aboutsummaryrefslogtreecommitdiff
path: root/drivers/hwmon/asb100.c
blob: 8cf0bcb85eb4e31f55f8b5ff527024e15678588e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
 *	      monitoring
 *
 * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
 *
 * (derived from w83781d.c)
 *
 * Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
 *			      Philip Edelbrock <phil@netroedge.com>, and
 *			      Mark Studebaker <mdsxyz123@yahoo.com>
 */

/*
 * This driver supports the hardware sensor chips: Asus ASB100 and
 * ASB100-A "BACH".
 *
 * ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
 * way for the driver to tell which one is there.
 *
 * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
 * asb100	7	3	1	4	0x31	0x0694	yes	no
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include "lm75.h"

/* I2C addresses to scan */
static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };

static unsigned short force_subclients[4];
module_param_array(force_subclients, short, NULL, 0);
MODULE_PARM_DESC(force_subclients,
	"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");

/* Voltage IN registers 0-6 */
#define ASB100_REG_IN(nr)	(0x20 + (nr))
#define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
#define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))

/* FAN IN registers 1-3 */
#define ASB100_REG_FAN(nr)	(0x28 + (nr))
#define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))

/* TEMPERATURE registers 1-4 */
static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};

#define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
#define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
#define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])

#define ASB100_REG_TEMP2_CONFIG	0x0152
#define ASB100_REG_TEMP3_CONFIG	0x0252


#define ASB100_REG_CONFIG	0x40
#define ASB100_REG_ALARM1	0x41
#define ASB100_REG_ALARM2	0x42
#define ASB100_REG_SMIM1	0x43
#define ASB100_REG_SMIM2	0x44
#define ASB100_REG_VID_FANDIV	0x47
#define ASB100_REG_I2C_ADDR	0x48
#define ASB100_REG_CHIPID	0x49
#define ASB100_REG_I2C_SUBADDR	0x4a
#define ASB100_REG_PIN		0x4b
#define ASB100_REG_IRQ		0x4c
#define ASB100_REG_BANK		0x4e
#define ASB100_REG_CHIPMAN	0x4f

#define ASB100_REG_WCHIPID	0x58

/* bit 7 -> enable, bits 0-3 -> duty cycle */
#define ASB100_REG_PWM1		0x59

/*
 * CONVERSIONS
 * Rounding and limit checking is only done on the TO_REG variants.
 */

/* These constants are a guess, consistent w/ w83781d */
#define ASB100_IN_MIN		0
#define ASB100_IN_MAX		4080

/*
 * IN: 1/1000 V (0V to 4.08V)
 * REG: 16mV/bit
 */
static u8 IN_TO_REG(unsigned val)
{
	unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
	return (nval + 8) / 16;
}

static unsigned IN_FROM_REG(u8 reg)
{
	return reg * 16;
}

static u8 FAN_TO_REG(long rpm, int div)
{
	if (rpm == -1)
		return 0;
	if (rpm == 0)
		return 255;
	rpm = clamp_val(rpm, 1, 1000000);
	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}

static int FAN_FROM_REG(u8 val, int div)
{
	return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
}

/* These constants are a guess, consistent w/ w83781d */
#define ASB100_TEMP_MIN		-128000
#define ASB100_TEMP_MAX		127000

/*
 * TEMP: 0.001C/bit (-128C to +127C)
 * REG: 1C/bit, two's complement
 */
static u8 TEMP_TO_REG(long temp)
{
	int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
	ntemp += (ntemp < 0 ? -500 : 500);
	return (u8)(ntemp / 1000);
}

static int TEMP_FROM_REG(u8 reg)
{
	return (s8)reg * 1000;
}

/*
 * PWM: 0 - 255 per sensors documentation
 * REG: (6.25% duty cycle per bit)
 */
static u8 ASB100_PWM_TO_REG(int pwm)
{
	pwm = clamp_val(pwm, 0, 255);
	return (u8)(pwm / 16);
}

static int ASB100_PWM_FROM_REG(u8 reg)
{
	return reg * 16;
}

#define DIV_FROM_REG(val) (1 << (val))

/*
 * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
 * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
 */
static u8 DIV_TO_REG(long val)
{
	return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
}

/*
 * For each registered client, we need to keep some data in memory. That
 * data is pointed to by client->data. The structure itself is
 * dynamically allocated, at the same time the client itself is allocated.
 */
struct asb100_data {
	struct device *hwmon_dev;
	struct mutex lock;

	struct mutex update_lock;
	unsigned long last_updated;	/* In jiffies */

	/* array of 2 pointers to subclients */
	struct i2c_client *lm75[2];

	bool valid;		/* true if following fields are valid */
	u8 in[7];		/* Register value */
	u8 in_max[7];		/* Register value */
	u8 in_min[7];		/* Register value */
	u8 fan[3];		/* Register value */
	u8 fan_min[3];		/* Register value */
	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
	u8 fan_div[3];		/* Register encoding, right justified */
	u8 pwm;			/* Register encoding */
	u8 vid;			/* Register encoding, combined */
	u32 alarms;		/* Register encoding, combined */
	u8 vrm;
};

static int asb100_read_value(struct i2c_client *client, u16 reg);
static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);

static int asb100_probe(struct i2c_client *client);
static int asb100_detect(struct i2c_client *client,
			 struct i2c_board_info *info);
static int asb100_remove(struct i2c_client *client);
static struct asb100_data *asb100_update_device(struct device *dev);
static void asb100_init_client(struct i2c_client *client);

static const struct i2c_device_id asb100_id[] = {
	{ "asb100", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, asb100_id);

static struct i2c_driver asb100_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name	= "asb100",
	},
	.probe_new	= asb100_probe,
	.remove		= asb100_remove,
	.id_table	= asb100_id,
	.detect		= asb100_detect,
	.address_list	= normal_i2c,
};

/* 7 Voltages */
#define show_in_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		char *buf) \
{ \
	int nr = to_sensor_dev_attr(attr)->index; \
	struct asb100_data *data = asb100_update_device(dev); \
	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
}

show_in_reg(in)
show_in_reg(in_min)
show_in_reg(in_max)

#define set_in_reg(REG, reg) \
static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
		const char *buf, size_t count) \
{ \
	int nr = to_sensor_dev_attr(attr)->index; \
	struct i2c_client *client = to_i2c_client(dev); \
	struct asb100_data *data = i2c_get_clientdata(client); \
	unsigned long val; \
	int err = kstrtoul(buf, 10, &val); \
	if (err) \
		return err; \
	mutex_lock(&data->update_lock); \
	data->in_##reg[nr] = IN_TO_REG(val); \
	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
		data->in_##reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

set_in_reg(MIN, min)
set_in_reg(MAX, max)

#define sysfs_in(offset) \
static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
		show_in, NULL, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
		show_in_min, set_in_min, offset); \
static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
		show_in_max, set_in_max, offset)

sysfs_in(0);
sysfs_in(1);
sysfs_in(2);
sysfs_in(3);
sysfs_in(4);
sysfs_in(5);
sysfs_in(6);

/* 3 Fans */
static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
		DIV_FROM_REG(data->fan_div[nr])));
}

static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
		DIV_FROM_REG(data->fan_div[nr])));
}

static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}

static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t count)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct i2c_client *client = to_i2c_client(dev);
	struct asb100_data *data = i2c_get_clientdata(client);
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
	mutex_unlock(&data->update_lock);
	return count;
}

/*
 * Note: we save and restore the fan minimum here, because its value is
 * determined in part by the fan divisor.  This follows the principle of
 * least surprise; the user doesn't expect the fan minimum to change just
 * because the divisor changed.
 */
static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
		const char *buf, size_t count)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct i2c_client *client = to_i2c_client(dev);
	struct asb100_data *data = i2c_get_clientdata(client);
	unsigned long min;
	int reg;
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);

	min = FAN_FROM_REG(data->fan_min[nr],
			DIV_FROM_REG(data->fan_div[nr]));
	data->fan_div[nr] = DIV_TO_REG(val);

	switch (nr) {
	case 0:	/* fan 1 */
		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
		break;

	case 1:	/* fan 2 */
		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
		break;

	case 2:	/* fan 3 */
		reg = asb100_read_value(client, ASB100_REG_PIN);
		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
		asb100_write_value(client, ASB100_REG_PIN, reg);
		break;
	}

	data->fan_min[nr] =
		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);

	mutex_unlock(&data->update_lock);

	return count;
}

#define sysfs_fan(offset) \
static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
		show_fan, NULL, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
		show_fan_min, set_fan_min, offset - 1); \
static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
		show_fan_div, set_fan_div, offset - 1)

sysfs_fan(1);
sysfs_fan(2);
sysfs_fan(3);

/* 4 Temp. Sensors */
static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
{
	int ret = 0;

	switch (nr) {
	case 1: case 2:
		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
		break;
	case 0: case 3: default:
		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
		break;
	}
	return ret;
}

#define show_temp_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
		char *buf) \
{ \
	int nr = to_sensor_dev_attr(attr)->index; \
	struct asb100_data *data = asb100_update_device(dev); \
	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
}

show_temp_reg(temp);
show_temp_reg(temp_max);
show_temp_reg(temp_hyst);

#define set_temp_reg(REG, reg) \
static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
		const char *buf, size_t count) \
{ \
	int nr = to_sensor_dev_attr(attr)->index; \
	struct i2c_client *client = to_i2c_client(dev); \
	struct asb100_data *data = i2c_get_clientdata(client); \
	long val; \
	int err = kstrtol(buf, 10, &val); \
	if (err) \
		return err; \
	mutex_lock(&data->update_lock); \
	switch (nr) { \
	case 1: case 2: \
		data->reg[nr] = LM75_TEMP_TO_REG(val); \
		break; \
	case 0: case 3: default: \
		data->reg[nr] = TEMP_TO_REG(val); \
		break; \
	} \
	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
			data->reg[nr]); \
	mutex_unlock(&data->update_lock); \
	return count; \
}

set_temp_reg(MAX, temp_max);
set_temp_reg(HYST, temp_hyst);

#define sysfs_temp(num) \
static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
		show_temp, NULL, num - 1); \
static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
		show_temp_max, set_temp_max, num - 1); \
static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
		show_temp_hyst, set_temp_hyst, num - 1)

sysfs_temp(1);
sysfs_temp(2);
sysfs_temp(3);
sysfs_temp(4);

/* VID */
static ssize_t cpu0_vid_show(struct device *dev,
			     struct device_attribute *attr, char *buf)
{
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}

static DEVICE_ATTR_RO(cpu0_vid);

/* VRM */
static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	struct asb100_data *data = dev_get_drvdata(dev);
	return sprintf(buf, "%d\n", data->vrm);
}

static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	struct asb100_data *data = dev_get_drvdata(dev);
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	if (val > 255)
		return -EINVAL;

	data->vrm = val;
	return count;
}

/* Alarms */
static DEVICE_ATTR_RW(vrm);

static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%u\n", data->alarms);
}

static DEVICE_ATTR_RO(alarms);

static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	int bitnr = to_sensor_dev_attr(attr)->index;
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);

/* 1 PWM */
static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
		char *buf)
{
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
}

static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
			  const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct asb100_data *data = i2c_get_clientdata(client);
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	data->pwm &= 0x80; /* keep the enable bit */
	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t pwm1_enable_show(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct asb100_data *data = asb100_update_device(dev);
	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
}

static ssize_t pwm1_enable_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct asb100_data *data = i2c_get_clientdata(client);
	unsigned long val;
	int err;

	err = kstrtoul(buf, 10, &val);
	if (err)
		return err;

	mutex_lock(&data->update_lock);
	data->pwm &= 0x0f; /* keep the duty cycle bits */
	data->pwm |= (val ? 0x80 : 0x00);
	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
	mutex_unlock(&data->update_lock);
	return count;
}

static DEVICE_ATTR_RW(pwm1);
static DEVICE_ATTR_RW(pwm1_enable);

static struct attribute *asb100_attributes[] = {
	&sensor_dev_attr_in0_input.dev_attr.attr,
	&sensor_dev_attr_in0_min.dev_attr.attr,
	&sensor_dev_attr_in0_max.dev_attr.attr,
	&sensor_dev_attr_in1_input.dev_attr.attr,
	&sensor_dev_attr_in1_min.dev_attr.attr,
	&sensor_dev_attr_in1_max.dev_attr.attr,
	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_in2_min.dev_attr.attr,
	&sensor_dev_attr_in2_max.dev_attr.attr,
	&sensor_dev_attr_in3_input.dev_attr.attr,
	&sensor_dev_attr_in3_min.dev_attr.attr,
	&sensor_dev_attr_in3_max.dev_attr.attr,
	&sensor_dev_attr_in4_input.dev_attr.attr,
	&sensor_dev_attr_in4_min.dev_attr.attr,
	&sensor_dev_attr_in4_max.dev_attr.attr,
	&sensor_dev_attr_in5_input.dev_attr.attr,
	&sensor_dev_attr_in5_min.dev_attr.attr,
	&sensor_dev_attr_in5_max.dev_attr.attr,
	&sensor_dev_attr_in6_input.dev_attr.attr,
	&sensor_dev_attr_in6_min.dev_attr.attr,
	&sensor_dev_attr_in6_max.dev_attr.attr,

	&sensor_dev_attr_fan1_input.dev_attr.attr,
	&sensor_dev_attr_fan1_min.dev_attr.attr,
	&sensor_dev_attr_fan1_div.dev_attr.attr,
	&sensor_dev_attr_fan2_input.dev_attr.attr,
	&sensor_dev_attr_fan2_min.dev_attr.attr,
	&sensor_dev_attr_fan2_div.dev_attr.attr,
	&sensor_dev_attr_fan3_input.dev_attr.attr,
	&sensor_dev_attr_fan3_min.dev_attr.attr,
	&sensor_dev_attr_fan3_div.dev_attr.attr,

	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp3_input.dev_attr.attr,
	&sensor_dev_attr_temp3_max.dev_attr.attr,
	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp4_input.dev_attr.attr,
	&sensor_dev_attr_temp4_max.dev_attr.attr,
	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,

	&sensor_dev_attr_in0_alarm.dev_attr.attr,
	&sensor_dev_attr_in1_alarm.dev_attr.attr,
	&sensor_dev_attr_in2_alarm.dev_attr.attr,
	&sensor_dev_attr_in3_alarm.dev_attr.attr,
	&sensor_dev_attr_in4_alarm.dev_attr.attr,
	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_alarm.dev_attr.attr,

	&dev_attr_cpu0_vid.attr,
	&dev_attr_vrm.attr,
	&dev_attr_alarms.attr,
	&dev_attr_pwm1.attr,
	&dev_attr_pwm1_enable.attr,

	NULL
};

static const struct attribute_group asb100_group = {
	.attrs = asb100_attributes,
};

static int asb100_detect_subclients(struct i2c_client *client)
{
	int i, id, err;
	int address = client->addr;
	unsigned short sc_addr[2];
	struct asb100_data *data = i2c_get_clientdata(client);
	struct i2c_adapter *adapter = client->adapter;

	id = i2c_adapter_id(adapter);

	if (force_subclients[0] == id && force_subclients[1] == address) {
		for (i = 2; i <= 3; i++) {
			if (force_subclients[i] < 0x48 ||
			    force_subclients[i] > 0x4f) {
				dev_err(&client->dev,
					"invalid subclient address %d; must be 0x48-0x4f\n",
					force_subclients[i]);
				err = -ENODEV;
				goto ERROR_SC_2;
			}
		}
		asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
					(force_subclients[2] & 0x07) |
					((force_subclients[3] & 0x07) << 4));
		sc_addr[0] = force_subclients[2];
		sc_addr[1] = force_subclients[3];
	} else {
		int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
		sc_addr[0] = 0x48 + (val & 0x07);
		sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
	}

	if (sc_addr[0] == sc_addr[1]) {
		dev_err(&client->dev,
			"duplicate addresses 0x%x for subclients\n",
			sc_addr[0]);
		err = -ENODEV;
		goto ERROR_SC_2;
	}

	data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]);
	if (IS_ERR(data->lm75[0])) {
		dev_err(&client->dev,
			"subclient %d registration at address 0x%x failed.\n",
			1, sc_addr[0]);
		err = PTR_ERR(data->lm75[0]);
		goto ERROR_SC_2;
	}

	data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]);
	if (IS_ERR(data->lm75[1])) {
		dev_err(&client->dev,
			"subclient %d registration at address 0x%x failed.\n",
			2, sc_addr[1]);
		err = PTR_ERR(data->lm75[1]);
		goto ERROR_SC_3;
	}

	return 0;

/* Undo inits in case of errors */
ERROR_SC_3:
	i2c_unregister_device(data->lm75[0]);
ERROR_SC_2:
	return err;
}

/* Return 0 if detection is successful, -ENODEV otherwise */
static int asb100_detect(struct i2c_client *client,
			 struct i2c_board_info *info)
{
	struct i2c_adapter *adapter = client->adapter;
	int val1, val2;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
		pr_debug("detect failed, smbus byte data not supported!\n");
		return -ENODEV;
	}

	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);

	/* If we're in bank 0 */
	if ((!(val1 & 0x07)) &&
			/* Check for ASB100 ID (low byte) */
			(((!(val1 & 0x80)) && (val2 != 0x94)) ||
			/* Check for ASB100 ID (high byte ) */
			((val1 & 0x80) && (val2 != 0x06)))) {
		pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
		return -ENODEV;
	}

	/* Put it now into bank 0 and Vendor ID High Byte */
	i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
		(i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
		| 0x80);

	/* Determine the chip type. */
	val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
	val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);

	if (val1 != 0x31 || val2 != 0x06)
		return -ENODEV;

	strlcpy(info->type, "asb100", I2C_NAME_SIZE);

	return 0;
}

static int asb100_probe(struct i2c_client *client)
{
	int err;
	struct asb100_data *data;

	data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
			    GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	i2c_set_clientdata(client, data);
	mutex_init(&data->lock);
	mutex_init(&data->update_lock);

	/* Attach secondary lm75 clients */
	err = asb100_detect_subclients(client);
	if (err)
		return err;

	/* Initialize the chip */
	asb100_init_client(client);

	/* A few vars need to be filled upon startup */
	data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
	data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
	data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));

	/* Register sysfs hooks */
	err = sysfs_create_group(&client->dev.kobj, &asb100_group);
	if (err)
		goto ERROR3;

	data->hwmon_dev = hwmon_device_register(&client->dev);
	if (IS_ERR(data->hwmon_dev)) {
		err = PTR_ERR(data->hwmon_dev);
		goto ERROR4;
	}

	return 0;

ERROR4:
	sysfs_remove_group(&client->dev.kobj, &asb100_group);
ERROR3:
	i2c_unregister_device(data->lm75[1]);
	i2c_unregister_device(data->lm75[0]);
	return err;
}

static int asb100_remove(struct i2c_client *client)
{
	struct asb100_data *data = i2c_get_clientdata(client);

	hwmon_device_unregister(data->hwmon_dev);
	sysfs_remove_group(&client->dev.kobj, &asb100_group);

	i2c_unregister_device(data->lm75[1]);
	i2c_unregister_device(data->lm75[0]);

	return 0;
}

/*
 * The SMBus locks itself, usually, but nothing may access the chip between
 * bank switches.
 */
static int asb100_read_value(struct i2c_client *client, u16 reg)
{
	struct asb100_data *data = i2c_get_clientdata(client);
	struct i2c_client *cl;
	int res, bank;

	mutex_lock(&data->lock);

	bank = (reg >> 8) & 0x0f;
	if (bank > 2)
		/* switch banks */
		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);

	if (bank == 0 || bank > 2) {
		res = i2c_smbus_read_byte_data(client, reg & 0xff);
	} else {
		/* switch to subclient */
		cl = data->lm75[bank - 1];

		/* convert from ISA to LM75 I2C addresses */
		switch (reg & 0xff) {
		case 0x50: /* TEMP */
			res = i2c_smbus_read_word_swapped(cl, 0);
			break;
		case 0x52: /* CONFIG */
			res = i2c_smbus_read_byte_data(cl, 1);
			break;
		case 0x53: /* HYST */
			res = i2c_smbus_read_word_swapped(cl, 2);
			break;
		case 0x55: /* MAX */
		default:
			res = i2c_smbus_read_word_swapped(cl, 3);
			break;
		}
	}

	if (bank > 2)
		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);

	mutex_unlock(&data->lock);

	return res;
}

static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
{
	struct asb100_data *data = i2c_get_clientdata(client);
	struct i2c_client *cl;
	int bank;

	mutex_lock(&data->lock);

	bank = (reg >> 8) & 0x0f;
	if (bank > 2)
		/* switch banks */
		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);

	if (bank == 0 || bank > 2) {
		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
	} else {
		/* switch to subclient */
		cl = data->lm75[bank - 1];

		/* convert from ISA to LM75 I2C addresses */
		switch (reg & 0xff) {
		case 0x52: /* CONFIG */
			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
			break;
		case 0x53: /* HYST */
			i2c_smbus_write_word_swapped(cl, 2, value);
			break;
		case 0x55: /* MAX */
			i2c_smbus_write_word_swapped(cl, 3, value);
			break;
		}
	}

	if (bank > 2)
		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);

	mutex_unlock(&data->lock);
}

static void asb100_init_client(struct i2c_client *client)
{
	struct asb100_data *data = i2c_get_clientdata(client);

	data->vrm = vid_which_vrm();

	/* Start monitoring */
	asb100_write_value(client, ASB100_REG_CONFIG,
		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
}

static struct asb100_data *asb100_update_device(struct device *dev)
{
	struct i2c_client *client = to_i2c_client(dev);
	struct asb100_data *data = i2c_get_clientdata(client);
	int i;

	mutex_lock(&data->update_lock);

	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
		|| !data->valid) {

		dev_dbg(&client->dev, "starting device update...\n");

		/* 7 voltage inputs */
		for (i = 0; i < 7; i++) {
			data->in[i] = asb100_read_value(client,
				ASB100_REG_IN(i));
			data->in_min[i] = asb100_read_value(client,
				ASB100_REG_IN_MIN(i));
			data->in_max[i] = asb100_read_value(client,
				ASB100_REG_IN_MAX(i));
		}

		/* 3 fan inputs */
		for (i = 0; i < 3; i++) {
			data->fan[i] = asb100_read_value(client,
					ASB100_REG_FAN(i));
			data->fan_min[i] = asb100_read_value(client,
					ASB100_REG_FAN_MIN(i));
		}

		/* 4 temperature inputs */
		for (i = 1; i <= 4; i++) {
			data->temp[i-1] = asb100_read_value(client,
					ASB100_REG_TEMP(i));
			data->temp_max[i-1] = asb100_read_value(client,
					ASB100_REG_TEMP_MAX(i));
			data->temp_hyst[i-1] = asb100_read_value(client,
					ASB100_REG_TEMP_HYST(i));
		}

		/* VID and fan divisors */
		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
		data->vid = i & 0x0f;
		data->vid |= (asb100_read_value(client,
				ASB100_REG_CHIPID) & 0x01) << 4;
		data->fan_div[0] = (i >> 4) & 0x03;
		data->fan_div[1] = (i >> 6) & 0x03;
		data->fan_div[2] = (asb100_read_value(client,
				ASB100_REG_PIN) >> 6) & 0x03;

		/* PWM */
		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);

		/* alarms */
		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);

		data->last_updated = jiffies;
		data->valid = true;

		dev_dbg(&client->dev, "... device update complete\n");
	}

	mutex_unlock(&data->update_lock);

	return data;
}

module_i2c_driver(asb100_driver);

MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
MODULE_DESCRIPTION("ASB100 Bach driver");
MODULE_LICENSE("GPL");