aboutsummaryrefslogtreecommitdiff
path: root/drivers/firmware/efi/efi.c
blob: 7b6a815b79d359741c48c7db19500165488414b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
// SPDX-License-Identifier: GPL-2.0-only
/*
 * efi.c - EFI subsystem
 *
 * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
 * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
 * Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
 *
 * This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
 * allowing the efivarfs to be mounted or the efivars module to be loaded.
 * The existance of /sys/firmware/efi may also be used by userspace to
 * determine that the system supports EFI.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/efi.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/kexec.h>
#include <linux/platform_device.h>
#include <linux/random.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/ucs2_string.h>
#include <linux/memblock.h>
#include <linux/security.h>

#include <asm/early_ioremap.h>

struct efi __read_mostly efi = {
	.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
	.acpi			= EFI_INVALID_TABLE_ADDR,
	.acpi20			= EFI_INVALID_TABLE_ADDR,
	.smbios			= EFI_INVALID_TABLE_ADDR,
	.smbios3		= EFI_INVALID_TABLE_ADDR,
	.esrt			= EFI_INVALID_TABLE_ADDR,
	.tpm_log		= EFI_INVALID_TABLE_ADDR,
	.tpm_final_log		= EFI_INVALID_TABLE_ADDR,
#ifdef CONFIG_LOAD_UEFI_KEYS
	.mokvar_table		= EFI_INVALID_TABLE_ADDR,
#endif
#ifdef CONFIG_EFI_COCO_SECRET
	.coco_secret		= EFI_INVALID_TABLE_ADDR,
#endif
};
EXPORT_SYMBOL(efi);

unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;

struct mm_struct efi_mm = {
	.mm_rb			= RB_ROOT,
	.mm_mt			= MTREE_INIT_EXT(mm_mt, MM_MT_FLAGS, efi_mm.mmap_lock),
	.mm_users		= ATOMIC_INIT(2),
	.mm_count		= ATOMIC_INIT(1),
	.write_protect_seq      = SEQCNT_ZERO(efi_mm.write_protect_seq),
	MMAP_LOCK_INITIALIZER(efi_mm)
	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist),
	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0},
};

struct workqueue_struct *efi_rts_wq;

static bool disable_runtime = IS_ENABLED(CONFIG_EFI_DISABLE_RUNTIME);
static int __init setup_noefi(char *arg)
{
	disable_runtime = true;
	return 0;
}
early_param("noefi", setup_noefi);

bool efi_runtime_disabled(void)
{
	return disable_runtime;
}

bool __pure __efi_soft_reserve_enabled(void)
{
	return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
}

static int __init parse_efi_cmdline(char *str)
{
	if (!str) {
		pr_warn("need at least one option\n");
		return -EINVAL;
	}

	if (parse_option_str(str, "debug"))
		set_bit(EFI_DBG, &efi.flags);

	if (parse_option_str(str, "noruntime"))
		disable_runtime = true;

	if (parse_option_str(str, "runtime"))
		disable_runtime = false;

	if (parse_option_str(str, "nosoftreserve"))
		set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);

	return 0;
}
early_param("efi", parse_efi_cmdline);

struct kobject *efi_kobj;

/*
 * Let's not leave out systab information that snuck into
 * the efivars driver
 * Note, do not add more fields in systab sysfs file as it breaks sysfs
 * one value per file rule!
 */
static ssize_t systab_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
	char *str = buf;

	if (!kobj || !buf)
		return -EINVAL;

	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
	if (efi.acpi != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
	/*
	 * If both SMBIOS and SMBIOS3 entry points are implemented, the
	 * SMBIOS3 entry point shall be preferred, so we list it first to
	 * let applications stop parsing after the first match.
	 */
	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
	if (efi.smbios != EFI_INVALID_TABLE_ADDR)
		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);

	if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
		str = efi_systab_show_arch(str);

	return str - buf;
}

static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);

static ssize_t fw_platform_size_show(struct kobject *kobj,
				     struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
}

extern __weak struct kobj_attribute efi_attr_fw_vendor;
extern __weak struct kobj_attribute efi_attr_runtime;
extern __weak struct kobj_attribute efi_attr_config_table;
static struct kobj_attribute efi_attr_fw_platform_size =
	__ATTR_RO(fw_platform_size);

static struct attribute *efi_subsys_attrs[] = {
	&efi_attr_systab.attr,
	&efi_attr_fw_platform_size.attr,
	&efi_attr_fw_vendor.attr,
	&efi_attr_runtime.attr,
	&efi_attr_config_table.attr,
	NULL,
};

umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
				   int n)
{
	return attr->mode;
}

static const struct attribute_group efi_subsys_attr_group = {
	.attrs = efi_subsys_attrs,
	.is_visible = efi_attr_is_visible,
};

static struct efivars generic_efivars;
static struct efivar_operations generic_ops;

static int generic_ops_register(void)
{
	generic_ops.get_variable = efi.get_variable;
	generic_ops.get_next_variable = efi.get_next_variable;
	generic_ops.query_variable_store = efi_query_variable_store;

	if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
		generic_ops.set_variable = efi.set_variable;
		generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
	}
	return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
}

static void generic_ops_unregister(void)
{
	efivars_unregister(&generic_efivars);
}

#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
#define EFIVAR_SSDT_NAME_MAX	16UL
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
static int __init efivar_ssdt_setup(char *str)
{
	int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);

	if (ret)
		return ret;

	if (strlen(str) < sizeof(efivar_ssdt))
		memcpy(efivar_ssdt, str, strlen(str));
	else
		pr_warn("efivar_ssdt: name too long: %s\n", str);
	return 1;
}
__setup("efivar_ssdt=", efivar_ssdt_setup);

static __init int efivar_ssdt_load(void)
{
	unsigned long name_size = 256;
	efi_char16_t *name = NULL;
	efi_status_t status;
	efi_guid_t guid;

	if (!efivar_ssdt[0])
		return 0;

	name = kzalloc(name_size, GFP_KERNEL);
	if (!name)
		return -ENOMEM;

	for (;;) {
		char utf8_name[EFIVAR_SSDT_NAME_MAX];
		unsigned long data_size = 0;
		void *data;
		int limit;

		status = efi.get_next_variable(&name_size, name, &guid);
		if (status == EFI_NOT_FOUND) {
			break;
		} else if (status == EFI_BUFFER_TOO_SMALL) {
			name = krealloc(name, name_size, GFP_KERNEL);
			if (!name)
				return -ENOMEM;
			continue;
		}

		limit = min(EFIVAR_SSDT_NAME_MAX, name_size);
		ucs2_as_utf8(utf8_name, name, limit - 1);
		if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
			continue;

		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, &guid);

		status = efi.get_variable(name, &guid, NULL, &data_size, NULL);
		if (status != EFI_BUFFER_TOO_SMALL || !data_size)
			return -EIO;

		data = kmalloc(data_size, GFP_KERNEL);
		if (!data)
			return -ENOMEM;

		status = efi.get_variable(name, &guid, NULL, &data_size, data);
		if (status == EFI_SUCCESS) {
			acpi_status ret = acpi_load_table(data, NULL);
			if (ret)
				pr_err("failed to load table: %u\n", ret);
		} else {
			pr_err("failed to get var data: 0x%lx\n", status);
		}
		kfree(data);
	}
	return 0;
}
#else
static inline int efivar_ssdt_load(void) { return 0; }
#endif

#ifdef CONFIG_DEBUG_FS

#define EFI_DEBUGFS_MAX_BLOBS 32

static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];

static void __init efi_debugfs_init(void)
{
	struct dentry *efi_debugfs;
	efi_memory_desc_t *md;
	char name[32];
	int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
	int i = 0;

	efi_debugfs = debugfs_create_dir("efi", NULL);
	if (IS_ERR_OR_NULL(efi_debugfs))
		return;

	for_each_efi_memory_desc(md) {
		switch (md->type) {
		case EFI_BOOT_SERVICES_CODE:
			snprintf(name, sizeof(name), "boot_services_code%d",
				 type_count[md->type]++);
			break;
		case EFI_BOOT_SERVICES_DATA:
			snprintf(name, sizeof(name), "boot_services_data%d",
				 type_count[md->type]++);
			break;
		default:
			continue;
		}

		if (i >= EFI_DEBUGFS_MAX_BLOBS) {
			pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
				EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
			break;
		}

		debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
		debugfs_blob[i].data = memremap(md->phys_addr,
						debugfs_blob[i].size,
						MEMREMAP_WB);
		if (!debugfs_blob[i].data)
			continue;

		debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
		i++;
	}
}
#else
static inline void efi_debugfs_init(void) {}
#endif

/*
 * We register the efi subsystem with the firmware subsystem and the
 * efivars subsystem with the efi subsystem, if the system was booted with
 * EFI.
 */
static int __init efisubsys_init(void)
{
	int error;

	if (!efi_enabled(EFI_RUNTIME_SERVICES))
		efi.runtime_supported_mask = 0;

	if (!efi_enabled(EFI_BOOT))
		return 0;

	if (efi.runtime_supported_mask) {
		/*
		 * Since we process only one efi_runtime_service() at a time, an
		 * ordered workqueue (which creates only one execution context)
		 * should suffice for all our needs.
		 */
		efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
		if (!efi_rts_wq) {
			pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
			clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
			efi.runtime_supported_mask = 0;
			return 0;
		}
	}

	if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
		platform_device_register_simple("rtc-efi", 0, NULL, 0);

	/* We register the efi directory at /sys/firmware/efi */
	efi_kobj = kobject_create_and_add("efi", firmware_kobj);
	if (!efi_kobj) {
		pr_err("efi: Firmware registration failed.\n");
		destroy_workqueue(efi_rts_wq);
		return -ENOMEM;
	}

	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
		error = generic_ops_register();
		if (error)
			goto err_put;
		efivar_ssdt_load();
		platform_device_register_simple("efivars", 0, NULL, 0);
	}

	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
	if (error) {
		pr_err("efi: Sysfs attribute export failed with error %d.\n",
		       error);
		goto err_unregister;
	}

	error = efi_runtime_map_init(efi_kobj);
	if (error)
		goto err_remove_group;

	/* and the standard mountpoint for efivarfs */
	error = sysfs_create_mount_point(efi_kobj, "efivars");
	if (error) {
		pr_err("efivars: Subsystem registration failed.\n");
		goto err_remove_group;
	}

	if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
		efi_debugfs_init();

#ifdef CONFIG_EFI_COCO_SECRET
	if (efi.coco_secret != EFI_INVALID_TABLE_ADDR)
		platform_device_register_simple("efi_secret", 0, NULL, 0);
#endif

	return 0;

err_remove_group:
	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
err_unregister:
	if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
				      EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
		generic_ops_unregister();
err_put:
	kobject_put(efi_kobj);
	destroy_workqueue(efi_rts_wq);
	return error;
}

subsys_initcall(efisubsys_init);

void __init efi_find_mirror(void)
{
	efi_memory_desc_t *md;
	u64 mirror_size = 0, total_size = 0;

	if (!efi_enabled(EFI_MEMMAP))
		return;

	for_each_efi_memory_desc(md) {
		unsigned long long start = md->phys_addr;
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;

		total_size += size;
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
			memblock_mark_mirror(start, size);
			mirror_size += size;
		}
	}
	if (mirror_size)
		pr_info("Memory: %lldM/%lldM mirrored memory\n",
			mirror_size>>20, total_size>>20);
}

/*
 * Find the efi memory descriptor for a given physical address.  Given a
 * physical address, determine if it exists within an EFI Memory Map entry,
 * and if so, populate the supplied memory descriptor with the appropriate
 * data.
 */
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP)) {
		pr_err_once("EFI_MEMMAP is not enabled.\n");
		return -EINVAL;
	}

	if (!out_md) {
		pr_err_once("out_md is null.\n");
		return -EINVAL;
        }

	for_each_efi_memory_desc(md) {
		u64 size;
		u64 end;

		size = md->num_pages << EFI_PAGE_SHIFT;
		end = md->phys_addr + size;
		if (phys_addr >= md->phys_addr && phys_addr < end) {
			memcpy(out_md, md, sizeof(*out_md));
			return 0;
		}
	}
	return -ENOENT;
}

/*
 * Calculate the highest address of an efi memory descriptor.
 */
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
{
	u64 size = md->num_pages << EFI_PAGE_SHIFT;
	u64 end = md->phys_addr + size;
	return end;
}

void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}

/**
 * efi_mem_reserve - Reserve an EFI memory region
 * @addr: Physical address to reserve
 * @size: Size of reservation
 *
 * Mark a region as reserved from general kernel allocation and
 * prevent it being released by efi_free_boot_services().
 *
 * This function should be called drivers once they've parsed EFI
 * configuration tables to figure out where their data lives, e.g.
 * efi_esrt_init().
 */
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
{
	if (!memblock_is_region_reserved(addr, size))
		memblock_reserve(addr, size);

	/*
	 * Some architectures (x86) reserve all boot services ranges
	 * until efi_free_boot_services() because of buggy firmware
	 * implementations. This means the above memblock_reserve() is
	 * superfluous on x86 and instead what it needs to do is
	 * ensure the @start, @size is not freed.
	 */
	efi_arch_mem_reserve(addr, size);
}

static const efi_config_table_type_t common_tables[] __initconst = {
	{ACPI_20_TABLE_GUID,			&efi.acpi20,		"ACPI 2.0"	},
	{ACPI_TABLE_GUID,			&efi.acpi,		"ACPI"		},
	{SMBIOS_TABLE_GUID,			&efi.smbios,		"SMBIOS"	},
	{SMBIOS3_TABLE_GUID,			&efi.smbios3,		"SMBIOS 3.0"	},
	{EFI_SYSTEM_RESOURCE_TABLE_GUID,	&efi.esrt,		"ESRT"		},
	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID,	&efi_mem_attr_table,	"MEMATTR"	},
	{LINUX_EFI_RANDOM_SEED_TABLE_GUID,	&efi_rng_seed,		"RNG"		},
	{LINUX_EFI_TPM_EVENT_LOG_GUID,		&efi.tpm_log,		"TPMEventLog"	},
	{LINUX_EFI_TPM_FINAL_LOG_GUID,		&efi.tpm_final_log,	"TPMFinalLog"	},
	{LINUX_EFI_MEMRESERVE_TABLE_GUID,	&mem_reserve,		"MEMRESERVE"	},
	{EFI_RT_PROPERTIES_TABLE_GUID,		&rt_prop,		"RTPROP"	},
#ifdef CONFIG_EFI_RCI2_TABLE
	{DELLEMC_EFI_RCI2_TABLE_GUID,		&rci2_table_phys			},
#endif
#ifdef CONFIG_LOAD_UEFI_KEYS
	{LINUX_EFI_MOK_VARIABLE_TABLE_GUID,	&efi.mokvar_table,	"MOKvar"	},
#endif
#ifdef CONFIG_EFI_COCO_SECRET
	{LINUX_EFI_COCO_SECRET_AREA_GUID,	&efi.coco_secret,	"CocoSecret"	},
#endif
	{},
};

static __init int match_config_table(const efi_guid_t *guid,
				     unsigned long table,
				     const efi_config_table_type_t *table_types)
{
	int i;

	for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
		if (!efi_guidcmp(*guid, table_types[i].guid)) {
			*(table_types[i].ptr) = table;
			if (table_types[i].name[0])
				pr_cont("%s=0x%lx ",
					table_types[i].name, table);
			return 1;
		}
	}

	return 0;
}

int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
				   int count,
				   const efi_config_table_type_t *arch_tables)
{
	const efi_config_table_64_t *tbl64 = (void *)config_tables;
	const efi_config_table_32_t *tbl32 = (void *)config_tables;
	const efi_guid_t *guid;
	unsigned long table;
	int i;

	pr_info("");
	for (i = 0; i < count; i++) {
		if (!IS_ENABLED(CONFIG_X86)) {
			guid = &config_tables[i].guid;
			table = (unsigned long)config_tables[i].table;
		} else if (efi_enabled(EFI_64BIT)) {
			guid = &tbl64[i].guid;
			table = tbl64[i].table;

			if (IS_ENABLED(CONFIG_X86_32) &&
			    tbl64[i].table > U32_MAX) {
				pr_cont("\n");
				pr_err("Table located above 4GB, disabling EFI.\n");
				return -EINVAL;
			}
		} else {
			guid = &tbl32[i].guid;
			table = tbl32[i].table;
		}

		if (!match_config_table(guid, table, common_tables) && arch_tables)
			match_config_table(guid, table, arch_tables);
	}
	pr_cont("\n");
	set_bit(EFI_CONFIG_TABLES, &efi.flags);

	if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
		struct linux_efi_random_seed *seed;
		u32 size = 0;

		seed = early_memremap(efi_rng_seed, sizeof(*seed));
		if (seed != NULL) {
			size = READ_ONCE(seed->size);
			early_memunmap(seed, sizeof(*seed));
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
		if (size > 0) {
			seed = early_memremap(efi_rng_seed,
					      sizeof(*seed) + size);
			if (seed != NULL) {
				pr_notice("seeding entropy pool\n");
				add_bootloader_randomness(seed->bits, size);
				early_memunmap(seed, sizeof(*seed) + size);
			} else {
				pr_err("Could not map UEFI random seed!\n");
			}
		}
	}

	if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
		efi_memattr_init();

	efi_tpm_eventlog_init();

	if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
		unsigned long prsv = mem_reserve;

		while (prsv) {
			struct linux_efi_memreserve *rsv;
			u8 *p;

			/*
			 * Just map a full page: that is what we will get
			 * anyway, and it permits us to map the entire entry
			 * before knowing its size.
			 */
			p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
					   PAGE_SIZE);
			if (p == NULL) {
				pr_err("Could not map UEFI memreserve entry!\n");
				return -ENOMEM;
			}

			rsv = (void *)(p + prsv % PAGE_SIZE);

			/* reserve the entry itself */
			memblock_reserve(prsv,
					 struct_size(rsv, entry, rsv->size));

			for (i = 0; i < atomic_read(&rsv->count); i++) {
				memblock_reserve(rsv->entry[i].base,
						 rsv->entry[i].size);
			}

			prsv = rsv->next;
			early_memunmap(p, PAGE_SIZE);
		}
	}

	if (rt_prop != EFI_INVALID_TABLE_ADDR) {
		efi_rt_properties_table_t *tbl;

		tbl = early_memremap(rt_prop, sizeof(*tbl));
		if (tbl) {
			efi.runtime_supported_mask &= tbl->runtime_services_supported;
			early_memunmap(tbl, sizeof(*tbl));
		}
	}

	return 0;
}

int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
				   int min_major_version)
{
	if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
		pr_err("System table signature incorrect!\n");
		return -EINVAL;
	}

	if ((systab_hdr->revision >> 16) < min_major_version)
		pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
		       systab_hdr->revision >> 16,
		       systab_hdr->revision & 0xffff,
		       min_major_version);

	return 0;
}

#ifndef CONFIG_IA64
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
						size_t size)
{
	const efi_char16_t *ret;

	ret = early_memremap_ro(fw_vendor, size);
	if (!ret)
		pr_err("Could not map the firmware vendor!\n");
	return ret;
}

static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
{
	early_memunmap((void *)fw_vendor, size);
}
#else
#define map_fw_vendor(p, s)	__va(p)
#define unmap_fw_vendor(v, s)
#endif

void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
				     unsigned long fw_vendor)
{
	char vendor[100] = "unknown";
	const efi_char16_t *c16;
	size_t i;

	c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
	if (c16) {
		for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
			vendor[i] = c16[i];
		vendor[i] = '\0';

		unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
	}

	pr_info("EFI v%u.%.02u by %s\n",
		systab_hdr->revision >> 16,
		systab_hdr->revision & 0xffff,
		vendor);

	if (IS_ENABLED(CONFIG_X86_64) &&
	    systab_hdr->revision > EFI_1_10_SYSTEM_TABLE_REVISION &&
	    !strcmp(vendor, "Apple")) {
		pr_info("Apple Mac detected, using EFI v1.10 runtime services only\n");
		efi.runtime_version = EFI_1_10_SYSTEM_TABLE_REVISION;
	}
}

static __initdata char memory_type_name[][13] = {
	"Reserved",
	"Loader Code",
	"Loader Data",
	"Boot Code",
	"Boot Data",
	"Runtime Code",
	"Runtime Data",
	"Conventional",
	"Unusable",
	"ACPI Reclaim",
	"ACPI Mem NVS",
	"MMIO",
	"MMIO Port",
	"PAL Code",
	"Persistent",
};

char * __init efi_md_typeattr_format(char *buf, size_t size,
				     const efi_memory_desc_t *md)
{
	char *pos;
	int type_len;
	u64 attr;

	pos = buf;
	if (md->type >= ARRAY_SIZE(memory_type_name))
		type_len = snprintf(pos, size, "[type=%u", md->type);
	else
		type_len = snprintf(pos, size, "[%-*s",
				    (int)(sizeof(memory_type_name[0]) - 1),
				    memory_type_name[md->type]);
	if (type_len >= size)
		return buf;

	pos += type_len;
	size -= type_len;

	attr = md->attribute;
	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
		     EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
		snprintf(pos, size, "|attr=0x%016llx]",
			 (unsigned long long)attr);
	else
		snprintf(pos, size,
			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
			 attr & EFI_MEMORY_RUNTIME		? "RUN" : "",
			 attr & EFI_MEMORY_MORE_RELIABLE	? "MR"  : "",
			 attr & EFI_MEMORY_CPU_CRYPTO   	? "CC"  : "",
			 attr & EFI_MEMORY_SP			? "SP"  : "",
			 attr & EFI_MEMORY_NV			? "NV"  : "",
			 attr & EFI_MEMORY_XP			? "XP"  : "",
			 attr & EFI_MEMORY_RP			? "RP"  : "",
			 attr & EFI_MEMORY_WP			? "WP"  : "",
			 attr & EFI_MEMORY_RO			? "RO"  : "",
			 attr & EFI_MEMORY_UCE			? "UCE" : "",
			 attr & EFI_MEMORY_WB			? "WB"  : "",
			 attr & EFI_MEMORY_WT			? "WT"  : "",
			 attr & EFI_MEMORY_WC			? "WC"  : "",
			 attr & EFI_MEMORY_UC			? "UC"  : "");
	return buf;
}

/*
 * IA64 has a funky EFI memory map that doesn't work the same way as
 * other architectures.
 */
#ifndef CONFIG_IA64
/*
 * efi_mem_attributes - lookup memmap attributes for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering
 * @phys_addr. Returns the EFI memory attributes if the region
 * was found in the memory map, 0 otherwise.
 */
u64 efi_mem_attributes(unsigned long phys_addr)
{
	efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return 0;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
		    (md->num_pages << EFI_PAGE_SHIFT))))
			return md->attribute;
	}
	return 0;
}

/*
 * efi_mem_type - lookup memmap type for physical address
 * @phys_addr: the physical address to lookup
 *
 * Search in the EFI memory map for the region covering @phys_addr.
 * Returns the EFI memory type if the region was found in the memory
 * map, -EINVAL otherwise.
 */
int efi_mem_type(unsigned long phys_addr)
{
	const efi_memory_desc_t *md;

	if (!efi_enabled(EFI_MEMMAP))
		return -ENOTSUPP;

	for_each_efi_memory_desc(md) {
		if ((md->phys_addr <= phys_addr) &&
		    (phys_addr < (md->phys_addr +
				  (md->num_pages << EFI_PAGE_SHIFT))))
			return md->type;
	}
	return -EINVAL;
}
#endif

int efi_status_to_err(efi_status_t status)
{
	int err;

	switch (status) {
	case EFI_SUCCESS:
		err = 0;
		break;
	case EFI_INVALID_PARAMETER:
		err = -EINVAL;
		break;
	case EFI_OUT_OF_RESOURCES:
		err = -ENOSPC;
		break;
	case EFI_DEVICE_ERROR:
		err = -EIO;
		break;
	case EFI_WRITE_PROTECTED:
		err = -EROFS;
		break;
	case EFI_SECURITY_VIOLATION:
		err = -EACCES;
		break;
	case EFI_NOT_FOUND:
		err = -ENOENT;
		break;
	case EFI_ABORTED:
		err = -EINTR;
		break;
	default:
		err = -EINVAL;
	}

	return err;
}
EXPORT_SYMBOL_GPL(efi_status_to_err);

static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;

static int __init efi_memreserve_map_root(void)
{
	if (mem_reserve == EFI_INVALID_TABLE_ADDR)
		return -ENODEV;

	efi_memreserve_root = memremap(mem_reserve,
				       sizeof(*efi_memreserve_root),
				       MEMREMAP_WB);
	if (WARN_ON_ONCE(!efi_memreserve_root))
		return -ENOMEM;
	return 0;
}

static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
{
	struct resource *res, *parent;
	int ret;

	res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
	if (!res)
		return -ENOMEM;

	res->name	= "reserved";
	res->flags	= IORESOURCE_MEM;
	res->start	= addr;
	res->end	= addr + size - 1;

	/* we expect a conflict with a 'System RAM' region */
	parent = request_resource_conflict(&iomem_resource, res);
	ret = parent ? request_resource(parent, res) : 0;

	/*
	 * Given that efi_mem_reserve_iomem() can be called at any
	 * time, only call memblock_reserve() if the architecture
	 * keeps the infrastructure around.
	 */
	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK) && !ret)
		memblock_reserve(addr, size);

	return ret;
}

int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
{
	struct linux_efi_memreserve *rsv;
	unsigned long prsv;
	int rc, index;

	if (efi_memreserve_root == (void *)ULONG_MAX)
		return -ENODEV;

	if (!efi_memreserve_root) {
		rc = efi_memreserve_map_root();
		if (rc)
			return rc;
	}

	/* first try to find a slot in an existing linked list entry */
	for (prsv = efi_memreserve_root->next; prsv; ) {
		rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
		index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
		if (index < rsv->size) {
			rsv->entry[index].base = addr;
			rsv->entry[index].size = size;

			memunmap(rsv);
			return efi_mem_reserve_iomem(addr, size);
		}
		prsv = rsv->next;
		memunmap(rsv);
	}

	/* no slot found - allocate a new linked list entry */
	rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
	if (!rsv)
		return -ENOMEM;

	rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
	if (rc) {
		free_page((unsigned long)rsv);
		return rc;
	}

	/*
	 * The memremap() call above assumes that a linux_efi_memreserve entry
	 * never crosses a page boundary, so let's ensure that this remains true
	 * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
	 * using SZ_4K explicitly in the size calculation below.
	 */
	rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
	atomic_set(&rsv->count, 1);
	rsv->entry[0].base = addr;
	rsv->entry[0].size = size;

	spin_lock(&efi_mem_reserve_persistent_lock);
	rsv->next = efi_memreserve_root->next;
	efi_memreserve_root->next = __pa(rsv);
	spin_unlock(&efi_mem_reserve_persistent_lock);

	return efi_mem_reserve_iomem(addr, size);
}

static int __init efi_memreserve_root_init(void)
{
	if (efi_memreserve_root)
		return 0;
	if (efi_memreserve_map_root())
		efi_memreserve_root = (void *)ULONG_MAX;
	return 0;
}
early_initcall(efi_memreserve_root_init);

#ifdef CONFIG_KEXEC
static int update_efi_random_seed(struct notifier_block *nb,
				  unsigned long code, void *unused)
{
	struct linux_efi_random_seed *seed;
	u32 size = 0;

	if (!kexec_in_progress)
		return NOTIFY_DONE;

	seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
	if (seed != NULL) {
		size = min(seed->size, EFI_RANDOM_SEED_SIZE);
		memunmap(seed);
	} else {
		pr_err("Could not map UEFI random seed!\n");
	}
	if (size > 0) {
		seed = memremap(efi_rng_seed, sizeof(*seed) + size,
				MEMREMAP_WB);
		if (seed != NULL) {
			seed->size = size;
			get_random_bytes(seed->bits, seed->size);
			memunmap(seed);
		} else {
			pr_err("Could not map UEFI random seed!\n");
		}
	}
	return NOTIFY_DONE;
}

static struct notifier_block efi_random_seed_nb = {
	.notifier_call = update_efi_random_seed,
};

static int __init register_update_efi_random_seed(void)
{
	if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
		return 0;
	return register_reboot_notifier(&efi_random_seed_nb);
}
late_initcall(register_update_efi_random_seed);
#endif