aboutsummaryrefslogtreecommitdiff
path: root/drivers/hwmon/lm80.c
blob: ac4adb44b224d783d44f51b2ecc2a4bffc7ab8c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * lm80.c - From lm_sensors, Linux kernel modules for hardware
 *	    monitoring
 * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
 *			     and Philip Edelbrock <phil@netroedge.com>
 *
 * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>

/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
						0x2e, 0x2f, I2C_CLIENT_END };

/* Many LM80 constants specified below */

/* The LM80 registers */
#define LM80_REG_IN_MAX(nr)		(0x2a + (nr) * 2)
#define LM80_REG_IN_MIN(nr)		(0x2b + (nr) * 2)
#define LM80_REG_IN(nr)			(0x20 + (nr))

#define LM80_REG_FAN1			0x28
#define LM80_REG_FAN2			0x29
#define LM80_REG_FAN_MIN(nr)		(0x3b + (nr))

#define LM80_REG_TEMP			0x27
#define LM80_REG_TEMP_HOT_MAX		0x38
#define LM80_REG_TEMP_HOT_HYST		0x39
#define LM80_REG_TEMP_OS_MAX		0x3a
#define LM80_REG_TEMP_OS_HYST		0x3b

#define LM80_REG_CONFIG			0x00
#define LM80_REG_ALARM1			0x01
#define LM80_REG_ALARM2			0x02
#define LM80_REG_MASK1			0x03
#define LM80_REG_MASK2			0x04
#define LM80_REG_FANDIV			0x05
#define LM80_REG_RES			0x06

#define LM96080_REG_CONV_RATE		0x07
#define LM96080_REG_MAN_ID		0x3e
#define LM96080_REG_DEV_ID		0x3f


/*
 * Conversions. Rounding and limit checking is only done on the TO_REG
 * variants. Note that you should be a bit careful with which arguments
 * these macros are called: arguments may be evaluated more than once.
 * Fixing this is just not worth it.
 */

#define IN_TO_REG(val)		(clamp_val(((val) + 5) / 10, 0, 255))
#define IN_FROM_REG(val)	((val) * 10)

static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
{
	if (rpm == 0)
		return 255;
	rpm = clamp_val(rpm, 1, 1000000);
	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}

#define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
				(val) == 255 ? 0 : 1350000/((div) * (val)))

#define TEMP_FROM_REG(reg)	((reg) * 125 / 32)
#define TEMP_TO_REG(temp)	(DIV_ROUND_CLOSEST(clamp_val((temp), \
					-128000, 127000), 1000) << 8)

#define DIV_FROM_REG(val)		(1 << (val))

enum temp_index {
	t_input = 0,
	t_hot_max,
	t_hot_hyst,
	t_os_max,
	t_os_hyst,
	t_num_temp
};

static const u8 temp_regs[t_num_temp] = {
	[t_input] = LM80_REG_TEMP,
	[t_hot_max] = LM80_REG_TEMP_HOT_MAX,
	[t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
	[t_os_max] = LM80_REG_TEMP_OS_MAX,
	[t_os_hyst] = LM80_REG_TEMP_OS_HYST,
};

enum in_index {
	i_input = 0,
	i_max,
	i_min,
	i_num_in
};

enum fan_index {
	f_input,
	f_min,
	f_num_fan
};

/*
 * Client data (each client gets its own)
 */

struct lm80_data {
	struct i2c_client *client;
	struct mutex update_lock;
	char error;		/* !=0 if error occurred during last update */
	char valid;		/* !=0 if following fields are valid */
	unsigned long last_updated;	/* In jiffies */

	u8 in[i_num_in][7];	/* Register value, 1st index is enum in_index */
	u8 fan[f_num_fan][2];	/* Register value, 1st index enum fan_index */
	u8 fan_div[2];		/* Register encoding, shifted right */
	s16 temp[t_num_temp];	/* Register values, normalized to 16 bit */
	u16 alarms;		/* Register encoding, combined */
};

static int lm80_read_value(struct i2c_client *client, u8 reg)
{
	return i2c_smbus_read_byte_data(client, reg);
}

static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
{
	return i2c_smbus_write_byte_data(client, reg, value);
}

/* Called when we have found a new LM80 and after read errors */
static void lm80_init_client(struct i2c_client *client)
{
	/*
	 * Reset all except Watchdog values and last conversion values
	 * This sets fan-divs to 2, among others. This makes most other
	 * initializations unnecessary
	 */
	lm80_write_value(client, LM80_REG_CONFIG, 0x80);
	/* Set 11-bit temperature resolution */
	lm80_write_value(client, LM80_REG_RES, 0x08);

	/* Start monitoring */
	lm80_write_value(client, LM80_REG_CONFIG, 0x01);
}

static struct lm80_data *lm80_update_device(struct device *dev)
{
	struct lm80_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int i;
	int rv;
	int prev_rv;
	struct lm80_data *ret = data;

	mutex_lock(&data->update_lock);

	if (data->error)
		lm80_init_client(client);

	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
		dev_dbg(dev, "Starting lm80 update\n");
		for (i = 0; i <= 6; i++) {
			rv = lm80_read_value(client, LM80_REG_IN(i));
			if (rv < 0)
				goto abort;
			data->in[i_input][i] = rv;

			rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
			if (rv < 0)
				goto abort;
			data->in[i_min][i] = rv;

			rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
			if (rv < 0)
				goto abort;
			data->in[i_max][i] = rv;
		}

		rv = lm80_read_value(client, LM80_REG_FAN1);
		if (rv < 0)
			goto abort;
		data->fan[f_input][0] = rv;

		rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
		if (rv < 0)
			goto abort;
		data->fan[f_min][0] = rv;

		rv = lm80_read_value(client, LM80_REG_FAN2);
		if (rv < 0)
			goto abort;
		data->fan[f_input][1] = rv;

		rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
		if (rv < 0)
			goto abort;
		data->fan[f_min][1] = rv;

		prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
		if (rv < 0)
			goto abort;
		rv = lm80_read_value(client, LM80_REG_RES);
		if (rv < 0)
			goto abort;
		data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);

		for (i = t_input + 1; i < t_num_temp; i++) {
			rv = lm80_read_value(client, temp_regs[i]);
			if (rv < 0)
				goto abort;
			data->temp[i] = rv << 8;
		}

		rv = lm80_read_value(client, LM80_REG_FANDIV);
		if (rv < 0)
			goto abort;
		data->fan_div[0] = (rv >> 2) & 0x03;
		data->fan_div[1] = (rv >> 4) & 0x03;

		prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
		if (rv < 0)
			goto abort;
		rv = lm80_read_value(client, LM80_REG_ALARM2);
		if (rv < 0)
			goto abort;
		data->alarms = prev_rv + (rv << 8);

		data->last_updated = jiffies;
		data->valid = 1;
		data->error = 0;
	}
	goto done;

abort:
	ret = ERR_PTR(rv);
	data->valid = 0;
	data->error = 1;

done:
	mutex_unlock(&data->update_lock);

	return ret;
}

/*
 * Sysfs stuff
 */

static ssize_t in_show(struct device *dev, struct device_attribute *attr,
		       char *buf)
{
	struct lm80_data *data = lm80_update_device(dev);
	int index = to_sensor_dev_attr_2(attr)->index;
	int nr = to_sensor_dev_attr_2(attr)->nr;

	if (IS_ERR(data))
		return PTR_ERR(data);
	return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
}

static ssize_t in_store(struct device *dev, struct device_attribute *attr,
			const char *buf, size_t count)
{
	struct lm80_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int index = to_sensor_dev_attr_2(attr)->index;
	int nr = to_sensor_dev_attr_2(attr)->nr;
	long val;
	u8 reg;
	int err = kstrtol(buf, 10, &val);
	if (err < 0)
		return err;

	reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);

	mutex_lock(&data->update_lock);
	data->in[nr][index] = IN_TO_REG(val);
	lm80_write_value(client, reg, data->in[nr][index]);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
			char *buf)
{
	int index = to_sensor_dev_attr_2(attr)->index;
	int nr = to_sensor_dev_attr_2(attr)->nr;
	struct lm80_data *data = lm80_update_device(dev);
	if (IS_ERR(data))
		return PTR_ERR(data);
	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
		       DIV_FROM_REG(data->fan_div[index])));
}

static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct lm80_data *data = lm80_update_device(dev);
	if (IS_ERR(data))
		return PTR_ERR(data);
	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
}

static ssize_t fan_store(struct device *dev, struct device_attribute *attr,
			 const char *buf, size_t count)
{
	int index = to_sensor_dev_attr_2(attr)->index;
	int nr = to_sensor_dev_attr_2(attr)->nr;
	struct lm80_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long val;
	int err = kstrtoul(buf, 10, &val);
	if (err < 0)
		return err;

	mutex_lock(&data->update_lock);
	data->fan[nr][index] = FAN_TO_REG(val,
					  DIV_FROM_REG(data->fan_div[index]));
	lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
			 data->fan[nr][index]);
	mutex_unlock(&data->update_lock);
	return count;
}

/*
 * Note: we save and restore the fan minimum here, because its value is
 * determined in part by the fan divisor.  This follows the principle of
 * least surprise; the user doesn't expect the fan minimum to change just
 * because the divisor changed.
 */
static ssize_t fan_div_store(struct device *dev,
			     struct device_attribute *attr, const char *buf,
			     size_t count)
{
	int nr = to_sensor_dev_attr(attr)->index;
	struct lm80_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long min, val;
	u8 reg;
	int rv;

	rv = kstrtoul(buf, 10, &val);
	if (rv < 0)
		return rv;

	/* Save fan_min */
	mutex_lock(&data->update_lock);
	min = FAN_FROM_REG(data->fan[f_min][nr],
			   DIV_FROM_REG(data->fan_div[nr]));

	switch (val) {
	case 1:
		data->fan_div[nr] = 0;
		break;
	case 2:
		data->fan_div[nr] = 1;
		break;
	case 4:
		data->fan_div[nr] = 2;
		break;
	case 8:
		data->fan_div[nr] = 3;
		break;
	default:
		dev_err(dev,
			"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
			val);
		mutex_unlock(&data->update_lock);
		return -EINVAL;
	}

	rv = lm80_read_value(client, LM80_REG_FANDIV);
	if (rv < 0) {
		mutex_unlock(&data->update_lock);
		return rv;
	}
	reg = (rv & ~(3 << (2 * (nr + 1))))
	    | (data->fan_div[nr] << (2 * (nr + 1)));
	lm80_write_value(client, LM80_REG_FANDIV, reg);

	/* Restore fan_min */
	data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
	lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
			 data->fan[f_min][nr]);
	mutex_unlock(&data->update_lock);

	return count;
}

static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
			 char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm80_data *data = lm80_update_device(dev);
	if (IS_ERR(data))
		return PTR_ERR(data);
	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
}

static ssize_t temp_store(struct device *dev,
			  struct device_attribute *devattr, const char *buf,
			  size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct lm80_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int nr = attr->index;
	long val;
	int err = kstrtol(buf, 10, &val);
	if (err < 0)
		return err;

	mutex_lock(&data->update_lock);
	data->temp[nr] = TEMP_TO_REG(val);
	lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
	mutex_unlock(&data->update_lock);
	return count;
}

static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
			   char *buf)
{
	struct lm80_data *data = lm80_update_device(dev);
	if (IS_ERR(data))
		return PTR_ERR(data);
	return sprintf(buf, "%u\n", data->alarms);
}

static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
			  char *buf)
{
	int bitnr = to_sensor_dev_attr(attr)->index;
	struct lm80_data *data = lm80_update_device(dev);
	if (IS_ERR(data))
		return PTR_ERR(data);
	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}

static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, i_min, 0);
static SENSOR_DEVICE_ATTR_2_RW(in1_min, in, i_min, 1);
static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, i_min, 2);
static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, i_min, 3);
static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, i_min, 4);
static SENSOR_DEVICE_ATTR_2_RW(in5_min, in, i_min, 5);
static SENSOR_DEVICE_ATTR_2_RW(in6_min, in, i_min, 6);
static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, i_max, 0);
static SENSOR_DEVICE_ATTR_2_RW(in1_max, in, i_max, 1);
static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, i_max, 2);
static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, i_max, 3);
static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, i_max, 4);
static SENSOR_DEVICE_ATTR_2_RW(in5_max, in, i_max, 5);
static SENSOR_DEVICE_ATTR_2_RW(in6_max, in, i_max, 6);
static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, i_input, 0);
static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, i_input, 1);
static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, i_input, 2);
static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, i_input, 3);
static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, i_input, 4);
static SENSOR_DEVICE_ATTR_2_RO(in5_input, in, i_input, 5);
static SENSOR_DEVICE_ATTR_2_RO(in6_input, in, i_input, 6);
static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan, f_min, 0);
static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan, f_min, 1);
static SENSOR_DEVICE_ATTR_2_RO(fan1_input, fan, f_input, 0);
static SENSOR_DEVICE_ATTR_2_RO(fan2_input, fan, f_input, 1);
static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, t_input);
static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, t_hot_max);
static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp, t_hot_hyst);
static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, t_os_max);
static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, temp, t_os_hyst);
static DEVICE_ATTR_RO(alarms);
static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 4);
static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 5);
static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6);
static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 8);
static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 13);

/*
 * Real code
 */

static struct attribute *lm80_attrs[] = {
	&sensor_dev_attr_in0_min.dev_attr.attr,
	&sensor_dev_attr_in1_min.dev_attr.attr,
	&sensor_dev_attr_in2_min.dev_attr.attr,
	&sensor_dev_attr_in3_min.dev_attr.attr,
	&sensor_dev_attr_in4_min.dev_attr.attr,
	&sensor_dev_attr_in5_min.dev_attr.attr,
	&sensor_dev_attr_in6_min.dev_attr.attr,
	&sensor_dev_attr_in0_max.dev_attr.attr,
	&sensor_dev_attr_in1_max.dev_attr.attr,
	&sensor_dev_attr_in2_max.dev_attr.attr,
	&sensor_dev_attr_in3_max.dev_attr.attr,
	&sensor_dev_attr_in4_max.dev_attr.attr,
	&sensor_dev_attr_in5_max.dev_attr.attr,
	&sensor_dev_attr_in6_max.dev_attr.attr,
	&sensor_dev_attr_in0_input.dev_attr.attr,
	&sensor_dev_attr_in1_input.dev_attr.attr,
	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_in3_input.dev_attr.attr,
	&sensor_dev_attr_in4_input.dev_attr.attr,
	&sensor_dev_attr_in5_input.dev_attr.attr,
	&sensor_dev_attr_in6_input.dev_attr.attr,
	&sensor_dev_attr_fan1_min.dev_attr.attr,
	&sensor_dev_attr_fan2_min.dev_attr.attr,
	&sensor_dev_attr_fan1_input.dev_attr.attr,
	&sensor_dev_attr_fan2_input.dev_attr.attr,
	&sensor_dev_attr_fan1_div.dev_attr.attr,
	&sensor_dev_attr_fan2_div.dev_attr.attr,
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
	&sensor_dev_attr_temp1_crit.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
	&dev_attr_alarms.attr,
	&sensor_dev_attr_in0_alarm.dev_attr.attr,
	&sensor_dev_attr_in1_alarm.dev_attr.attr,
	&sensor_dev_attr_in2_alarm.dev_attr.attr,
	&sensor_dev_attr_in3_alarm.dev_attr.attr,
	&sensor_dev_attr_in4_alarm.dev_attr.attr,
	&sensor_dev_attr_in5_alarm.dev_attr.attr,
	&sensor_dev_attr_in6_alarm.dev_attr.attr,
	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
	NULL
};
ATTRIBUTE_GROUPS(lm80);

/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
{
	struct i2c_adapter *adapter = client->adapter;
	int i, cur, man_id, dev_id;
	const char *name = NULL;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -ENODEV;

	/* First check for unused bits, common to both chip types */
	if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
	 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
		return -ENODEV;

	/*
	 * The LM96080 has manufacturer and stepping/die rev registers so we
	 * can just check that. The LM80 does not have such registers so we
	 * have to use a more expensive trick.
	 */
	man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
	dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
	if (man_id == 0x01 && dev_id == 0x08) {
		/* Check more unused bits for confirmation */
		if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
			return -ENODEV;

		name = "lm96080";
	} else {
		/* Check 6-bit addressing */
		for (i = 0x2a; i <= 0x3d; i++) {
			cur = i2c_smbus_read_byte_data(client, i);
			if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
			 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
			 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
				return -ENODEV;
		}

		name = "lm80";
	}

	strlcpy(info->type, name, I2C_NAME_SIZE);

	return 0;
}

static int lm80_probe(struct i2c_client *client)
{
	struct device *dev = &client->dev;
	struct device *hwmon_dev;
	struct lm80_data *data;
	int rv;

	data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->client = client;
	mutex_init(&data->update_lock);

	/* Initialize the LM80 chip */
	lm80_init_client(client);

	/* A few vars need to be filled upon startup */
	rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
	if (rv < 0)
		return rv;
	data->fan[f_min][0] = rv;
	rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
	if (rv < 0)
		return rv;
	data->fan[f_min][1] = rv;

	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data, lm80_groups);

	return PTR_ERR_OR_ZERO(hwmon_dev);
}

/*
 * Driver data (common to all clients)
 */

static const struct i2c_device_id lm80_id[] = {
	{ "lm80", 0 },
	{ "lm96080", 1 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, lm80_id);

static struct i2c_driver lm80_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name	= "lm80",
	},
	.probe_new	= lm80_probe,
	.id_table	= lm80_id,
	.detect		= lm80_detect,
	.address_list	= normal_i2c,
};

module_i2c_driver(lm80_driver);

MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
	"Philip Edelbrock <phil@netroedge.com>");
MODULE_DESCRIPTION("LM80 driver");
MODULE_LICENSE("GPL");