initcall() because it isn't
		 * needed during early boot.  This also means we can
		 * iounmap the space when we're done with it.
		 */
		p = dmi_early_remap(efi.smbios, 32);
		if (p == NULL)
			goto error;
		memcpy_fromio(buf, p, 32);
		dmi_early_unmap(p, 32);

		if (!dmi_present(buf)) {
			dmi_available = 1;
			return;
		}
	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
		if (p == NULL)
			goto error;

		/*
		 * Same logic as above, look for a 64-bit entry point
		 * first, and if not found, fall back to 32-bit entry point.
		 */
		memcpy_fromio(buf, p, 16);
		for (q = p + 16; q < p + 0x10000; q += 16) {
			memcpy_fromio(buf + 16, q, 16);
			if (!dmi_smbios3_present(buf)) {
				dmi_available = 1;
				dmi_early_unmap(p, 0x10000);
				return;
			}
			memcpy(buf, buf + 16, 16);
		}

		/*
		 * Iterate over all possible DMI header addresses q.
		 * Maintain the 32 bytes around q in buf.  On the
		 * first iteration, substitute zero for the
		 * out-of-range bytes so there is no chance of falsely
		 * detecting an SMBIOS header.
		 */
		memset(buf, 0, 16);
		for (q = p; q < p + 0x10000; q += 16) {
			memcpy_fromio(buf + 16, q, 16);
			if (!dmi_present(buf)) {
				dmi_available = 1;
				dmi_early_unmap(p, 0x10000);
				return;
			}
			memcpy(buf, buf + 16, 16);
		}
		dmi_early_unmap(p, 0x10000);
	}
 error:
	pr_info("DMI not present or invalid.\n");
}

static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
			      struct bin_attribute *attr, char *buf,
			      loff_t pos, size_t count)
{
	memcpy(buf, attr->private + pos, count);
	return count;
}

static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);

static int __init dmi_init(void)
{
	struct kobject *tables_kobj;
	u8 *dmi_table;
	int ret = -ENOMEM;

	if (!dmi_available)
		return 0;

	/*
	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
	 * even after farther error, as it can be used by other modules like
	 * dmi-sysfs.
	 */
	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
	if (!dmi_kobj)
		goto err;

	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
	if (!tables_kobj)
		goto err;

	dmi_table = dmi_remap(dmi_base, dmi_len);
	if (!dmi_table)
		goto err_tables;

	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
	bin_attr_smbios_entry_point.private = smbios_entry_point;
	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
	if (ret)
		goto err_unmap;

	bin_attr_DMI.size = dmi_len;
	bin_attr_DMI.private = dmi_table;
	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
	if (!ret)
		return 0;

	sysfs_remove_bin_file(tables_kobj,
			      &bin_attr_smbios_entry_point);
 err_unmap:
	dmi_unmap(dmi_table);
 err_tables:
	kobject_del(tables_kobj);
	kobject_put(tables_kobj);
 err:
	pr_err("dmi: Firmware registration failed.\n");

	return ret;
}
subsys_initcall(dmi_init);

/**
 *	dmi_setup - scan and setup DMI system information
 *
 *	Scan the DMI system information. This setups DMI identifiers
 *	(dmi_system_id) for printing it out on task dumps and prepares
 *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
 *	for using this when reporting memory errors.
 */
void __init dmi_setup(void)
{
	dmi_scan_machine();
	if (!dmi_available)
		return;

	dmi_memdev_walk();
	dump_stack_set_arch_desc("%s", dmi_ids_string);
}

/**
 *	dmi_matches - check if dmi_system_id structure matches system DMI data
 *	@dmi: pointer to the dmi_system_id structure to check
 */
static bool dmi_matches(const struct dmi_system_id *dmi)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
		int s = dmi->matches[i].slot;
		if (s == DMI_NONE)
			break;
		if (s == DMI_OEM_STRING) {
			/* DMI_OEM_STRING must be exact match */
			const struct dmi_device *valid;

			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
						dmi->matches[i].substr, NULL);
			if (valid)
				continue;
		} else if (dmi_ident[s]) {
			if (dmi->matches[i].exact_match) {
				if (!strcmp(dmi_ident[s],
					    dmi->matches[i].substr))
					continue;
			} else {
				if (strstr(dmi_ident[s],
					   dmi->matches[i].substr))
					continue;
			}
		}

		/* No match */
		return false;
	}
	return true;
}

/**
 *	dmi_is_end_of_table - check for end-of-table marker
 *	@dmi: pointer to the dmi_system_id structure to check
 */
static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
{
	return dmi->matches[0].slot == DMI_NONE;
}

/**
 *	dmi_check_system - check system DMI data
 *	@list: array of dmi_system_id structures to match against
 *		All non-null elements of the list must match
 *		their slot's (field index's) data (i.e., each
 *		list string must be a substring of the specified
 *		DMI slot's string data) to be considered a
 *		successful match.
 *
 *	Walk the blacklist table running matching functions until someone
 *	returns non zero or we hit the end. Callback function is called for
 *	each successful match. Returns the number of matches.
 *
 *	dmi_setup must be called before this function is called.
 */
int dmi_check_system(const struct dmi_system_id *list)
{
	int count = 0;
	const struct dmi_system_id *d;

	for (d = list; !dmi_is_end_of_table(d); d++)
		if (dmi_matches(d)) {
			count++;
			if (d->callback && d->callback(d))
				break;
		}

	return count;
}
EXPORT_SYMBOL(dmi_check_system);

/**
 *	dmi_first_match - find dmi_system_id structure matching system DMI data
 *	@list: array of dmi_system_id structures to match against
 *		All non-null elements of the list must match
 *		their slot's (field index's) data (i.e., each
 *		list string must be a substring of the specified
 *		DMI slot's string data) to be considered a
 *		successful match.
 *
 *	Walk the blacklist table until the first match is found.  Return the
 *	pointer to the matching entry or NULL if there's no match.
 *
 *	dmi_setup must be called before this function is called.
 */
const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
{
	const struct dmi_system_id *d;

	for (d = list; !dmi_is_end_of_table(d); d++)
		if (dmi_matches(d))
			return d;

	return NULL;
}
EXPORT_SYMBOL(dmi_first_match);

/**
 *	dmi_get_system_info - return DMI data value
 *	@field: data index (see enum dmi_field)
 *
 *	Returns one DMI data value, can be used to perform
 *	complex DMI data checks.
 */
const char *dmi_get_system_info(int field)
{
	return dmi_ident[field];
}
EXPORT_SYMBOL(dmi_get_system_info);

/**
 * dmi_name_in_serial - Check if string is in the DMI product serial information
 * @str: string to check for
 */
int dmi_name_in_serial(const char *str)
{
	int f = DMI_PRODUCT_SERIAL;
	if (dmi_ident[f] && strstr(dmi_ident[f], str))
		return 1;
	return 0;
}

/**
 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
 *	@str: Case sensitive Name
 */
int dmi_name_in_vendors(const char *str)
{
	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
	int i;
	for (i = 0; fields[i] != DMI_NONE; i++) {
		int f = fields[i];
		if (dmi_ident[f] && strstr(dmi_ident[f], str))
			return 1;
	}
	return 0;
}
EXPORT_SYMBOL(dmi_name_in_vendors);

/**
 *	dmi_find_device - find onboard device by type/name
 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
 *	@name: device name string or %NULL to match all
 *	@from: previous device found in search, or %NULL for new search.
 *
 *	Iterates through the list of known onboard devices. If a device is
 *	found with a matching @type and @name, a pointer to its device
 *	structure is returned.  Otherwise, %NULL is returned.
 *	A new search is initiated by passing %NULL as the @from argument.
 *	If @from is not %NULL, searches continue from next device.
 */
const struct dmi_device *dmi_find_device(int type, const char *name,
				    const struct dmi_device *from)
{
	const struct list_head *head = from ? &from->list : &dmi_devices;
	struct list_head *d;

	for (d = head->next; d != &dmi_devices; d = d->next) {
		const struct dmi_device *dev =
			list_entry(d, struct dmi_device, list);

		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
			return dev;
	}

	return NULL;
}
EXPORT_SYMBOL(dmi_find_device);

/**
 *	dmi_get_date - parse a DMI date
 *	@field:	data index (see enum dmi_field)
 *	@yearp: optional out parameter for the year
 *	@monthp: optional out parameter for the month
 *	@dayp: optional out parameter for the day
 *
 *	The date field is assumed to be in the form resembling
 *	[mm[/dd]]/yy[yy] and the result is stored in the out
 *	parameters any or all of which can be omitted.
 *
 *	If the field doesn't exist, all out parameters are set to zero
 *	and false is returned.  Otherwise, true is returned with any
 *	invalid part of date set to zero.
 *
 *	On return, year, month and day are guaranteed to be in the
 *	range of [0,9999], [0,12] and [0,31] respectively.
 */
bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
{
	int year = 0, month = 0, day = 0;
	bool exists;
	const char *s, *y;
	char *e;

	s = dmi_get_system_info(field);
	exists = s;
	if (!exists)
		goto out;

	/*
	 * Determine year first.  We assume the date string resembles
	 * mm/dd/yy[yy] but the original code extracted only the year
	 * from the end.  Keep the behavior in the spirit of no
	 * surprises.
	 */
	y = strrchr(s, '/');
	if (!y)
		goto out;

	y++;
	year = simple_strtoul(y, &e, 10);
	if (y != e && year < 100) {	/* 2-digit year */
		year += 1900;
		if (year < 1996)	/* no dates < spec 1.0 */
			year += 100;
	}
	if (year > 9999)		/* year should fit in %04d */
		year = 0;

	/* parse the mm and dd */
	month = simple_strtoul(s, &e, 10);
	if (s == e || *e != '/' || !month || month > 12) {
		month = 0;
		goto out;
	}

	s = e + 1;
	day = simple_strtoul(s, &e, 10);
	if (s == y || s == e || *e != '/' || day > 31)
		day = 0;
out:
	if (yearp)
		*yearp = year;
	if (monthp)
		*monthp = month;
	if (dayp)
		*dayp = day;
	return exists;
}
EXPORT_SYMBOL(dmi_get_date);

/**
 *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
 *
 *	Returns year on success, -ENXIO if DMI is not selected,
 *	or a different negative error code if DMI field is not present
 *	or not parseable.
 */
int dmi_get_bios_year(void)
{
	bool exists;
	int year;

	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
	if (!exists)
		return -ENODATA;

	return year ? year : -ERANGE;
}
EXPORT_SYMBOL(dmi_get_bios_year);

/**
 *	dmi_walk - Walk the DMI table and get called back for every record
 *	@decode: Callback function
 *	@private_data: Private data to be passed to the callback function
 *
 *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
 *	or a different negative error code if DMI walking fails.
 */
int dmi_walk(void (*decode)(const struct dmi_header *, void *),
	     void *private_data)
{
	u8 *buf;

	if (!dmi_available)
		return -ENXIO;

	buf = dmi_remap(dmi_base, dmi_len);
	if (buf == NULL)
		return -ENOMEM;

	dmi_decode_table(buf, decode, private_data);

	dmi_unmap(buf);
	return 0;
}
EXPORT_SYMBOL_GPL(dmi_walk);

/**
 * dmi_match - compare a string to the dmi field (if exists)
 * @f: DMI field identifier
 * @str: string to compare the DMI field to
 *
 * Returns true if the requested field equals to the str (including NULL).
 */
bool dmi_match(enum dmi_field f, const char *str)
{
	const char *info = dmi_get_system_info(f);

	if (info == NULL || str == NULL)
		return info == str;

	return !strcmp(info, str);
}
EXPORT_SYMBOL_GPL(dmi_match);

void dmi_memdev_name(u16 handle, const char **bank, const char **device)
{
	int n;

	if (dmi_memdev == NULL)
		return;

	for (n = 0; n < dmi_memdev_nr; n++) {
		if (handle == dmi_memdev[n].handle) {
			*bank = dmi_memdev[n].bank;
			*device = dmi_memdev[n].device;
			break;
		}
	}
}
EXPORT_SYMBOL_GPL(dmi_memdev_name);

u64 dmi_memdev_size(u16 handle)
{
	int n;

	if (dmi_memdev) {
		for (n = 0; n < dmi_memdev_nr; n++) {
			if (handle == dmi_memdev[n].handle)
				return dmi_memdev[n].size;
		}
	}
	return ~0ull;
}
EXPORT_SYMBOL_GPL(dmi_memdev_size);

/**
 * dmi_memdev_type - get the memory type
 * @handle: DMI structure handle
 *
 * Return the DMI memory type of the module in the slot associated with the
 * given DMI handle, or 0x0 if no such DMI handle exists.
 */
u8 dmi_memdev_type(u16 handle)
{
	int n;

	if (dmi_memdev) {
		for (n = 0; n < dmi_memdev_nr; n++) {
			if (handle == dmi_memdev[n].handle)
				return dmi_memdev[n].type;
		}
	}
	return 0x0;	/* Not a valid value */
}
EXPORT_SYMBOL_GPL(dmi_memdev_type);

/**
 *	dmi_memdev_handle - get the DMI handle of a memory slot
 *	@slot: slot number
 *
 *	Return the DMI handle associated with a given memory slot, or %0xFFFF
 *      if there is no such slot.
 */
u16 dmi_memdev_handle(int slot)
{
	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
		return dmi_memdev[slot].handle;

	return 0xffff;	/* Not a valid value */
}
EXPORT_SYMBOL_GPL(dmi_memdev_handle);