aboutsummaryrefslogtreecommitdiff
path: root/drivers/iommu/arm-smmu-v3.c
blob: f122071688fd530b3fedd5e21ddbaf0ccd4bc203 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

#include <linux/acpi.h>
#include <linux/acpi_iort.h>
#include <linux/delay.h>
#include <linux/dma-iommu.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_iommu.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/platform_device.h>

#include <linux/amba/bus.h>

#include "io-pgtable.h"

/* MMIO registers */
#define ARM_SMMU_IDR0			0x0
#define IDR0_ST_LVL_SHIFT		27
#define IDR0_ST_LVL_MASK		0x3
#define IDR0_ST_LVL_2LVL		(1 << IDR0_ST_LVL_SHIFT)
#define IDR0_STALL_MODEL_SHIFT		24
#define IDR0_STALL_MODEL_MASK		0x3
#define IDR0_STALL_MODEL_STALL		(0 << IDR0_STALL_MODEL_SHIFT)
#define IDR0_STALL_MODEL_FORCE		(2 << IDR0_STALL_MODEL_SHIFT)
#define IDR0_TTENDIAN_SHIFT		21
#define IDR0_TTENDIAN_MASK		0x3
#define IDR0_TTENDIAN_LE		(2 << IDR0_TTENDIAN_SHIFT)
#define IDR0_TTENDIAN_BE		(3 << IDR0_TTENDIAN_SHIFT)
#define IDR0_TTENDIAN_MIXED		(0 << IDR0_TTENDIAN_SHIFT)
#define IDR0_CD2L			(1 << 19)
#define IDR0_VMID16			(1 << 18)
#define IDR0_PRI			(1 << 16)
#define IDR0_SEV			(1 << 14)
#define IDR0_MSI			(1 << 13)
#define IDR0_ASID16			(1 << 12)
#define IDR0_ATS			(1 << 10)
#define IDR0_HYP			(1 << 9)
#define IDR0_COHACC			(1 << 4)
#define IDR0_TTF_SHIFT			2
#define IDR0_TTF_MASK			0x3
#define IDR0_TTF_AARCH64		(2 << IDR0_TTF_SHIFT)
#define IDR0_TTF_AARCH32_64		(3 << IDR0_TTF_SHIFT)
#define IDR0_S1P			(1 << 1)
#define IDR0_S2P			(1 << 0)

#define ARM_SMMU_IDR1			0x4
#define IDR1_TABLES_PRESET		(1 << 30)
#define IDR1_QUEUES_PRESET		(1 << 29)
#define IDR1_REL			(1 << 28)
#define IDR1_CMDQ_SHIFT			21
#define IDR1_CMDQ_MASK			0x1f
#define IDR1_EVTQ_SHIFT			16
#define IDR1_EVTQ_MASK			0x1f
#define IDR1_PRIQ_SHIFT			11
#define IDR1_PRIQ_MASK			0x1f
#define IDR1_SSID_SHIFT			6
#define IDR1_SSID_MASK			0x1f
#define IDR1_SID_SHIFT			0
#define IDR1_SID_MASK			0x3f

#define ARM_SMMU_IDR5			0x14
#define IDR5_STALL_MAX_SHIFT		16
#define IDR5_STALL_MAX_MASK		0xffff
#define IDR5_GRAN64K			(1 << 6)
#define IDR5_GRAN16K			(1 << 5)
#define IDR5_GRAN4K			(1 << 4)
#define IDR5_OAS_SHIFT			0
#define IDR5_OAS_MASK			0x7
#define IDR5_OAS_32_BIT			(0 << IDR5_OAS_SHIFT)
#define IDR5_OAS_36_BIT			(1 << IDR5_OAS_SHIFT)
#define IDR5_OAS_40_BIT			(2 << IDR5_OAS_SHIFT)
#define IDR5_OAS_42_BIT			(3 << IDR5_OAS_SHIFT)
#define IDR5_OAS_44_BIT			(4 << IDR5_OAS_SHIFT)
#define IDR5_OAS_48_BIT			(5 << IDR5_OAS_SHIFT)

#define ARM_SMMU_CR0			0x20
#define CR0_CMDQEN			(1 << 3)
#define CR0_EVTQEN			(1 << 2)
#define CR0_PRIQEN			(1 << 1)
#define CR0_SMMUEN			(1 << 0)

#define ARM_SMMU_CR0ACK			0x24

#define ARM_SMMU_CR1			0x28
#define CR1_SH_NSH			0
#define CR1_SH_OSH			2
#define CR1_SH_ISH			3
#define CR1_CACHE_NC			0
#define CR1_CACHE_WB			1
#define CR1_CACHE_WT			2
#define CR1_TABLE_SH_SHIFT		10
#define CR1_TABLE_OC_SHIFT		8
#define CR1_TABLE_IC_SHIFT		6
#define CR1_QUEUE_SH_SHIFT		4
#define CR1_QUEUE_OC_SHIFT		2
#define CR1_QUEUE_IC_SHIFT		0

#define ARM_SMMU_CR2			0x2c
#define CR2_PTM				(1 << 2)
#define CR2_RECINVSID			(1 << 1)
#define CR2_E2H				(1 << 0)

#define ARM_SMMU_GBPA			0x44
#define GBPA_ABORT			(1 << 20)
#define GBPA_UPDATE			(1 << 31)

#define ARM_SMMU_IRQ_CTRL		0x50
#define IRQ_CTRL_EVTQ_IRQEN		(1 << 2)
#define IRQ_CTRL_PRIQ_IRQEN		(1 << 1)
#define IRQ_CTRL_GERROR_IRQEN		(1 << 0)

#define ARM_SMMU_IRQ_CTRLACK		0x54

#define ARM_SMMU_GERROR			0x60
#define GERROR_SFM_ERR			(1 << 8)
#define GERROR_MSI_GERROR_ABT_ERR	(1 << 7)
#define GERROR_MSI_PRIQ_ABT_ERR		(1 << 6)
#define GERROR_MSI_EVTQ_ABT_ERR		(1 << 5)
#define GERROR_MSI_CMDQ_ABT_ERR		(1 << 4)
#define GERROR_PRIQ_ABT_ERR		(1 << 3)
#define GERROR_EVTQ_ABT_ERR		(1 << 2)
#define GERROR_CMDQ_ERR			(1 << 0)
#define GERROR_ERR_MASK			0xfd

#define ARM_SMMU_GERRORN		0x64

#define ARM_SMMU_GERROR_IRQ_CFG0	0x68
#define ARM_SMMU_GERROR_IRQ_CFG1	0x70
#define ARM_SMMU_GERROR_IRQ_CFG2	0x74

#define ARM_SMMU_STRTAB_BASE		0x80
#define STRTAB_BASE_RA			(1UL << 62)
#define STRTAB_BASE_ADDR_SHIFT		6
#define STRTAB_BASE_ADDR_MASK		0x3ffffffffffUL

#define ARM_SMMU_STRTAB_BASE_CFG	0x88
#define STRTAB_BASE_CFG_LOG2SIZE_SHIFT	0
#define STRTAB_BASE_CFG_LOG2SIZE_MASK	0x3f
#define STRTAB_BASE_CFG_SPLIT_SHIFT	6
#define STRTAB_BASE_CFG_SPLIT_MASK	0x1f
#define STRTAB_BASE_CFG_FMT_SHIFT	16
#define STRTAB_BASE_CFG_FMT_MASK	0x3
#define STRTAB_BASE_CFG_FMT_LINEAR	(0 << STRTAB_BASE_CFG_FMT_SHIFT)
#define STRTAB_BASE_CFG_FMT_2LVL	(1 << STRTAB_BASE_CFG_FMT_SHIFT)

#define ARM_SMMU_CMDQ_BASE		0x90
#define ARM_SMMU_CMDQ_PROD		0x98
#define ARM_SMMU_CMDQ_CONS		0x9c

#define ARM_SMMU_EVTQ_BASE		0xa0
#define ARM_SMMU_EVTQ_PROD		0x100a8
#define ARM_SMMU_EVTQ_CONS		0x100ac
#define ARM_SMMU_EVTQ_IRQ_CFG0		0xb0
#define ARM_SMMU_EVTQ_IRQ_CFG1		0xb8
#define ARM_SMMU_EVTQ_IRQ_CFG2		0xbc

#define ARM_SMMU_PRIQ_BASE		0xc0
#define ARM_SMMU_PRIQ_PROD		0x100c8
#define ARM_SMMU_PRIQ_CONS		0x100cc
#define ARM_SMMU_PRIQ_IRQ_CFG0		0xd0
#define ARM_SMMU_PRIQ_IRQ_CFG1		0xd8
#define ARM_SMMU_PRIQ_IRQ_CFG2		0xdc

/* Common MSI config fields */
#define MSI_CFG0_ADDR_SHIFT		2
#define MSI_CFG0_ADDR_MASK		0x3fffffffffffUL
#define MSI_CFG2_SH_SHIFT		4
#define MSI_CFG2_SH_NSH			(0UL << MSI_CFG2_SH_SHIFT)
#define MSI_CFG2_SH_OSH			(2UL << MSI_CFG2_SH_SHIFT)
#define MSI_CFG2_SH_ISH			(3UL << MSI_CFG2_SH_SHIFT)
#define MSI_CFG2_MEMATTR_SHIFT		0
#define MSI_CFG2_MEMATTR_DEVICE_nGnRE	(0x1 << MSI_CFG2_MEMATTR_SHIFT)

#define Q_IDX(q, p)			((p) & ((1 << (q)->max_n_shift) - 1))
#define Q_WRP(q, p)			((p) & (1 << (q)->max_n_shift))
#define Q_OVERFLOW_FLAG			(1 << 31)
#define Q_OVF(q, p)			((p) & Q_OVERFLOW_FLAG)
#define Q_ENT(q, p)			((q)->base +			\
					 Q_IDX(q, p) * (q)->ent_dwords)

#define Q_BASE_RWA			(1UL << 62)
#define Q_BASE_ADDR_SHIFT		5
#define Q_BASE_ADDR_MASK		0xfffffffffffUL
#define Q_BASE_LOG2SIZE_SHIFT		0
#define Q_BASE_LOG2SIZE_MASK		0x1fUL

/*
 * Stream table.
 *
 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
 * 2lvl: 128k L1 entries,
 *       256 lazy entries per table (each table covers a PCI bus)
 */
#define STRTAB_L1_SZ_SHIFT		20
#define STRTAB_SPLIT			8

#define STRTAB_L1_DESC_DWORDS		1
#define STRTAB_L1_DESC_SPAN_SHIFT	0
#define STRTAB_L1_DESC_SPAN_MASK	0x1fUL
#define STRTAB_L1_DESC_L2PTR_SHIFT	6
#define STRTAB_L1_DESC_L2PTR_MASK	0x3ffffffffffUL

#define STRTAB_STE_DWORDS		8
#define STRTAB_STE_0_V			(1UL << 0)
#define STRTAB_STE_0_CFG_SHIFT		1
#define STRTAB_STE_0_CFG_MASK		0x7UL
#define STRTAB_STE_0_CFG_ABORT		(0UL << STRTAB_STE_0_CFG_SHIFT)
#define STRTAB_STE_0_CFG_BYPASS		(4UL << STRTAB_STE_0_CFG_SHIFT)
#define STRTAB_STE_0_CFG_S1_TRANS	(5UL << STRTAB_STE_0_CFG_SHIFT)
#define STRTAB_STE_0_CFG_S2_TRANS	(6UL << STRTAB_STE_0_CFG_SHIFT)

#define STRTAB_STE_0_S1FMT_SHIFT	4
#define STRTAB_STE_0_S1FMT_LINEAR	(0UL << STRTAB_STE_0_S1FMT_SHIFT)
#define STRTAB_STE_0_S1CTXPTR_SHIFT	6
#define STRTAB_STE_0_S1CTXPTR_MASK	0x3ffffffffffUL
#define STRTAB_STE_0_S1CDMAX_SHIFT	59
#define STRTAB_STE_0_S1CDMAX_MASK	0x1fUL

#define STRTAB_STE_1_S1C_CACHE_NC	0UL
#define STRTAB_STE_1_S1C_CACHE_WBRA	1UL
#define STRTAB_STE_1_S1C_CACHE_WT	2UL
#define STRTAB_STE_1_S1C_CACHE_WB	3UL
#define STRTAB_STE_1_S1C_SH_NSH		0UL
#define STRTAB_STE_1_S1C_SH_OSH		2UL
#define STRTAB_STE_1_S1C_SH_ISH		3UL
#define STRTAB_STE_1_S1CIR_SHIFT	2
#define STRTAB_STE_1_S1COR_SHIFT	4
#define STRTAB_STE_1_S1CSH_SHIFT	6

#define STRTAB_STE_1_S1STALLD		(1UL << 27)

#define STRTAB_STE_1_EATS_ABT		0UL
#define STRTAB_STE_1_EATS_TRANS		1UL
#define STRTAB_STE_1_EATS_S1CHK		2UL
#define STRTAB_STE_1_EATS_SHIFT		28

#define STRTAB_STE_1_STRW_NSEL1		0UL
#define STRTAB_STE_1_STRW_EL2		2UL
#define STRTAB_STE_1_STRW_SHIFT		30

#define STRTAB_STE_1_SHCFG_INCOMING	1UL
#define STRTAB_STE_1_SHCFG_SHIFT	44

#define STRTAB_STE_2_S2VMID_SHIFT	0
#define STRTAB_STE_2_S2VMID_MASK	0xffffUL
#define STRTAB_STE_2_VTCR_SHIFT		32
#define STRTAB_STE_2_VTCR_MASK		0x7ffffUL
#define STRTAB_STE_2_S2AA64		(1UL << 51)
#define STRTAB_STE_2_S2ENDI		(1UL << 52)
#define STRTAB_STE_2_S2PTW		(1UL << 54)
#define STRTAB_STE_2_S2R		(1UL << 58)

#define STRTAB_STE_3_S2TTB_SHIFT	4
#define STRTAB_STE_3_S2TTB_MASK		0xfffffffffffUL

/* Context descriptor (stage-1 only) */
#define CTXDESC_CD_DWORDS		8
#define CTXDESC_CD_0_TCR_T0SZ_SHIFT	0
#define ARM64_TCR_T0SZ_SHIFT		0
#define ARM64_TCR_T0SZ_MASK		0x1fUL
#define CTXDESC_CD_0_TCR_TG0_SHIFT	6
#define ARM64_TCR_TG0_SHIFT		14
#define ARM64_TCR_TG0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_IRGN0_SHIFT	8
#define ARM64_TCR_IRGN0_SHIFT		8
#define ARM64_TCR_IRGN0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_ORGN0_SHIFT	10
#define ARM64_TCR_ORGN0_SHIFT		10
#define ARM64_TCR_ORGN0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_SH0_SHIFT	12
#define ARM64_TCR_SH0_SHIFT		12
#define ARM64_TCR_SH0_MASK		0x3UL
#define CTXDESC_CD_0_TCR_EPD0_SHIFT	14
#define ARM64_TCR_EPD0_SHIFT		7
#define ARM64_TCR_EPD0_MASK		0x1UL
#define CTXDESC_CD_0_TCR_EPD1_SHIFT	30
#define ARM64_TCR_EPD1_SHIFT		23
#define ARM64_TCR_EPD1_MASK		0x1UL

#define CTXDESC_CD_0_ENDI		(1UL << 15)
#define CTXDESC_CD_0_V			(1UL << 31)

#define CTXDESC_CD_0_TCR_IPS_SHIFT	32
#define ARM64_TCR_IPS_SHIFT		32
#define ARM64_TCR_IPS_MASK		0x7UL
#define CTXDESC_CD_0_TCR_TBI0_SHIFT	38
#define ARM64_TCR_TBI0_SHIFT		37
#define ARM64_TCR_TBI0_MASK		0x1UL

#define CTXDESC_CD_0_AA64		(1UL << 41)
#define CTXDESC_CD_0_S			(1UL << 44)
#define CTXDESC_CD_0_R			(1UL << 45)
#define CTXDESC_CD_0_A			(1UL << 46)
#define CTXDESC_CD_0_ASET_SHIFT		47
#define CTXDESC_CD_0_ASET_SHARED	(0UL << CTXDESC_CD_0_ASET_SHIFT)
#define CTXDESC_CD_0_ASET_PRIVATE	(1UL << CTXDESC_CD_0_ASET_SHIFT)
#define CTXDESC_CD_0_ASID_SHIFT		48
#define CTXDESC_CD_0_ASID_MASK		0xffffUL

#define CTXDESC_CD_1_TTB0_SHIFT		4
#define CTXDESC_CD_1_TTB0_MASK		0xfffffffffffUL

#define CTXDESC_CD_3_MAIR_SHIFT		0

/* Convert between AArch64 (CPU) TCR format and SMMU CD format */
#define ARM_SMMU_TCR2CD(tcr, fld)					\
	(((tcr) >> ARM64_TCR_##fld##_SHIFT & ARM64_TCR_##fld##_MASK)	\
	 << CTXDESC_CD_0_TCR_##fld##_SHIFT)

/* Command queue */
#define CMDQ_ENT_DWORDS			2
#define CMDQ_MAX_SZ_SHIFT		8

#define CMDQ_ERR_SHIFT			24
#define CMDQ_ERR_MASK			0x7f
#define CMDQ_ERR_CERROR_NONE_IDX	0
#define CMDQ_ERR_CERROR_ILL_IDX		1
#define CMDQ_ERR_CERROR_ABT_IDX		2

#define CMDQ_0_OP_SHIFT			0
#define CMDQ_0_OP_MASK			0xffUL
#define CMDQ_0_SSV			(1UL << 11)

#define CMDQ_PREFETCH_0_SID_SHIFT	32
#define CMDQ_PREFETCH_1_SIZE_SHIFT	0
#define CMDQ_PREFETCH_1_ADDR_MASK	~0xfffUL

#define CMDQ_CFGI_0_SID_SHIFT		32
#define CMDQ_CFGI_0_SID_MASK		0xffffffffUL
#define CMDQ_CFGI_1_LEAF		(1UL << 0)
#define CMDQ_CFGI_1_RANGE_SHIFT		0
#define CMDQ_CFGI_1_RANGE_MASK		0x1fUL

#define CMDQ_TLBI_0_VMID_SHIFT		32
#define CMDQ_TLBI_0_ASID_SHIFT		48
#define CMDQ_TLBI_1_LEAF		(1UL << 0)
#define CMDQ_TLBI_1_VA_MASK		~0xfffUL
#define CMDQ_TLBI_1_IPA_MASK		0xfffffffff000UL

#define CMDQ_PRI_0_SSID_SHIFT		12
#define CMDQ_PRI_0_SSID_MASK		0xfffffUL
#define CMDQ_PRI_0_SID_SHIFT		32
#define CMDQ_PRI_0_SID_MASK		0xffffffffUL
#define CMDQ_PRI_1_GRPID_SHIFT		0
#define CMDQ_PRI_1_GRPID_MASK		0x1ffUL
#define CMDQ_PRI_1_RESP_SHIFT		12
#define CMDQ_PRI_1_RESP_DENY		(0UL << CMDQ_PRI_1_RESP_SHIFT)
#define CMDQ_PRI_1_RESP_FAIL		(1UL << CMDQ_PRI_1_RESP_SHIFT)
#define CMDQ_PRI_1_RESP_SUCC		(2UL << CMDQ_PRI_1_RESP_SHIFT)

#define CMDQ_SYNC_0_CS_SHIFT		12
#define CMDQ_SYNC_0_CS_NONE		(0UL << CMDQ_SYNC_0_CS_SHIFT)
#define CMDQ_SYNC_0_CS_IRQ		(1UL << CMDQ_SYNC_0_CS_SHIFT)
#define CMDQ_SYNC_0_CS_SEV		(2UL << CMDQ_SYNC_0_CS_SHIFT)
#define CMDQ_SYNC_0_MSH_SHIFT		22
#define CMDQ_SYNC_0_MSH_ISH		(3UL << CMDQ_SYNC_0_MSH_SHIFT)
#define CMDQ_SYNC_0_MSIATTR_SHIFT	24
#define CMDQ_SYNC_0_MSIATTR_OIWB	(0xfUL << CMDQ_SYNC_0_MSIATTR_SHIFT)
#define CMDQ_SYNC_0_MSIDATA_SHIFT	32
#define CMDQ_SYNC_0_MSIDATA_MASK	0xffffffffUL
#define CMDQ_SYNC_1_MSIADDR_SHIFT	0
#define CMDQ_SYNC_1_MSIADDR_MASK	0xffffffffffffcUL

/* Event queue */
#define EVTQ_ENT_DWORDS			4
#define EVTQ_MAX_SZ_SHIFT		7

#define EVTQ_0_ID_SHIFT			0
#define EVTQ_0_ID_MASK			0xffUL

/* PRI queue */
#define PRIQ_ENT_DWORDS			2
#define PRIQ_MAX_SZ_SHIFT		8

#define PRIQ_0_SID_SHIFT		0
#define PRIQ_0_SID_MASK			0xffffffffUL
#define PRIQ_0_SSID_SHIFT		32
#define PRIQ_0_SSID_MASK		0xfffffUL
#define PRIQ_0_PERM_PRIV		(1UL << 58)
#define PRIQ_0_PERM_EXEC		(1UL << 59)
#define PRIQ_0_PERM_READ		(1UL << 60)
#define PRIQ_0_PERM_WRITE		(1UL << 61)
#define PRIQ_0_PRG_LAST			(1UL << 62)
#define PRIQ_0_SSID_V			(1UL << 63)

#define PRIQ_1_PRG_IDX_SHIFT		0
#define PRIQ_1_PRG_IDX_MASK		0x1ffUL
#define PRIQ_1_ADDR_SHIFT		12
#define PRIQ_1_ADDR_MASK		0xfffffffffffffUL

/* High-level queue structures */
#define ARM_SMMU_POLL_TIMEOUT_US	100
#define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US	1000000 /* 1s! */
#define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT	10

#define MSI_IOVA_BASE			0x8000000
#define MSI_IOVA_LENGTH			0x100000

static bool disable_bypass;
module_param_named(disable_bypass, disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

enum pri_resp {
	PRI_RESP_DENY,
	PRI_RESP_FAIL,
	PRI_RESP_SUCC,
};

enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

struct arm_smmu_cmdq_ent {
	/* Common fields */
	u8				opcode;
	bool				substream_valid;

	/* Command-specific fields */
	union {
		#define CMDQ_OP_PREFETCH_CFG	0x1
		struct {
			u32			sid;
			u8			size;
			u64			addr;
		} prefetch;

		#define CMDQ_OP_CFGI_STE	0x3
		#define CMDQ_OP_CFGI_ALL	0x4
		struct {
			u32			sid;
			union {
				bool		leaf;
				u8		span;
			};
		} cfgi;

		#define CMDQ_OP_TLBI_NH_ASID	0x11
		#define CMDQ_OP_TLBI_NH_VA	0x12
		#define CMDQ_OP_TLBI_EL2_ALL	0x20
		#define CMDQ_OP_TLBI_S12_VMALL	0x28
		#define CMDQ_OP_TLBI_S2_IPA	0x2a
		#define CMDQ_OP_TLBI_NSNH_ALL	0x30
		struct {
			u16			asid;
			u16			vmid;
			bool			leaf;
			u64			addr;
		} tlbi;

		#define CMDQ_OP_PRI_RESP	0x41
		struct {
			u32			sid;
			u32			ssid;
			u16			grpid;
			enum pri_resp		resp;
		} pri;

		#define CMDQ_OP_CMD_SYNC	0x46
		struct {
			u32			msidata;
			u64			msiaddr;
		} sync;
	};
};

struct arm_smmu_queue {
	int				irq; /* Wired interrupt */

	__le64				*base;
	dma_addr_t			base_dma;
	u64				q_base;

	size_t				ent_dwords;
	u32				max_n_shift;
	u32				prod;
	u32				cons;

	u32 __iomem			*prod_reg;
	u32 __iomem			*cons_reg;
};

struct arm_smmu_cmdq {
	struct arm_smmu_queue		q;
	spinlock_t			lock;
};

struct arm_smmu_evtq {
	struct arm_smmu_queue		q;
	u32				max_stalls;
};

struct arm_smmu_priq {
	struct arm_smmu_queue		q;
};

/* High-level stream table and context descriptor structures */
struct arm_smmu_strtab_l1_desc {
	u8				span;

	__le64				*l2ptr;
	dma_addr_t			l2ptr_dma;
};

struct arm_smmu_s1_cfg {
	__le64				*cdptr;
	dma_addr_t			cdptr_dma;

	struct arm_smmu_ctx_desc {
		u16	asid;
		u64	ttbr;
		u64	tcr;
		u64	mair;
	}				cd;
};

struct arm_smmu_s2_cfg {
	u16				vmid;
	u64				vttbr;
	u64				vtcr;
};

struct arm_smmu_strtab_ent {
	/*
	 * An STE is "assigned" if the master emitting the corresponding SID
	 * is attached to a domain. The behaviour of an unassigned STE is
	 * determined by the disable_bypass parameter, whereas an assigned
	 * STE behaves according to s1_cfg/s2_cfg, which themselves are
	 * configured according to the domain type.
	 */
	bool				assigned;
	struct arm_smmu_s1_cfg		*s1_cfg;
	struct arm_smmu_s2_cfg		*s2_cfg;
};

struct arm_smmu_strtab_cfg {
	__le64				*strtab;
	dma_addr_t			strtab_dma;
	struct arm_smmu_strtab_l1_desc	*l1_desc;
	unsigned int			num_l1_ents;

	u64				strtab_base;
	u32				strtab_base_cfg;
};

/* An SMMUv3 instance */
struct arm_smmu_device {
	struct device			*dev;
	void __iomem			*base;

#define ARM_SMMU_FEAT_2_LVL_STRTAB	(1 << 0)
#define ARM_SMMU_FEAT_2_LVL_CDTAB	(1 << 1)
#define ARM_SMMU_FEAT_TT_LE		(1 << 2)
#define ARM_SMMU_FEAT_TT_BE		(1 << 3)
#define ARM_SMMU_FEAT_PRI		(1 << 4)
#define ARM_SMMU_FEAT_ATS		(1 << 5)
#define ARM_SMMU_FEAT_SEV		(1 << 6)
#define ARM_SMMU_FEAT_MSI		(1 << 7)
#define ARM_SMMU_FEAT_COHERENCY		(1 << 8)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 9)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 10)
#define ARM_SMMU_FEAT_STALLS		(1 << 11)
#define ARM_SMMU_FEAT_HYP		(1 << 12)
#define ARM_SMMU_FEAT_STALL_FORCE	(1 << 13)
	u32				features;

#define ARM_SMMU_OPT_SKIP_PREFETCH	(1 << 0)
#define ARM_SMMU_OPT_PAGE0_REGS_ONLY	(1 << 1)
	u32				options;

	struct arm_smmu_cmdq		cmdq;
	struct arm_smmu_evtq		evtq;
	struct arm_smmu_priq		priq;

	int				gerr_irq;
	int				combined_irq;
	atomic_t			sync_nr;

	unsigned long			ias; /* IPA */
	unsigned long			oas; /* PA */
	unsigned long			pgsize_bitmap;

#define ARM_SMMU_MAX_ASIDS		(1 << 16)
	unsigned int			asid_bits;
	DECLARE_BITMAP(asid_map, ARM_SMMU_MAX_ASIDS);

#define ARM_SMMU_MAX_VMIDS		(1 << 16)
	unsigned int			vmid_bits;
	DECLARE_BITMAP(vmid_map, ARM_SMMU_MAX_VMIDS);

	unsigned int			ssid_bits;
	unsigned int			sid_bits;

	struct arm_smmu_strtab_cfg	strtab_cfg;

	u32				sync_count;

	/* IOMMU core code handle */
	struct iommu_device		iommu;
};

/* SMMU private data for each master */
struct arm_smmu_master_data {
	struct arm_smmu_device		*smmu;
	struct arm_smmu_strtab_ent	ste;
};

/* SMMU private data for an IOMMU domain */
enum arm_smmu_domain_stage {
	ARM_SMMU_DOMAIN_S1 = 0,
	ARM_SMMU_DOMAIN_S2,
	ARM_SMMU_DOMAIN_NESTED,
	ARM_SMMU_DOMAIN_BYPASS,
};

struct arm_smmu_domain {
	struct arm_smmu_device		*smmu;
	struct mutex			init_mutex; /* Protects smmu pointer */

	struct io_pgtable_ops		*pgtbl_ops;

	enum arm_smmu_domain_stage	stage;
	union {
		struct arm_smmu_s1_cfg	s1_cfg;
		struct arm_smmu_s2_cfg	s2_cfg;
	};

	struct iommu_domain		domain;
};

struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
	{ 0, NULL},
};

static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
	if ((offset > SZ_64K) &&
	    (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY))
		offset -= SZ_64K;

	return smmu->base + offset;
}

static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

/* Low-level queue manipulation functions */
static bool queue_full(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

static bool queue_empty(struct arm_smmu_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

static void queue_sync_cons(struct arm_smmu_queue *q)
{
	q->cons = readl_relaxed(q->cons_reg);
}

static void queue_inc_cons(struct arm_smmu_queue *q)
{
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;

	q->cons = Q_OVF(q, q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
	writel(q->cons, q->cons_reg);
}

static int queue_sync_prod(struct arm_smmu_queue *q)
{
	int ret = 0;
	u32 prod = readl_relaxed(q->prod_reg);

	if (Q_OVF(q, prod) != Q_OVF(q, q->prod))
		ret = -EOVERFLOW;

	q->prod = prod;
	return ret;
}

static void queue_inc_prod(struct arm_smmu_queue *q)
{
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + 1;

	q->prod = Q_OVF(q, q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
	writel(q->prod, q->prod_reg);
}

/*
 * Wait for the SMMU to consume items. If drain is true, wait until the queue
 * is empty. Otherwise, wait until there is at least one free slot.
 */
static int queue_poll_cons(struct arm_smmu_queue *q, bool sync, bool wfe)
{
	ktime_t timeout;
	unsigned int delay = 1, spin_cnt = 0;

	/* Wait longer if it's a CMD_SYNC */
	timeout = ktime_add_us(ktime_get(), sync ?
					    ARM_SMMU_CMDQ_SYNC_TIMEOUT_US :
					    ARM_SMMU_POLL_TIMEOUT_US);

	while (queue_sync_cons(q), (sync ? !queue_empty(q) : queue_full(q))) {
		if (ktime_compare(ktime_get(), timeout) > 0)
			return -ETIMEDOUT;

		if (wfe) {
			wfe();
		} else if (++spin_cnt < ARM_SMMU_CMDQ_SYNC_SPIN_COUNT) {
			cpu_relax();
			continue;
		} else {
			udelay(delay);
			delay *= 2;
			spin_cnt = 0;
		}
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static int queue_insert_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_full(q))
		return -ENOSPC;

	queue_write(Q_ENT(q, q->prod), ent, q->ent_dwords);
	queue_inc_prod(q);
	return 0;
}

static void queue_read(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_empty(q))
		return -EAGAIN;

	queue_read(ent, Q_ENT(q, q->cons), q->ent_dwords);
	queue_inc_cons(q);
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
	memset(cmd, 0, CMDQ_ENT_DWORDS << 3);
	cmd[0] |= (ent->opcode & CMDQ_0_OP_MASK) << CMDQ_0_OP_SHIFT;

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
		cmd[0] |= (u64)ent->prefetch.sid << CMDQ_PREFETCH_0_SID_SHIFT;
		cmd[1] |= ent->prefetch.size << CMDQ_PREFETCH_1_SIZE_SHIFT;
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
	case CMDQ_OP_CFGI_STE:
		cmd[0] |= (u64)ent->cfgi.sid << CMDQ_CFGI_0_SID_SHIFT;
		cmd[1] |= ent->cfgi.leaf ? CMDQ_CFGI_1_LEAF : 0;
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
		cmd[1] |= CMDQ_CFGI_1_RANGE_MASK << CMDQ_CFGI_1_RANGE_SHIFT;
		break;
	case CMDQ_OP_TLBI_NH_VA:
		cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
		cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
	case CMDQ_OP_TLBI_S2_IPA:
		cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
		cmd[1] |= ent->tlbi.leaf ? CMDQ_TLBI_1_LEAF : 0;
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
		break;
	case CMDQ_OP_TLBI_NH_ASID:
		cmd[0] |= (u64)ent->tlbi.asid << CMDQ_TLBI_0_ASID_SHIFT;
		/* Fallthrough */
	case CMDQ_OP_TLBI_S12_VMALL:
		cmd[0] |= (u64)ent->tlbi.vmid << CMDQ_TLBI_0_VMID_SHIFT;
		break;
	case CMDQ_OP_PRI_RESP:
		cmd[0] |= ent->substream_valid ? CMDQ_0_SSV : 0;
		cmd[0] |= ent->pri.ssid << CMDQ_PRI_0_SSID_SHIFT;
		cmd[0] |= (u64)ent->pri.sid << CMDQ_PRI_0_SID_SHIFT;
		cmd[1] |= ent->pri.grpid << CMDQ_PRI_1_GRPID_SHIFT;
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
			cmd[1] |= CMDQ_PRI_1_RESP_DENY;
			break;
		case PRI_RESP_FAIL:
			cmd[1] |= CMDQ_PRI_1_RESP_FAIL;
			break;
		case PRI_RESP_SUCC:
			cmd[1] |= CMDQ_PRI_1_RESP_SUCC;
			break;
		default:
			return -EINVAL;
		}
		break;
	case CMDQ_OP_CMD_SYNC:
		if (ent->sync.msiaddr)
			cmd[0] |= CMDQ_SYNC_0_CS_IRQ;
		else
			cmd[0] |= CMDQ_SYNC_0_CS_SEV;
		cmd[0] |= CMDQ_SYNC_0_MSH_ISH | CMDQ_SYNC_0_MSIATTR_OIWB;
		cmd[0] |= (u64)ent->sync.msidata << CMDQ_SYNC_0_MSIDATA_SHIFT;
		cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
	u32 idx = cons >> CMDQ_ERR_SHIFT & CMDQ_ERR_MASK;
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
	case CMDQ_ERR_CERROR_ILL_IDX:
		/* Fallthrough */
	default:
		break;
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
}

static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device *smmu, u64 *cmd)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);

	while (queue_insert_raw(q, cmd) == -ENOSPC) {
		if (queue_poll_cons(q, false, wfe))
			dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
	}
}

static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_ent *ent)
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;

	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return;
	}

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);
}

/*
 * The difference between val and sync_idx is bounded by the maximum size of
 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
 */
static int __arm_smmu_sync_poll_msi(struct arm_smmu_device *smmu, u32 sync_idx)
{
	ktime_t timeout;
	u32 val;

	timeout = ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US);
	val = smp_cond_load_acquire(&smmu->sync_count,
				    (int)(VAL - sync_idx) >= 0 ||
				    !ktime_before(ktime_get(), timeout));

	return (int)(val - sync_idx) < 0 ? -ETIMEDOUT : 0;
}

static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device *smmu)
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
		.sync	= {
			.msidata = atomic_inc_return_relaxed(&smmu->sync_nr),
			.msiaddr = virt_to_phys(&smmu->sync_count),
		},
	};

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);

	return __arm_smmu_sync_poll_msi(smmu, ent.sync.msidata);
}

static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	u64 cmd[CMDQ_ENT_DWORDS];
	unsigned long flags;
	bool wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	struct arm_smmu_cmdq_ent ent = { .opcode = CMDQ_OP_CMD_SYNC };
	int ret;

	arm_smmu_cmdq_build_cmd(cmd, &ent);

	spin_lock_irqsave(&smmu->cmdq.lock, flags);
	arm_smmu_cmdq_insert_cmd(smmu, cmd);
	ret = queue_poll_cons(&smmu->cmdq.q, true, wfe);
	spin_unlock_irqrestore(&smmu->cmdq.lock, flags);

	return ret;
}

static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	int ret;
	bool msi = (smmu->features & ARM_SMMU_FEAT_MSI) &&
		   (smmu->features & ARM_SMMU_FEAT_COHERENCY);

	ret = msi ? __arm_smmu_cmdq_issue_sync_msi(smmu)
		  : __arm_smmu_cmdq_issue_sync(smmu);
	if (ret)
		dev_err_ratelimited(smmu->dev, "CMD_SYNC timeout\n");
}

/* Context descriptor manipulation functions */
static u64 arm_smmu_cpu_tcr_to_cd(u64 tcr)
{
	u64 val = 0;

	/* Repack the TCR. Just care about TTBR0 for now */
	val |= ARM_SMMU_TCR2CD(tcr, T0SZ);
	val |= ARM_SMMU_TCR2CD(tcr, TG0);
	val |= ARM_SMMU_TCR2CD(tcr, IRGN0);
	val |= ARM_SMMU_TCR2CD(tcr, ORGN0);
	val |= ARM_SMMU_TCR2CD(tcr, SH0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD0);
	val |= ARM_SMMU_TCR2CD(tcr, EPD1);
	val |= ARM_SMMU_TCR2CD(tcr, IPS);
	val |= ARM_SMMU_TCR2CD(tcr, TBI0);

	return val;
}

static void arm_smmu_write_ctx_desc(struct arm_smmu_device *smmu,
				    struct arm_smmu_s1_cfg *cfg)
{
	u64 val;

	/*
	 * We don't need to issue any invalidation here, as we'll invalidate
	 * the STE when installing the new entry anyway.
	 */
	val = arm_smmu_cpu_tcr_to_cd(cfg->cd.tcr) |
#ifdef __BIG_ENDIAN
	      CTXDESC_CD_0_ENDI |
#endif
	      CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET_PRIVATE |
	      CTXDESC_CD_0_AA64 | (u64)cfg->cd.asid << CTXDESC_CD_0_ASID_SHIFT |
	      CTXDESC_CD_0_V;

	/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
	if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		val |= CTXDESC_CD_0_S;

	cfg->cdptr[0] = cpu_to_le64(val);

	val = cfg->cd.ttbr & CTXDESC_CD_1_TTB0_MASK << CTXDESC_CD_1_TTB0_SHIFT;
	cfg->cdptr[1] = cpu_to_le64(val);

	cfg->cdptr[3] = cpu_to_le64(cfg->cd.mair << CTXDESC_CD_3_MAIR_SHIFT);
}

/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

	val |= (desc->span & STRTAB_L1_DESC_SPAN_MASK)
		<< STRTAB_L1_DESC_SPAN_SHIFT;
	val |= desc->l2ptr_dma &
	       STRTAB_L1_DESC_L2PTR_MASK << STRTAB_L1_DESC_L2PTR_SHIFT;

	*dst = cpu_to_le64(val);
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	arm_smmu_cmdq_issue_sync(smmu);
}

static void arm_smmu_write_strtab_ent(struct arm_smmu_device *smmu, u32 sid,
				      __le64 *dst, struct arm_smmu_strtab_ent *ste)
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

	if (val & STRTAB_STE_0_V) {
		u64 cfg;

		cfg = val & STRTAB_STE_0_CFG_MASK << STRTAB_STE_0_CFG_SHIFT;
		switch (cfg) {
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
		case STRTAB_STE_0_CFG_ABORT:
			if (disable_bypass)
				break;
		default:
			BUG(); /* STE corruption */
		}
	}

	/* Nuke the existing STE_0 value, as we're going to rewrite it */
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
	if (!ste->assigned || !(ste->s1_cfg || ste->s2_cfg)) {
		if (!ste->assigned && disable_bypass)
			val |= STRTAB_STE_0_CFG_ABORT;
		else
			val |= STRTAB_STE_0_CFG_BYPASS;

		dst[0] = cpu_to_le64(val);
		dst[1] = cpu_to_le64(STRTAB_STE_1_SHCFG_INCOMING
			 << STRTAB_STE_1_SHCFG_SHIFT);
		dst[2] = 0; /* Nuke the VMID */
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

	if (ste->s1_cfg) {
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
			 STRTAB_STE_1_S1C_CACHE_WBRA
			 << STRTAB_STE_1_S1CIR_SHIFT |
			 STRTAB_STE_1_S1C_CACHE_WBRA
			 << STRTAB_STE_1_S1COR_SHIFT |
			 STRTAB_STE_1_S1C_SH_ISH << STRTAB_STE_1_S1CSH_SHIFT |
#ifdef CONFIG_PCI_ATS
			 STRTAB_STE_1_EATS_TRANS << STRTAB_STE_1_EATS_SHIFT |
#endif
			 STRTAB_STE_1_STRW_NSEL1 << STRTAB_STE_1_STRW_SHIFT);

		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

		val |= (ste->s1_cfg->cdptr_dma & STRTAB_STE_0_S1CTXPTR_MASK
		        << STRTAB_STE_0_S1CTXPTR_SHIFT) |
			STRTAB_STE_0_CFG_S1_TRANS;
	}

	if (ste->s2_cfg) {
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
			 ste->s2_cfg->vmid << STRTAB_STE_2_S2VMID_SHIFT |
			 (ste->s2_cfg->vtcr & STRTAB_STE_2_VTCR_MASK)
			  << STRTAB_STE_2_VTCR_SHIFT |
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

		dst[3] = cpu_to_le64(ste->s2_cfg->vttbr &
			 STRTAB_STE_3_S2TTB_MASK << STRTAB_STE_3_S2TTB_SHIFT);

		val |= STRTAB_STE_0_CFG_S2_TRANS;
	}

	arm_smmu_sync_ste_for_sid(smmu, sid);
	dst[0] = cpu_to_le64(val);
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
}

static void arm_smmu_init_bypass_stes(u64 *strtab, unsigned int nent)
{
	unsigned int i;
	struct arm_smmu_strtab_ent ste = { .assigned = false };

	for (i = 0; i < nent; ++i) {
		arm_smmu_write_strtab_ent(NULL, -1, strtab, &ste);
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];

	desc->span = STRTAB_SPLIT + 1;
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
					  GFP_KERNEL | __GFP_ZERO);
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
	u64 evt[EVTQ_ENT_DWORDS];

	do {
		while (!queue_remove_raw(q, evt)) {
			u8 id = evt[0] >> EVTQ_0_ID_SHIFT & EVTQ_0_ID_MASK;

			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
	} while (!queue_empty(q));

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

	sid = evt[0] >> PRIQ_0_SID_SHIFT & PRIQ_0_SID_MASK;
	ssv = evt[0] & PRIQ_0_SSID_V;
	ssid = ssv ? evt[0] >> PRIQ_0_SSID_SHIFT & PRIQ_0_SSID_MASK : 0;
	last = evt[0] & PRIQ_0_PRG_LAST;
	grpid = evt[1] >> PRIQ_1_PRG_IDX_SHIFT & PRIQ_1_PRG_IDX_MASK;

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
		 evt[1] & PRIQ_1_ADDR_MASK << PRIQ_1_ADDR_SHIFT);

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};

		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
	u64 evt[PRIQ_ENT_DWORDS];

	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);

		if (queue_sync_prod(q) == -EOVERFLOW)
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
	} while (!queue_empty(q));

	/* Sync our overflow flag, as we believe we're up to speed */
	q->cons = Q_OVF(q, q->prod) | Q_WRP(q, q->cons) | Q_IDX(q, q->cons);
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
	u32 gerror, gerrorn, active;
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
		 active);

	if (active & GERROR_SFM_ERR) {
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

	if (active & GERROR_MSI_GERROR_ABT_ERR)
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

	if (active & GERROR_MSI_PRIQ_ABT_ERR)
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

	if (active & GERROR_MSI_EVTQ_ABT_ERR)
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

	if (active & GERROR_MSI_CMDQ_ABT_ERR)
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

	if (active & GERROR_PRIQ_ABT_ERR)
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

	if (active & GERROR_EVTQ_ABT_ERR)
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

	if (active & GERROR_CMDQ_ERR)
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

/* IO_PGTABLE API */
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	arm_smmu_cmdq_issue_sync(smmu);
}

static void arm_smmu_tlb_sync(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	__arm_smmu_tlb_sync(smmu_domain->smmu);
}

static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	__arm_smmu_tlb_sync(smmu);
}

static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
					  size_t granule, bool leaf, void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
			.addr	= iova,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

	do {
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		cmd.tlbi.addr += granule;
	} while (size -= granule);
}

static const struct iommu_gather_ops arm_smmu_gather_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_add_flush	= arm_smmu_tlb_inv_range_nosync,
	.tlb_sync	= arm_smmu_tlb_sync,
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

	mutex_init(&smmu_domain->init_mutex);
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

	iommu_put_dma_cookie(domain);
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

		if (cfg->cdptr) {
			dmam_free_coherent(smmu_domain->smmu->dev,
					   CTXDESC_CD_DWORDS << 3,
					   cfg->cdptr,
					   cfg->cdptr_dma);

			arm_smmu_bitmap_free(smmu->asid_map, cfg->cd.asid);
		}
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
	int asid;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

	asid = arm_smmu_bitmap_alloc(smmu->asid_map, smmu->asid_bits);
	if (asid < 0)
		return asid;

	cfg->cdptr = dmam_alloc_coherent(smmu->dev, CTXDESC_CD_DWORDS << 3,
					 &cfg->cdptr_dma,
					 GFP_KERNEL | __GFP_ZERO);
	if (!cfg->cdptr) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
		ret = -ENOMEM;
		goto out_free_asid;
	}

	cfg->cd.asid	= (u16)asid;
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
	cfg->cd.tcr	= pgtbl_cfg->arm_lpae_s1_cfg.tcr;
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
	return 0;

out_free_asid:
	arm_smmu_bitmap_free(smmu->asid_map, asid);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int vmid;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
	if (vmid < 0)
		return vmid;

	cfg->vmid	= (u16)vmid;
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
	cfg->vtcr	= pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	return 0;
}

static int arm_smmu_domain_finalise(struct iommu_domain *domain)
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
		ias = VA_BITS;
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= smmu->pgsize_bitmap,
		.ias		= ias,
		.oas		= oas,
		.tlb		= &arm_smmu_gather_ops,
		.iommu_dev	= smmu->dev,
	};

	if (smmu->features & ARM_SMMU_FEAT_COHERENCY)
		pgtbl_cfg.quirks = IO_PGTABLE_QUIRK_NO_DMA;

	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
	domain->geometry.aperture_end = (1UL << ias) - 1;
	domain->geometry.force_aperture = true;
	smmu_domain->pgtbl_ops = pgtbl_ops;

	ret = finalise_stage_fn(smmu_domain, &pgtbl_cfg);
	if (ret < 0)
		free_io_pgtable_ops(pgtbl_ops);

	return ret;
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

static void arm_smmu_install_ste_for_dev(struct iommu_fwspec *fwspec)
{
	int i;
	struct arm_smmu_master_data *master = fwspec->iommu_priv;
	struct arm_smmu_device *smmu = master->smmu;

	for (i = 0; i < fwspec->num_ids; ++i) {
		u32 sid = fwspec->ids[i];
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

		arm_smmu_write_strtab_ent(smmu, sid, step, &master->ste);
	}
}

static void arm_smmu_detach_dev(struct device *dev)
{
	struct arm_smmu_master_data *master = dev->iommu_fwspec->iommu_priv;

	master->ste.assigned = false;
	arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_master_data *master;
	struct arm_smmu_strtab_ent *ste;

	if (!dev->iommu_fwspec)
		return -ENOENT;

	master = dev->iommu_fwspec->iommu_priv;
	smmu = master->smmu;
	ste = &master->ste;

	/* Already attached to a different domain? */
	if (ste->assigned)
		arm_smmu_detach_dev(dev);

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
		ret = arm_smmu_domain_finalise(domain);
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
	}

	ste->assigned = true;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS) {
		ste->s1_cfg = NULL;
		ste->s2_cfg = NULL;
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		ste->s1_cfg = &smmu_domain->s1_cfg;
		ste->s2_cfg = NULL;
		arm_smmu_write_ctx_desc(smmu, ste->s1_cfg);
	} else {
		ste->s1_cfg = NULL;
		ste->s2_cfg = &smmu_domain->s2_cfg;
	}

	arm_smmu_install_ste_for_dev(dev->iommu_fwspec);
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int prot)
{
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;

	if (!ops)
		return -ENODEV;

	return ops->map(ops, iova, paddr, size, prot);
}

static size_t
arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size)
{
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;

	if (!ops)
		return 0;

	return ops->unmap(ops, iova, size);
}

static void arm_smmu_iotlb_sync(struct iommu_domain *domain)
{
	struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;

	if (smmu)
		__arm_smmu_tlb_sync(smmu);
}

static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;

	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

	if (!ops)
		return 0;

	return ops->iova_to_phys(ops, iova);
}

static struct platform_driver arm_smmu_driver;

static int arm_smmu_match_node(struct device *dev, void *data)
{
	return dev->fwnode == data;
}

static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
{
	struct device *dev = driver_find_device(&arm_smmu_driver.driver, NULL,
						fwnode, arm_smmu_match_node);
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

static struct iommu_ops arm_smmu_ops;

static int arm_smmu_add_device(struct device *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu;
	struct arm_smmu_master_data *master;
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct iommu_group *group;

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return -ENODEV;
	/*
	 * We _can_ actually withstand dodgy bus code re-calling add_device()
	 * without an intervening remove_device()/of_xlate() sequence, but
	 * we're not going to do so quietly...
	 */
	if (WARN_ON_ONCE(fwspec->iommu_priv)) {
		master = fwspec->iommu_priv;
		smmu = master->smmu;
	} else {
		smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
		if (!smmu)
			return -ENODEV;
		master = kzalloc(sizeof(*master), GFP_KERNEL);
		if (!master)
			return -ENOMEM;

		master->smmu = smmu;
		fwspec->iommu_priv = master;
	}

	/* Check the SIDs are in range of the SMMU and our stream table */
	for (i = 0; i < fwspec->num_ids; i++) {
		u32 sid = fwspec->ids[i];

		if (!arm_smmu_sid_in_range(smmu, sid))
			return -ERANGE;

		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
				return ret;
		}
	}

	group = iommu_group_get_for_dev(dev);
	if (!IS_ERR(group)) {
		iommu_group_put(group);
		iommu_device_link(&smmu->iommu, dev);
	}

	return PTR_ERR_OR_ZERO(group);
}

static void arm_smmu_remove_device(struct device *dev)
{
	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
	struct arm_smmu_master_data *master;
	struct arm_smmu_device *smmu;

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

	master = fwspec->iommu_priv;
	smmu = master->smmu;
	if (master && master->ste.assigned)
		arm_smmu_detach_dev(dev);
	iommu_group_remove_device(dev);
	iommu_device_unlink(&smmu->iommu, dev);
	kfree(master);
	iommu_fwspec_free(dev);
}

static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
		return 0;
	default:
		return -ENODEV;
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
		return -EINVAL;

	mutex_lock(&smmu_domain->init_mutex);

	switch (attr) {
	case DOMAIN_ATTR_NESTING:
		if (smmu_domain->smmu) {
			ret = -EPERM;
			goto out_unlock;
		}

		if (*(int *)data)
			smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
		else
			smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

		break;
	default:
		ret = -ENODEV;
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
					 prot, IOMMU_RESV_SW_MSI);
	if (!region)
		return;

	list_add_tail(&region->list, head);

	iommu_dma_get_resv_regions(dev, head);
}

static void arm_smmu_put_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
	.map_sg			= default_iommu_map_sg,
	.flush_iotlb_all	= arm_smmu_iotlb_sync,
	.iotlb_sync		= arm_smmu_iotlb_sync,
	.iova_to_phys		= arm_smmu_iova_to_phys,
	.add_device		= arm_smmu_add_device,
	.remove_device		= arm_smmu_remove_device,
	.device_group		= arm_smmu_device_group,
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
	.of_xlate		= arm_smmu_of_xlate,
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.put_resv_regions	= arm_smmu_put_resv_regions,
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
				   size_t dwords)
{
	size_t qsz = ((1 << q->max_n_shift) * dwords) << 3;

	q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma, GFP_KERNEL);
	if (!q->base) {
		dev_err(smmu->dev, "failed to allocate queue (0x%zx bytes)\n",
			qsz);
		return -ENOMEM;
	}

	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK << Q_BASE_ADDR_SHIFT;
	q->q_base |= (q->max_n_shift & Q_BASE_LOG2SIZE_MASK)
		     << Q_BASE_LOG2SIZE_SHIFT;

	q->prod = q->cons = 0;
	return 0;
}

static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	spin_lock_init(&smmu->cmdq.lock);
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS);
	if (ret)
		return ret;

	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS);
	if (ret)
		return ret;

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS);
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size, l1size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
			 size, smmu->sid_bits);

	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
	reg  = STRTAB_BASE_CFG_FMT_2LVL;
	reg |= (size & STRTAB_BASE_CFG_LOG2SIZE_MASK)
		<< STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
	reg |= (STRTAB_SPLIT & STRTAB_BASE_CFG_SPLIT_MASK)
		<< STRTAB_BASE_CFG_SPLIT_SHIFT;
	cfg->strtab_base_cfg = reg;

	return arm_smmu_init_l1_strtab(smmu);
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL | __GFP_ZERO);
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
	reg  = STRTAB_BASE_CFG_FMT_LINEAR;
	reg |= (smmu->sid_bits & STRTAB_BASE_CFG_LOG2SIZE_MASK)
		<< STRTAB_BASE_CFG_LOG2SIZE_SHIFT;
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
	reg  = smmu->strtab_cfg.strtab_dma &
	       STRTAB_BASE_ADDR_MASK << STRTAB_BASE_ADDR_SHIFT;
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	atomic_set(&smmu->sync_nr, 0);
	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

	return arm_smmu_init_strtab(smmu);
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
	return readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
	doorbell &= MSI_CFG0_ADDR_MASK << MSI_CFG0_ADDR_SHIFT;

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
	writel_relaxed(MSI_CFG2_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
		dev_warn(dev, "failed to allocate MSIs\n");
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
{
	int irq, ret;

	arm_smmu_setup_msis(smmu);

	/* Request interrupt lines */
	irq = smmu->evtq.q.irq;
	if (irq) {
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
						arm_smmu_evtq_thread,
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
							arm_smmu_priq_thread,
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
							smmu);
			if (ret < 0)
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
		}
	}
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
		 * Cavium ThunderX2 implementation doesn't not support unique
		 * irq lines. Use single irq line for all the SMMUv3 interrupts.
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;

	/* Enable interrupt generation on the SMMU */
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
	if (reg & CR0_SMMUEN)
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
	reg = (CR1_SH_ISH << CR1_TABLE_SH_SHIFT) |
	      (CR1_CACHE_WB << CR1_TABLE_OC_SHIFT) |
	      (CR1_CACHE_WB << CR1_TABLE_IC_SHIFT) |
	      (CR1_SH_ISH << CR1_QUEUE_SH_SHIFT) |
	      (CR1_CACHE_WB << CR1_QUEUE_OC_SHIFT) |
	      (CR1_CACHE_WB << CR1_QUEUE_IC_SHIFT);
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
	writel_relaxed(smmu->cmdq.q.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.cons, smmu->base + ARM_SMMU_CMDQ_CONS);

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	arm_smmu_cmdq_issue_sync(smmu);

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	arm_smmu_cmdq_issue_sync(smmu);

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
	writel_relaxed(smmu->evtq.q.prod,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
	writel_relaxed(smmu->evtq.q.cons,
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
		writel_relaxed(smmu->priq.q.prod,
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
		writel_relaxed(smmu->priq.q.cons,
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}


	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
		if (ret) {
			dev_err(smmu->dev, "GBPA not responding to update\n");
			return ret;
		}
	}
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
{
	u32 reg;
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
	if ((reg & IDR0_ST_LVL_MASK << IDR0_ST_LVL_SHIFT) == IDR0_ST_LVL_2LVL)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
	switch (reg & IDR0_TTENDIAN_MASK << IDR0_TTENDIAN_SHIFT) {
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI)
		smmu->features |= ARM_SMMU_FEAT_MSI;

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
	 * The coherency feature as set by FW is used in preference to the ID
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
			 coherent ? "true" : "false");

	switch (reg & IDR0_STALL_MODEL_MASK << IDR0_STALL_MODEL_SHIFT) {
	case IDR0_STALL_MODEL_FORCE:
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		/* Fallthrough */
	case IDR0_STALL_MODEL_STALL:
		smmu->features |= ARM_SMMU_FEAT_STALLS;
	}

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
	switch (reg & IDR0_TTF_MASK << IDR0_TTF_SHIFT) {
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		/* Fallthrough */
	case IDR0_TTF_AARCH64:
		break;
	default:
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

	/* Queue sizes, capped at 4k */
	smmu->cmdq.q.max_n_shift = min((u32)CMDQ_MAX_SZ_SHIFT,
				       reg >> IDR1_CMDQ_SHIFT & IDR1_CMDQ_MASK);
	if (!smmu->cmdq.q.max_n_shift) {
		/* Odd alignment restrictions on the base, so ignore for now */
		dev_err(smmu->dev, "unit-length command queue not supported\n");
		return -ENXIO;
	}

	smmu->evtq.q.max_n_shift = min((u32)EVTQ_MAX_SZ_SHIFT,
				       reg >> IDR1_EVTQ_SHIFT & IDR1_EVTQ_MASK);
	smmu->priq.q.max_n_shift = min((u32)PRIQ_MAX_SZ_SHIFT,
				       reg >> IDR1_PRIQ_SHIFT & IDR1_PRIQ_MASK);

	/* SID/SSID sizes */
	smmu->ssid_bits = reg >> IDR1_SSID_SHIFT & IDR1_SSID_MASK;
	smmu->sid_bits = reg >> IDR1_SID_SHIFT & IDR1_SID_MASK;

	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
	smmu->evtq.max_stalls = reg >> IDR5_STALL_MAX_SHIFT
				& IDR5_STALL_MAX_MASK;

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
	if (reg & IDR5_GRAN16K)
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
	if (reg & IDR5_GRAN4K)
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

	/* Output address size */
	switch (reg & IDR5_OAS_MASK << IDR5_OAS_SHIFT) {
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		/* Fallthrough */
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

	smmu->ias = max(smmu->ias, smmu->oas);

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

#ifdef CONFIG_ACPI
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
		break;
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

	acpi_smmu_get_options(iort_smmu->model, smmu);

	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
{
	struct device *dev = &pdev->dev;
	u32 cells;
	int ret = -EINVAL;

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
	resource_size_t ioaddr;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (resource_size(res) + 1 < arm_smmu_resource_size(smmu)) {
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
	ioaddr = res->start;

	smmu->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	/* Interrupt lines */

	irq = platform_get_irq_byname(pdev, "combined");
	if (irq > 0)
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;

		irq = platform_get_irq_byname(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;

		irq = platform_get_irq_byname(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
	/* Probe the h/w */
	ret = arm_smmu_device_hw_probe(smmu);
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

	/* Reset the device */
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
	if (ret)
		return ret;

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != &arm_smmu_ops) {
		pci_request_acs();
		ret = bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&amba_bustype, &arm_smmu_ops);
		if (ret)
			return ret;
	}
#endif
	if (platform_bus_type.iommu_ops != &arm_smmu_ops) {
		ret = bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
		if (ret)
			return ret;
	}
	return 0;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);

	arm_smmu_device_disable(smmu);

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
}

static const struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v3", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name		= "arm-smmu-v3",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_probe,
	.remove	= arm_smmu_device_remove,
	.shutdown = arm_smmu_device_shutdown,
};
module_platform_driver(arm_smmu_driver);

IOMMU_OF_DECLARE(arm_smmuv3, "arm,smmu-v3", NULL);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");