aboutsummaryrefslogtreecommitdiff
path: root/drivers/mmc/host/sh_mmcif.c
blob: 5069f1cbcef8e9004a94a517baf7c9e5297a3920 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
// SPDX-License-Identifier: GPL-2.0
/*
 * MMCIF eMMC driver.
 *
 * Copyright (C) 2010 Renesas Solutions Corp.
 * Yusuke Goda <yusuke.goda.sx@renesas.com>
 */

/*
 * The MMCIF driver is now processing MMC requests asynchronously, according
 * to the Linux MMC API requirement.
 *
 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
 * data, and optional stop. To achieve asynchronous processing each of these
 * stages is split into two halves: a top and a bottom half. The top half
 * initialises the hardware, installs a timeout handler to handle completion
 * timeouts, and returns. In case of the command stage this immediately returns
 * control to the caller, leaving all further processing to run asynchronously.
 * All further request processing is performed by the bottom halves.
 *
 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
 * thread, a DMA completion callback, if DMA is used, a timeout work, and
 * request- and stage-specific handler methods.
 *
 * Each bottom half run begins with either a hardware interrupt, a DMA callback
 * invocation, or a timeout work run. In case of an error or a successful
 * processing completion, the MMC core is informed and the request processing is
 * finished. In case processing has to continue, i.e., if data has to be read
 * from or written to the card, or if a stop command has to be sent, the next
 * top half is called, which performs the necessary hardware handling and
 * reschedules the timeout work. This returns the driver state machine into the
 * bottom half waiting state.
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sh_mmcif.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/pagemap.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/sh_dma.h>
#include <linux/spinlock.h>
#include <linux/module.h>

#define DRIVER_NAME	"sh_mmcif"

/* CE_CMD_SET */
#define CMD_MASK		0x3f000000
#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
#define CMD_SET_RBSY		(1 << 21) /* R1b */
#define CMD_SET_CCSEN		(1 << 20)
#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
#define CMD_SET_CCSH		(1 << 5)
#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */

/* CE_CMD_CTRL */
#define CMD_CTRL_BREAK		(1 << 0)

/* CE_BLOCK_SET */
#define BLOCK_SIZE_MASK		0x0000ffff

/* CE_INT */
#define INT_CCSDE		(1 << 29)
#define INT_CMD12DRE		(1 << 26)
#define INT_CMD12RBE		(1 << 25)
#define INT_CMD12CRE		(1 << 24)
#define INT_DTRANE		(1 << 23)
#define INT_BUFRE		(1 << 22)
#define INT_BUFWEN		(1 << 21)
#define INT_BUFREN		(1 << 20)
#define INT_CCSRCV		(1 << 19)
#define INT_RBSYE		(1 << 17)
#define INT_CRSPE		(1 << 16)
#define INT_CMDVIO		(1 << 15)
#define INT_BUFVIO		(1 << 14)
#define INT_WDATERR		(1 << 11)
#define INT_RDATERR		(1 << 10)
#define INT_RIDXERR		(1 << 9)
#define INT_RSPERR		(1 << 8)
#define INT_CCSTO		(1 << 5)
#define INT_CRCSTO		(1 << 4)
#define INT_WDATTO		(1 << 3)
#define INT_RDATTO		(1 << 2)
#define INT_RBSYTO		(1 << 1)
#define INT_RSPTO		(1 << 0)
#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)

#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)

#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)

/* CE_INT_MASK */
#define MASK_ALL		0x00000000
#define MASK_MCCSDE		(1 << 29)
#define MASK_MCMD12DRE		(1 << 26)
#define MASK_MCMD12RBE		(1 << 25)
#define MASK_MCMD12CRE		(1 << 24)
#define MASK_MDTRANE		(1 << 23)
#define MASK_MBUFRE		(1 << 22)
#define MASK_MBUFWEN		(1 << 21)
#define MASK_MBUFREN		(1 << 20)
#define MASK_MCCSRCV		(1 << 19)
#define MASK_MRBSYE		(1 << 17)
#define MASK_MCRSPE		(1 << 16)
#define MASK_MCMDVIO		(1 << 15)
#define MASK_MBUFVIO		(1 << 14)
#define MASK_MWDATERR		(1 << 11)
#define MASK_MRDATERR		(1 << 10)
#define MASK_MRIDXERR		(1 << 9)
#define MASK_MRSPERR		(1 << 8)
#define MASK_MCCSTO		(1 << 5)
#define MASK_MCRCSTO		(1 << 4)
#define MASK_MWDATTO		(1 << 3)
#define MASK_MRDATTO		(1 << 2)
#define MASK_MRBSYTO		(1 << 1)
#define MASK_MRSPTO		(1 << 0)

#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
				 MASK_MCRCSTO | MASK_MWDATTO | \
				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)

#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
				 MASK_MBUFREN | MASK_MBUFWEN |			\
				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
				 MASK_MCMD12RBE | MASK_MCMD12CRE)

/* CE_HOST_STS1 */
#define STS1_CMDSEQ		(1 << 31)

/* CE_HOST_STS2 */
#define STS2_CRCSTE		(1 << 31)
#define STS2_CRC16E		(1 << 30)
#define STS2_AC12CRCE		(1 << 29)
#define STS2_RSPCRC7E		(1 << 28)
#define STS2_CRCSTEBE		(1 << 27)
#define STS2_RDATEBE		(1 << 26)
#define STS2_AC12REBE		(1 << 25)
#define STS2_RSPEBE		(1 << 24)
#define STS2_AC12IDXE		(1 << 23)
#define STS2_RSPIDXE		(1 << 22)
#define STS2_CCSTO		(1 << 15)
#define STS2_RDATTO		(1 << 14)
#define STS2_DATBSYTO		(1 << 13)
#define STS2_CRCSTTO		(1 << 12)
#define STS2_AC12BSYTO		(1 << 11)
#define STS2_RSPBSYTO		(1 << 10)
#define STS2_AC12RSPTO		(1 << 9)
#define STS2_RSPTO		(1 << 8)
#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
				 STS2_DATBSYTO | STS2_CRCSTTO |		\
				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
				 STS2_AC12RSPTO | STS2_RSPTO)

#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
#define CLKDEV_INIT		400000   /* 400 KHz */

enum sh_mmcif_state {
	STATE_IDLE,
	STATE_REQUEST,
	STATE_IOS,
	STATE_TIMEOUT,
};

enum sh_mmcif_wait_for {
	MMCIF_WAIT_FOR_REQUEST,
	MMCIF_WAIT_FOR_CMD,
	MMCIF_WAIT_FOR_MREAD,
	MMCIF_WAIT_FOR_MWRITE,
	MMCIF_WAIT_FOR_READ,
	MMCIF_WAIT_FOR_WRITE,
	MMCIF_WAIT_FOR_READ_END,
	MMCIF_WAIT_FOR_WRITE_END,
	MMCIF_WAIT_FOR_STOP,
};

/*
 * difference for each SoC
 */
struct sh_mmcif_host {
	struct mmc_host *mmc;
	struct mmc_request *mrq;
	struct platform_device *pd;
	struct clk *clk;
	int bus_width;
	unsigned char timing;
	bool sd_error;
	bool dying;
	long timeout;
	void __iomem *addr;
	u32 *pio_ptr;
	spinlock_t lock;		/* protect sh_mmcif_host::state */
	enum sh_mmcif_state state;
	enum sh_mmcif_wait_for wait_for;
	struct delayed_work timeout_work;
	size_t blocksize;
	int sg_idx;
	int sg_blkidx;
	bool power;
	bool ccs_enable;		/* Command Completion Signal support */
	bool clk_ctrl2_enable;
	struct mutex thread_lock;
	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */

	/* DMA support */
	struct dma_chan		*chan_rx;
	struct dma_chan		*chan_tx;
	struct completion	dma_complete;
	bool			dma_active;
};

static const struct of_device_id sh_mmcif_of_match[] = {
	{ .compatible = "renesas,sh-mmcif" },
	{ }
};
MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);

#define sh_mmcif_host_to_dev(host) (&host->pd->dev)

static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
					unsigned int reg, u32 val)
{
	writel(val | readl(host->addr + reg), host->addr + reg);
}

static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
					unsigned int reg, u32 val)
{
	writel(~val & readl(host->addr + reg), host->addr + reg);
}

static void sh_mmcif_dma_complete(void *arg)
{
	struct sh_mmcif_host *host = arg;
	struct mmc_request *mrq = host->mrq;
	struct device *dev = sh_mmcif_host_to_dev(host);

	dev_dbg(dev, "Command completed\n");

	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
		 dev_name(dev)))
		return;

	complete(&host->dma_complete);
}

static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	struct scatterlist *sg = data->sg;
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_chan *chan = host->chan_rx;
	struct device *dev = sh_mmcif_host_to_dev(host);
	dma_cookie_t cookie = -EINVAL;
	int ret;

	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
			 DMA_FROM_DEVICE);
	if (ret > 0) {
		host->dma_active = true;
		desc = dmaengine_prep_slave_sg(chan, sg, ret,
			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	}

	if (desc) {
		desc->callback = sh_mmcif_dma_complete;
		desc->callback_param = host;
		cookie = dmaengine_submit(desc);
		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
		dma_async_issue_pending(chan);
	}
	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
		__func__, data->sg_len, ret, cookie);

	if (!desc) {
		/* DMA failed, fall back to PIO */
		if (ret >= 0)
			ret = -EIO;
		host->chan_rx = NULL;
		host->dma_active = false;
		dma_release_channel(chan);
		/* Free the Tx channel too */
		chan = host->chan_tx;
		if (chan) {
			host->chan_tx = NULL;
			dma_release_channel(chan);
		}
		dev_warn(dev,
			 "DMA failed: %d, falling back to PIO\n", ret);
		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	}

	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
		desc, cookie, data->sg_len);
}

static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	struct scatterlist *sg = data->sg;
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_chan *chan = host->chan_tx;
	struct device *dev = sh_mmcif_host_to_dev(host);
	dma_cookie_t cookie = -EINVAL;
	int ret;

	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
			 DMA_TO_DEVICE);
	if (ret > 0) {
		host->dma_active = true;
		desc = dmaengine_prep_slave_sg(chan, sg, ret,
			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	}

	if (desc) {
		desc->callback = sh_mmcif_dma_complete;
		desc->callback_param = host;
		cookie = dmaengine_submit(desc);
		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
		dma_async_issue_pending(chan);
	}
	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
		__func__, data->sg_len, ret, cookie);

	if (!desc) {
		/* DMA failed, fall back to PIO */
		if (ret >= 0)
			ret = -EIO;
		host->chan_tx = NULL;
		host->dma_active = false;
		dma_release_channel(chan);
		/* Free the Rx channel too */
		chan = host->chan_rx;
		if (chan) {
			host->chan_rx = NULL;
			dma_release_channel(chan);
		}
		dev_warn(dev,
			 "DMA failed: %d, falling back to PIO\n", ret);
		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	}

	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
		desc, cookie);
}

static struct dma_chan *
sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
{
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);
	if (slave_id <= 0)
		return NULL;

	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
}

static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
				     struct dma_chan *chan,
				     enum dma_transfer_direction direction)
{
	struct resource *res;
	struct dma_slave_config cfg = { 0, };

	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
	cfg.direction = direction;

	if (direction == DMA_DEV_TO_MEM) {
		cfg.src_addr = res->start + MMCIF_CE_DATA;
		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	} else {
		cfg.dst_addr = res->start + MMCIF_CE_DATA;
		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	}

	return dmaengine_slave_config(chan, &cfg);
}

static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	host->dma_active = false;

	/* We can only either use DMA for both Tx and Rx or not use it at all */
	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
		struct sh_mmcif_plat_data *pdata = dev->platform_data;

		host->chan_tx = sh_mmcif_request_dma_pdata(host,
							pdata->slave_id_tx);
		host->chan_rx = sh_mmcif_request_dma_pdata(host,
							pdata->slave_id_rx);
	} else {
		host->chan_tx = dma_request_slave_channel(dev, "tx");
		host->chan_rx = dma_request_slave_channel(dev, "rx");
	}
	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
		host->chan_rx);

	if (!host->chan_tx || !host->chan_rx ||
	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
		goto error;

	return;

error:
	if (host->chan_tx)
		dma_release_channel(host->chan_tx);
	if (host->chan_rx)
		dma_release_channel(host->chan_rx);
	host->chan_tx = host->chan_rx = NULL;
}

static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
{
	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	/* Descriptors are freed automatically */
	if (host->chan_tx) {
		struct dma_chan *chan = host->chan_tx;
		host->chan_tx = NULL;
		dma_release_channel(chan);
	}
	if (host->chan_rx) {
		struct dma_chan *chan = host->chan_rx;
		host->chan_rx = NULL;
		dma_release_channel(chan);
	}

	host->dma_active = false;
}

static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct sh_mmcif_plat_data *p = dev->platform_data;
	bool sup_pclk = p ? p->sup_pclk : false;
	unsigned int current_clk = clk_get_rate(host->clk);
	unsigned int clkdiv;

	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);

	if (!clk)
		return;

	if (host->clkdiv_map) {
		unsigned int freq, best_freq, myclk, div, diff_min, diff;
		int i;

		clkdiv = 0;
		diff_min = ~0;
		best_freq = 0;
		for (i = 31; i >= 0; i--) {
			if (!((1 << i) & host->clkdiv_map))
				continue;

			/*
			 * clk = parent_freq / div
			 * -> parent_freq = clk x div
			 */

			div = 1 << (i + 1);
			freq = clk_round_rate(host->clk, clk * div);
			myclk = freq / div;
			diff = (myclk > clk) ? myclk - clk : clk - myclk;

			if (diff <= diff_min) {
				best_freq = freq;
				clkdiv = i;
				diff_min = diff;
			}
		}

		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
			(best_freq / (1 << (clkdiv + 1))), clk,
			best_freq, clkdiv);

		clk_set_rate(host->clk, best_freq);
		clkdiv = clkdiv << 16;
	} else if (sup_pclk && clk == current_clk) {
		clkdiv = CLK_SUP_PCLK;
	} else {
		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
	}

	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
}

static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
{
	u32 tmp;

	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);

	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
	if (host->ccs_enable)
		tmp |= SCCSTO_29;
	if (host->clk_ctrl2_enable)
		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
	/* byte swap on */
	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
}

static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	u32 state1, state2;
	int ret, timeout;

	host->sd_error = false;

	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);

	if (state1 & STS1_CMDSEQ) {
		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
		for (timeout = 10000; timeout; timeout--) {
			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
			      & STS1_CMDSEQ))
				break;
			mdelay(1);
		}
		if (!timeout) {
			dev_err(dev,
				"Forced end of command sequence timeout err\n");
			return -EIO;
		}
		sh_mmcif_sync_reset(host);
		dev_dbg(dev, "Forced end of command sequence\n");
		return -EIO;
	}

	if (state2 & STS2_CRC_ERR) {
		dev_err(dev, " CRC error: state %u, wait %u\n",
			host->state, host->wait_for);
		ret = -EIO;
	} else if (state2 & STS2_TIMEOUT_ERR) {
		dev_err(dev, " Timeout: state %u, wait %u\n",
			host->state, host->wait_for);
		ret = -ETIMEDOUT;
	} else {
		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
			host->state, host->wait_for);
		ret = -EIO;
	}
	return ret;
}

static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
{
	struct mmc_data *data = host->mrq->data;

	host->sg_blkidx += host->blocksize;

	/* data->sg->length must be a multiple of host->blocksize? */
	BUG_ON(host->sg_blkidx > data->sg->length);

	if (host->sg_blkidx == data->sg->length) {
		host->sg_blkidx = 0;
		if (++host->sg_idx < data->sg_len)
			host->pio_ptr = sg_virt(++data->sg);
	} else {
		host->pio_ptr = p;
	}

	return host->sg_idx != data->sg_len;
}

static void sh_mmcif_single_read(struct sh_mmcif_host *host,
				 struct mmc_request *mrq)
{
	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
			   BLOCK_SIZE_MASK) + 3;

	host->wait_for = MMCIF_WAIT_FOR_READ;

	/* buf read enable */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
}

static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct mmc_data *data = host->mrq->data;
	u32 *p = sg_virt(data->sg);
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
		return false;
	}

	for (i = 0; i < host->blocksize / 4; i++)
		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);

	/* buffer read end */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
	host->wait_for = MMCIF_WAIT_FOR_READ_END;

	return true;
}

static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
				struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data->sg_len || !data->sg->length)
		return;

	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
		BLOCK_SIZE_MASK;

	host->wait_for = MMCIF_WAIT_FOR_MREAD;
	host->sg_idx = 0;
	host->sg_blkidx = 0;
	host->pio_ptr = sg_virt(data->sg);

	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
}

static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct mmc_data *data = host->mrq->data;
	u32 *p = host->pio_ptr;
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
		return false;
	}

	BUG_ON(!data->sg->length);

	for (i = 0; i < host->blocksize / 4; i++)
		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);

	if (!sh_mmcif_next_block(host, p))
		return false;

	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);

	return true;
}

static void sh_mmcif_single_write(struct sh_mmcif_host *host,
					struct mmc_request *mrq)
{
	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
			   BLOCK_SIZE_MASK) + 3;

	host->wait_for = MMCIF_WAIT_FOR_WRITE;

	/* buf write enable */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
}

static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct mmc_data *data = host->mrq->data;
	u32 *p = sg_virt(data->sg);
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
		return false;
	}

	for (i = 0; i < host->blocksize / 4; i++)
		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);

	/* buffer write end */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;

	return true;
}

static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
				struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data->sg_len || !data->sg->length)
		return;

	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
		BLOCK_SIZE_MASK;

	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
	host->sg_idx = 0;
	host->sg_blkidx = 0;
	host->pio_ptr = sg_virt(data->sg);

	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
}

static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct mmc_data *data = host->mrq->data;
	u32 *p = host->pio_ptr;
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
		return false;
	}

	BUG_ON(!data->sg->length);

	for (i = 0; i < host->blocksize / 4; i++)
		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);

	if (!sh_mmcif_next_block(host, p))
		return false;

	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);

	return true;
}

static void sh_mmcif_get_response(struct sh_mmcif_host *host,
						struct mmc_command *cmd)
{
	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
	} else
		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
}

static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
						struct mmc_command *cmd)
{
	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
}

static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
			    struct mmc_request *mrq)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct mmc_data *data = mrq->data;
	struct mmc_command *cmd = mrq->cmd;
	u32 opc = cmd->opcode;
	u32 tmp = 0;

	/* Response Type check */
	switch (mmc_resp_type(cmd)) {
	case MMC_RSP_NONE:
		tmp |= CMD_SET_RTYP_NO;
		break;
	case MMC_RSP_R1:
	case MMC_RSP_R3:
		tmp |= CMD_SET_RTYP_6B;
		break;
	case MMC_RSP_R1B:
		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
		break;
	case MMC_RSP_R2:
		tmp |= CMD_SET_RTYP_17B;
		break;
	default:
		dev_err(dev, "Unsupported response type.\n");
		break;
	}

	/* WDAT / DATW */
	if (data) {
		tmp |= CMD_SET_WDAT;
		switch (host->bus_width) {
		case MMC_BUS_WIDTH_1:
			tmp |= CMD_SET_DATW_1;
			break;
		case MMC_BUS_WIDTH_4:
			tmp |= CMD_SET_DATW_4;
			break;
		case MMC_BUS_WIDTH_8:
			tmp |= CMD_SET_DATW_8;
			break;
		default:
			dev_err(dev, "Unsupported bus width.\n");
			break;
		}
		switch (host->timing) {
		case MMC_TIMING_MMC_DDR52:
			/*
			 * MMC core will only set this timing, if the host
			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
			 * capability. MMCIF implementations with this
			 * capability, e.g. sh73a0, will have to set it
			 * in their platform data.
			 */
			tmp |= CMD_SET_DARS;
			break;
		}
	}
	/* DWEN */
	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
		tmp |= CMD_SET_DWEN;
	/* CMLTE/CMD12EN */
	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
				data->blocks << 16);
	}
	/* RIDXC[1:0] check bits */
	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
		tmp |= CMD_SET_RIDXC_BITS;
	/* RCRC7C[1:0] check bits */
	if (opc == MMC_SEND_OP_COND)
		tmp |= CMD_SET_CRC7C_BITS;
	/* RCRC7C[1:0] internal CRC7 */
	if (opc == MMC_ALL_SEND_CID ||
		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
		tmp |= CMD_SET_CRC7C_INTERNAL;

	return (opc << 24) | tmp;
}

static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
			       struct mmc_request *mrq, u32 opc)
{
	struct device *dev = sh_mmcif_host_to_dev(host);

	switch (opc) {
	case MMC_READ_MULTIPLE_BLOCK:
		sh_mmcif_multi_read(host, mrq);
		return 0;
	case MMC_WRITE_MULTIPLE_BLOCK:
		sh_mmcif_multi_write(host, mrq);
		return 0;
	case MMC_WRITE_BLOCK:
		sh_mmcif_single_write(host, mrq);
		return 0;
	case MMC_READ_SINGLE_BLOCK:
	case MMC_SEND_EXT_CSD:
		sh_mmcif_single_read(host, mrq);
		return 0;
	default:
		dev_err(dev, "Unsupported CMD%d\n", opc);
		return -EINVAL;
	}
}

static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
			       struct mmc_request *mrq)
{
	struct mmc_command *cmd = mrq->cmd;
	u32 opc;
	u32 mask = 0;
	unsigned long flags;

	if (cmd->flags & MMC_RSP_BUSY)
		mask = MASK_START_CMD | MASK_MRBSYE;
	else
		mask = MASK_START_CMD | MASK_MCRSPE;

	if (host->ccs_enable)
		mask |= MASK_MCCSTO;

	if (mrq->data) {
		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
				mrq->data->blksz);
	}
	opc = sh_mmcif_set_cmd(host, mrq);

	if (host->ccs_enable)
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
	else
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
	/* set arg */
	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
	/* set cmd */
	spin_lock_irqsave(&host->lock, flags);
	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);

	host->wait_for = MMCIF_WAIT_FOR_CMD;
	schedule_delayed_work(&host->timeout_work, host->timeout);
	spin_unlock_irqrestore(&host->lock, flags);
}

static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
			      struct mmc_request *mrq)
{
	struct device *dev = sh_mmcif_host_to_dev(host);

	switch (mrq->cmd->opcode) {
	case MMC_READ_MULTIPLE_BLOCK:
		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
		break;
	case MMC_WRITE_MULTIPLE_BLOCK:
		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
		break;
	default:
		dev_err(dev, "unsupported stop cmd\n");
		mrq->stop->error = sh_mmcif_error_manage(host);
		return;
	}

	host->wait_for = MMCIF_WAIT_FOR_STOP;
}

static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct sh_mmcif_host *host = mmc_priv(mmc);
	struct device *dev = sh_mmcif_host_to_dev(host);
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);
	if (host->state != STATE_IDLE) {
		dev_dbg(dev, "%s() rejected, state %u\n",
			__func__, host->state);
		spin_unlock_irqrestore(&host->lock, flags);
		mrq->cmd->error = -EAGAIN;
		mmc_request_done(mmc, mrq);
		return;
	}

	host->state = STATE_REQUEST;
	spin_unlock_irqrestore(&host->lock, flags);

	host->mrq = mrq;

	sh_mmcif_start_cmd(host, mrq);
}

static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);

	if (host->mmc->f_max) {
		unsigned int f_max, f_min = 0, f_min_old;

		f_max = host->mmc->f_max;
		for (f_min_old = f_max; f_min_old > 2;) {
			f_min = clk_round_rate(host->clk, f_min_old / 2);
			if (f_min == f_min_old)
				break;
			f_min_old = f_min;
		}

		/*
		 * This driver assumes this SoC is R-Car Gen2 or later
		 */
		host->clkdiv_map = 0x3ff;

		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
	} else {
		unsigned int clk = clk_get_rate(host->clk);

		host->mmc->f_max = clk / 2;
		host->mmc->f_min = clk / 512;
	}

	dev_dbg(dev, "clk max/min = %d/%d\n",
		host->mmc->f_max, host->mmc->f_min);
}

static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct sh_mmcif_host *host = mmc_priv(mmc);
	struct device *dev = sh_mmcif_host_to_dev(host);
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);
	if (host->state != STATE_IDLE) {
		dev_dbg(dev, "%s() rejected, state %u\n",
			__func__, host->state);
		spin_unlock_irqrestore(&host->lock, flags);
		return;
	}

	host->state = STATE_IOS;
	spin_unlock_irqrestore(&host->lock, flags);

	switch (ios->power_mode) {
	case MMC_POWER_UP:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
		if (!host->power) {
			clk_prepare_enable(host->clk);
			pm_runtime_get_sync(dev);
			sh_mmcif_sync_reset(host);
			sh_mmcif_request_dma(host);
			host->power = true;
		}
		break;
	case MMC_POWER_OFF:
		if (!IS_ERR(mmc->supply.vmmc))
			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
		if (host->power) {
			sh_mmcif_clock_control(host, 0);
			sh_mmcif_release_dma(host);
			pm_runtime_put(dev);
			clk_disable_unprepare(host->clk);
			host->power = false;
		}
		break;
	case MMC_POWER_ON:
		sh_mmcif_clock_control(host, ios->clock);
		break;
	}

	host->timing = ios->timing;
	host->bus_width = ios->bus_width;
	host->state = STATE_IDLE;
}

static const struct mmc_host_ops sh_mmcif_ops = {
	.request	= sh_mmcif_request,
	.set_ios	= sh_mmcif_set_ios,
	.get_cd		= mmc_gpio_get_cd,
};

static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
{
	struct mmc_command *cmd = host->mrq->cmd;
	struct mmc_data *data = host->mrq->data;
	struct device *dev = sh_mmcif_host_to_dev(host);
	long time;

	if (host->sd_error) {
		switch (cmd->opcode) {
		case MMC_ALL_SEND_CID:
		case MMC_SELECT_CARD:
		case MMC_APP_CMD:
			cmd->error = -ETIMEDOUT;
			break;
		default:
			cmd->error = sh_mmcif_error_manage(host);
			break;
		}
		dev_dbg(dev, "CMD%d error %d\n",
			cmd->opcode, cmd->error);
		host->sd_error = false;
		return false;
	}
	if (!(cmd->flags & MMC_RSP_PRESENT)) {
		cmd->error = 0;
		return false;
	}

	sh_mmcif_get_response(host, cmd);

	if (!data)
		return false;

	/*
	 * Completion can be signalled from DMA callback and error, so, have to
	 * reset here, before setting .dma_active
	 */
	init_completion(&host->dma_complete);

	if (data->flags & MMC_DATA_READ) {
		if (host->chan_rx)
			sh_mmcif_start_dma_rx(host);
	} else {
		if (host->chan_tx)
			sh_mmcif_start_dma_tx(host);
	}

	if (!host->dma_active) {
		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
		return !data->error;
	}

	/* Running in the IRQ thread, can sleep */
	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
							 host->timeout);

	if (data->flags & MMC_DATA_READ)
		dma_unmap_sg(host->chan_rx->device->dev,
			     data->sg, data->sg_len,
			     DMA_FROM_DEVICE);
	else
		dma_unmap_sg(host->chan_tx->device->dev,
			     data->sg, data->sg_len,
			     DMA_TO_DEVICE);

	if (host->sd_error) {
		dev_err(host->mmc->parent,
			"Error IRQ while waiting for DMA completion!\n");
		/* Woken up by an error IRQ: abort DMA */
		data->error = sh_mmcif_error_manage(host);
	} else if (!time) {
		dev_err(host->mmc->parent, "DMA timeout!\n");
		data->error = -ETIMEDOUT;
	} else if (time < 0) {
		dev_err(host->mmc->parent,
			"wait_for_completion_...() error %ld!\n", time);
		data->error = time;
	}
	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	host->dma_active = false;

	if (data->error) {
		data->bytes_xfered = 0;
		/* Abort DMA */
		if (data->flags & MMC_DATA_READ)
			dmaengine_terminate_all(host->chan_rx);
		else
			dmaengine_terminate_all(host->chan_tx);
	}

	return false;
}

static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
{
	struct sh_mmcif_host *host = dev_id;
	struct mmc_request *mrq;
	struct device *dev = sh_mmcif_host_to_dev(host);
	bool wait = false;
	unsigned long flags;
	int wait_work;

	spin_lock_irqsave(&host->lock, flags);
	wait_work = host->wait_for;
	spin_unlock_irqrestore(&host->lock, flags);

	cancel_delayed_work_sync(&host->timeout_work);

	mutex_lock(&host->thread_lock);

	mrq = host->mrq;
	if (!mrq) {
		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
			host->state, host->wait_for);
		mutex_unlock(&host->thread_lock);
		return IRQ_HANDLED;
	}

	/*
	 * All handlers return true, if processing continues, and false, if the
	 * request has to be completed - successfully or not
	 */
	switch (wait_work) {
	case MMCIF_WAIT_FOR_REQUEST:
		/* We're too late, the timeout has already kicked in */
		mutex_unlock(&host->thread_lock);
		return IRQ_HANDLED;
	case MMCIF_WAIT_FOR_CMD:
		/* Wait for data? */
		wait = sh_mmcif_end_cmd(host);
		break;
	case MMCIF_WAIT_FOR_MREAD:
		/* Wait for more data? */
		wait = sh_mmcif_mread_block(host);
		break;
	case MMCIF_WAIT_FOR_READ:
		/* Wait for data end? */
		wait = sh_mmcif_read_block(host);
		break;
	case MMCIF_WAIT_FOR_MWRITE:
		/* Wait data to write? */
		wait = sh_mmcif_mwrite_block(host);
		break;
	case MMCIF_WAIT_FOR_WRITE:
		/* Wait for data end? */
		wait = sh_mmcif_write_block(host);
		break;
	case MMCIF_WAIT_FOR_STOP:
		if (host->sd_error) {
			mrq->stop->error = sh_mmcif_error_manage(host);
			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
			break;
		}
		sh_mmcif_get_cmd12response(host, mrq->stop);
		mrq->stop->error = 0;
		break;
	case MMCIF_WAIT_FOR_READ_END:
	case MMCIF_WAIT_FOR_WRITE_END:
		if (host->sd_error) {
			mrq->data->error = sh_mmcif_error_manage(host);
			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
		}
		break;
	default:
		BUG();
	}

	if (wait) {
		schedule_delayed_work(&host->timeout_work, host->timeout);
		/* Wait for more data */
		mutex_unlock(&host->thread_lock);
		return IRQ_HANDLED;
	}

	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
		struct mmc_data *data = mrq->data;
		if (!mrq->cmd->error && data && !data->error)
			data->bytes_xfered =
				data->blocks * data->blksz;

		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
			sh_mmcif_stop_cmd(host, mrq);
			if (!mrq->stop->error) {
				schedule_delayed_work(&host->timeout_work, host->timeout);
				mutex_unlock(&host->thread_lock);
				return IRQ_HANDLED;
			}
		}
	}

	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
	host->state = STATE_IDLE;
	host->mrq = NULL;
	mmc_request_done(host->mmc, mrq);

	mutex_unlock(&host->thread_lock);

	return IRQ_HANDLED;
}

static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
{
	struct sh_mmcif_host *host = dev_id;
	struct device *dev = sh_mmcif_host_to_dev(host);
	u32 state, mask;

	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
	if (host->ccs_enable)
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
	else
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);

	if (state & ~MASK_CLEAN)
		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
			state);

	if (state & INT_ERR_STS || state & ~INT_ALL) {
		host->sd_error = true;
		dev_dbg(dev, "int err state = 0x%08x\n", state);
	}
	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
		if (!host->mrq)
			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
		if (!host->dma_active)
			return IRQ_WAKE_THREAD;
		else if (host->sd_error)
			sh_mmcif_dma_complete(host);
	} else {
		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
	}

	return IRQ_HANDLED;
}

static void sh_mmcif_timeout_work(struct work_struct *work)
{
	struct delayed_work *d = to_delayed_work(work);
	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
	struct mmc_request *mrq = host->mrq;
	struct device *dev = sh_mmcif_host_to_dev(host);
	unsigned long flags;

	if (host->dying)
		/* Don't run after mmc_remove_host() */
		return;

	spin_lock_irqsave(&host->lock, flags);
	if (host->state == STATE_IDLE) {
		spin_unlock_irqrestore(&host->lock, flags);
		return;
	}

	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
		host->wait_for, mrq->cmd->opcode);

	host->state = STATE_TIMEOUT;
	spin_unlock_irqrestore(&host->lock, flags);

	/*
	 * Handle races with cancel_delayed_work(), unless
	 * cancel_delayed_work_sync() is used
	 */
	switch (host->wait_for) {
	case MMCIF_WAIT_FOR_CMD:
		mrq->cmd->error = sh_mmcif_error_manage(host);
		break;
	case MMCIF_WAIT_FOR_STOP:
		mrq->stop->error = sh_mmcif_error_manage(host);
		break;
	case MMCIF_WAIT_FOR_MREAD:
	case MMCIF_WAIT_FOR_MWRITE:
	case MMCIF_WAIT_FOR_READ:
	case MMCIF_WAIT_FOR_WRITE:
	case MMCIF_WAIT_FOR_READ_END:
	case MMCIF_WAIT_FOR_WRITE_END:
		mrq->data->error = sh_mmcif_error_manage(host);
		break;
	default:
		BUG();
	}

	host->state = STATE_IDLE;
	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
	host->mrq = NULL;
	mmc_request_done(host->mmc, mrq);
}

static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
{
	struct device *dev = sh_mmcif_host_to_dev(host);
	struct sh_mmcif_plat_data *pd = dev->platform_data;
	struct mmc_host *mmc = host->mmc;

	mmc_regulator_get_supply(mmc);

	if (!pd)
		return;

	if (!mmc->ocr_avail)
		mmc->ocr_avail = pd->ocr;
	else if (pd->ocr)
		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
}

static int sh_mmcif_probe(struct platform_device *pdev)
{
	int ret = 0, irq[2];
	struct mmc_host *mmc;
	struct sh_mmcif_host *host;
	struct device *dev = &pdev->dev;
	struct sh_mmcif_plat_data *pd = dev->platform_data;
	void __iomem *reg;
	const char *name;

	irq[0] = platform_get_irq(pdev, 0);
	irq[1] = platform_get_irq_optional(pdev, 1);
	if (irq[0] < 0)
		return -ENXIO;

	reg = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(reg))
		return PTR_ERR(reg);

	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
	if (!mmc)
		return -ENOMEM;

	ret = mmc_of_parse(mmc);
	if (ret < 0)
		goto err_host;

	host		= mmc_priv(mmc);
	host->mmc	= mmc;
	host->addr	= reg;
	host->timeout	= msecs_to_jiffies(10000);
	host->ccs_enable = true;
	host->clk_ctrl2_enable = false;

	host->pd = pdev;

	spin_lock_init(&host->lock);

	mmc->ops = &sh_mmcif_ops;
	sh_mmcif_init_ocr(host);

	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
	mmc->max_busy_timeout = 10000;

	if (pd && pd->caps)
		mmc->caps |= pd->caps;
	mmc->max_segs = 32;
	mmc->max_blk_size = 512;
	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
	mmc->max_seg_size = mmc->max_req_size;

	platform_set_drvdata(pdev, host);

	host->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(host->clk)) {
		ret = PTR_ERR(host->clk);
		dev_err(dev, "cannot get clock: %d\n", ret);
		goto err_host;
	}

	ret = clk_prepare_enable(host->clk);
	if (ret < 0)
		goto err_host;

	sh_mmcif_clk_setup(host);

	pm_runtime_enable(dev);
	host->power = false;

	ret = pm_runtime_get_sync(dev);
	if (ret < 0)
		goto err_clk;

	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);

	sh_mmcif_sync_reset(host);
	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);

	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
					sh_mmcif_irqt, 0, name, host);
	if (ret) {
		dev_err(dev, "request_irq error (%s)\n", name);
		goto err_clk;
	}
	if (irq[1] >= 0) {
		ret = devm_request_threaded_irq(dev, irq[1],
						sh_mmcif_intr, sh_mmcif_irqt,
						0, "sh_mmc:int", host);
		if (ret) {
			dev_err(dev, "request_irq error (sh_mmc:int)\n");
			goto err_clk;
		}
	}

	mutex_init(&host->thread_lock);

	ret = mmc_add_host(mmc);
	if (ret < 0)
		goto err_clk;

	dev_pm_qos_expose_latency_limit(dev, 100);

	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
		 clk_get_rate(host->clk) / 1000000UL);

	pm_runtime_put(dev);
	clk_disable_unprepare(host->clk);
	return ret;

err_clk:
	clk_disable_unprepare(host->clk);
	pm_runtime_put_sync(dev);
	pm_runtime_disable(dev);
err_host:
	mmc_free_host(mmc);
	return ret;
}

static int sh_mmcif_remove(struct platform_device *pdev)
{
	struct sh_mmcif_host *host = platform_get_drvdata(pdev);

	host->dying = true;
	clk_prepare_enable(host->clk);
	pm_runtime_get_sync(&pdev->dev);

	dev_pm_qos_hide_latency_limit(&pdev->dev);

	mmc_remove_host(host->mmc);
	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);

	/*
	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
	 * mmc_remove_host() call above. But swapping order doesn't help either
	 * (a query on the linux-mmc mailing list didn't bring any replies).
	 */
	cancel_delayed_work_sync(&host->timeout_work);

	clk_disable_unprepare(host->clk);
	mmc_free_host(host->mmc);
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int sh_mmcif_suspend(struct device *dev)
{
	struct sh_mmcif_host *host = dev_get_drvdata(dev);

	pm_runtime_get_sync(dev);
	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
	pm_runtime_put(dev);

	return 0;
}

static int sh_mmcif_resume(struct device *dev)
{
	return 0;
}
#endif

static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
};

static struct platform_driver sh_mmcif_driver = {
	.probe		= sh_mmcif_probe,
	.remove		= sh_mmcif_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.pm	= &sh_mmcif_dev_pm_ops,
		.of_match_table = sh_mmcif_of_match,
	},
};

module_platform_driver(sh_mmcif_driver);

MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");