aboutsummaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/natsemi/sonic.c
blob: d17d1b4f2585fed3e16ab0208a441a3aaf5bc025 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
// SPDX-License-Identifier: GPL-2.0-only
/*
 * sonic.c
 *
 * (C) 2005 Finn Thain
 *
 * Converted to DMA API, added zero-copy buffer handling, and
 * (from the mac68k project) introduced dhd's support for 16-bit cards.
 *
 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
 *
 * This driver is based on work from Andreas Busse, but most of
 * the code is rewritten.
 *
 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
 *
 *    Core code included by system sonic drivers
 *
 * And... partially rewritten again by David Huggins-Daines in order
 * to cope with screwed up Macintosh NICs that may or may not use
 * 16-bit DMA.
 *
 * (C) 1999 David Huggins-Daines <dhd@debian.org>
 *
 */

/*
 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
 * controller, and the files "8390.c" and "skeleton.c" in this directory.
 *
 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
 */

static unsigned int version_printed;

static int sonic_debug = -1;
module_param(sonic_debug, int, 0);
MODULE_PARM_DESC(sonic_debug, "debug message level");

static void sonic_msg_init(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);

	lp->msg_enable = netif_msg_init(sonic_debug, 0);

	if (version_printed++ == 0)
		netif_dbg(lp, drv, dev, "%s", version);
}

static int sonic_alloc_descriptors(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);

	/* Allocate a chunk of memory for the descriptors. Note that this
	 * must not cross a 64K boundary. It is smaller than one page which
	 * means that page alignment is a sufficient condition.
	 */
	lp->descriptors =
		dma_alloc_coherent(lp->device,
				   SIZEOF_SONIC_DESC *
				   SONIC_BUS_SCALE(lp->dma_bitmode),
				   &lp->descriptors_laddr, GFP_KERNEL);

	if (!lp->descriptors)
		return -ENOMEM;

	lp->cda = lp->descriptors;
	lp->tda = lp->cda + SIZEOF_SONIC_CDA *
			    SONIC_BUS_SCALE(lp->dma_bitmode);
	lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
			    SONIC_BUS_SCALE(lp->dma_bitmode);
	lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
			    SONIC_BUS_SCALE(lp->dma_bitmode);

	lp->cda_laddr = lp->descriptors_laddr;
	lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
					SONIC_BUS_SCALE(lp->dma_bitmode);
	lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
					SONIC_BUS_SCALE(lp->dma_bitmode);
	lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
					SONIC_BUS_SCALE(lp->dma_bitmode);

	return 0;
}

/*
 * Open/initialize the SONIC controller.
 *
 * This routine should set everything up anew at each open, even
 *  registers that "should" only need to be set once at boot, so that
 *  there is non-reboot way to recover if something goes wrong.
 */
static int sonic_open(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);
	int i;

	netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);

	spin_lock_init(&lp->lock);

	for (i = 0; i < SONIC_NUM_RRS; i++) {
		struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
		if (skb == NULL) {
			while(i > 0) { /* free any that were allocated successfully */
				i--;
				dev_kfree_skb(lp->rx_skb[i]);
				lp->rx_skb[i] = NULL;
			}
			printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
			       dev->name);
			return -ENOMEM;
		}
		/* align IP header unless DMA requires otherwise */
		if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
			skb_reserve(skb, 2);
		lp->rx_skb[i] = skb;
	}

	for (i = 0; i < SONIC_NUM_RRS; i++) {
		dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
		                                  SONIC_RBSIZE, DMA_FROM_DEVICE);
		if (dma_mapping_error(lp->device, laddr)) {
			while(i > 0) { /* free any that were mapped successfully */
				i--;
				dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
				lp->rx_laddr[i] = (dma_addr_t)0;
			}
			for (i = 0; i < SONIC_NUM_RRS; i++) {
				dev_kfree_skb(lp->rx_skb[i]);
				lp->rx_skb[i] = NULL;
			}
			printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
			       dev->name);
			return -ENOMEM;
		}
		lp->rx_laddr[i] = laddr;
	}

	/*
	 * Initialize the SONIC
	 */
	sonic_init(dev, true);

	netif_start_queue(dev);

	netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);

	return 0;
}

/* Wait for the SONIC to become idle. */
static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
{
	struct sonic_local * __maybe_unused lp = netdev_priv(dev);
	int i;
	u16 bits;

	for (i = 0; i < 1000; ++i) {
		bits = SONIC_READ(SONIC_CMD) & mask;
		if (!bits)
			return;
		if (!may_sleep)
			udelay(20);
		else
			usleep_range(100, 200);
	}
	WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
}

/*
 * Close the SONIC device
 */
static int sonic_close(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);
	int i;

	netif_dbg(lp, ifdown, dev, "%s\n", __func__);

	netif_stop_queue(dev);

	/*
	 * stop the SONIC, disable interrupts
	 */
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
	sonic_quiesce(dev, SONIC_CR_ALL, true);

	SONIC_WRITE(SONIC_IMR, 0);
	SONIC_WRITE(SONIC_ISR, 0x7fff);
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);

	/* unmap and free skbs that haven't been transmitted */
	for (i = 0; i < SONIC_NUM_TDS; i++) {
		if(lp->tx_laddr[i]) {
			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
			lp->tx_laddr[i] = (dma_addr_t)0;
		}
		if(lp->tx_skb[i]) {
			dev_kfree_skb(lp->tx_skb[i]);
			lp->tx_skb[i] = NULL;
		}
	}

	/* unmap and free the receive buffers */
	for (i = 0; i < SONIC_NUM_RRS; i++) {
		if(lp->rx_laddr[i]) {
			dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
			lp->rx_laddr[i] = (dma_addr_t)0;
		}
		if(lp->rx_skb[i]) {
			dev_kfree_skb(lp->rx_skb[i]);
			lp->rx_skb[i] = NULL;
		}
	}

	return 0;
}

static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
	struct sonic_local *lp = netdev_priv(dev);
	int i;
	/*
	 * put the Sonic into software-reset mode and
	 * disable all interrupts before releasing DMA buffers
	 */
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
	sonic_quiesce(dev, SONIC_CR_ALL, false);

	SONIC_WRITE(SONIC_IMR, 0);
	SONIC_WRITE(SONIC_ISR, 0x7fff);
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
	/* We could resend the original skbs. Easier to re-initialise. */
	for (i = 0; i < SONIC_NUM_TDS; i++) {
		if(lp->tx_laddr[i]) {
			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
			lp->tx_laddr[i] = (dma_addr_t)0;
		}
		if(lp->tx_skb[i]) {
			dev_kfree_skb(lp->tx_skb[i]);
			lp->tx_skb[i] = NULL;
		}
	}
	/* Try to restart the adaptor. */
	sonic_init(dev, false);
	lp->stats.tx_errors++;
	netif_trans_update(dev); /* prevent tx timeout */
	netif_wake_queue(dev);
}

/*
 * transmit packet
 *
 * Appends new TD during transmission thus avoiding any TX interrupts
 * until we run out of TDs.
 * This routine interacts closely with the ISR in that it may,
 *   set tx_skb[i]
 *   reset the status flags of the new TD
 *   set and reset EOL flags
 *   stop the tx queue
 * The ISR interacts with this routine in various ways. It may,
 *   reset tx_skb[i]
 *   test the EOL and status flags of the TDs
 *   wake the tx queue
 * Concurrently with all of this, the SONIC is potentially writing to
 * the status flags of the TDs.
 */

static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);
	dma_addr_t laddr;
	int length;
	int entry;
	unsigned long flags;

	netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);

	length = skb->len;
	if (length < ETH_ZLEN) {
		if (skb_padto(skb, ETH_ZLEN))
			return NETDEV_TX_OK;
		length = ETH_ZLEN;
	}

	/*
	 * Map the packet data into the logical DMA address space
	 */

	laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
	if (!laddr) {
		pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
		dev_kfree_skb_any(skb);
		return NETDEV_TX_OK;
	}

	spin_lock_irqsave(&lp->lock, flags);

	entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;

	sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
	sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
	sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
	sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
	sonic_tda_put(dev, entry, SONIC_TD_LINK,
		sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);

	sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
		      sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));

	netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);

	SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);

	lp->tx_len[entry] = length;
	lp->tx_laddr[entry] = laddr;
	lp->tx_skb[entry] = skb;

	lp->eol_tx = entry;

	entry = (entry + 1) & SONIC_TDS_MASK;
	if (lp->tx_skb[entry]) {
		/* The ring is full, the ISR has yet to process the next TD. */
		netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
		netif_stop_queue(dev);
		/* after this packet, wait for ISR to free up some TDAs */
	}

	spin_unlock_irqrestore(&lp->lock, flags);

	return NETDEV_TX_OK;
}

/*
 * The typical workload of the driver:
 * Handle the network interface interrupts.
 */
static irqreturn_t sonic_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct sonic_local *lp = netdev_priv(dev);
	int status;
	unsigned long flags;

	/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
	 * with sonic_send_packet() so that the two functions can share state.
	 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
	 * by macsonic which must use two IRQs with different priority levels.
	 */
	spin_lock_irqsave(&lp->lock, flags);

	status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
	if (!status) {
		spin_unlock_irqrestore(&lp->lock, flags);

		return IRQ_NONE;
	}

	do {
		SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */

		if (status & SONIC_INT_PKTRX) {
			netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
			sonic_rx(dev);	/* got packet(s) */
		}

		if (status & SONIC_INT_TXDN) {
			int entry = lp->cur_tx;
			int td_status;
			int freed_some = 0;

			/* The state of a Transmit Descriptor may be inferred
			 * from { tx_skb[entry], td_status } as follows.
			 * { clear, clear } => the TD has never been used
			 * { set,   clear } => the TD was handed to SONIC
			 * { set,   set   } => the TD was handed back
			 * { clear, set   } => the TD is available for re-use
			 */

			netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);

			while (lp->tx_skb[entry] != NULL) {
				if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
					break;

				if (td_status & SONIC_TCR_PTX) {
					lp->stats.tx_packets++;
					lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
				} else {
					if (td_status & (SONIC_TCR_EXD |
					    SONIC_TCR_EXC | SONIC_TCR_BCM))
						lp->stats.tx_aborted_errors++;
					if (td_status &
					    (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
						lp->stats.tx_carrier_errors++;
					if (td_status & SONIC_TCR_OWC)
						lp->stats.tx_window_errors++;
					if (td_status & SONIC_TCR_FU)
						lp->stats.tx_fifo_errors++;
				}

				/* We must free the original skb */
				dev_consume_skb_irq(lp->tx_skb[entry]);
				lp->tx_skb[entry] = NULL;
				/* and unmap DMA buffer */
				dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
				lp->tx_laddr[entry] = (dma_addr_t)0;
				freed_some = 1;

				if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
					entry = (entry + 1) & SONIC_TDS_MASK;
					break;
				}
				entry = (entry + 1) & SONIC_TDS_MASK;
			}

			if (freed_some || lp->tx_skb[entry] == NULL)
				netif_wake_queue(dev);  /* The ring is no longer full */
			lp->cur_tx = entry;
		}

		/*
		 * check error conditions
		 */
		if (status & SONIC_INT_RFO) {
			netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
				  __func__);
		}
		if (status & SONIC_INT_RDE) {
			netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
				  __func__);
		}
		if (status & SONIC_INT_RBAE) {
			netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
				  __func__);
		}

		/* counter overruns; all counters are 16bit wide */
		if (status & SONIC_INT_FAE)
			lp->stats.rx_frame_errors += 65536;
		if (status & SONIC_INT_CRC)
			lp->stats.rx_crc_errors += 65536;
		if (status & SONIC_INT_MP)
			lp->stats.rx_missed_errors += 65536;

		/* transmit error */
		if (status & SONIC_INT_TXER) {
			u16 tcr = SONIC_READ(SONIC_TCR);

			netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
				  __func__, tcr);

			if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
				   SONIC_TCR_FU | SONIC_TCR_BCM)) {
				/* Aborted transmission. Try again. */
				netif_stop_queue(dev);
				SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
			}
		}

		/* bus retry */
		if (status & SONIC_INT_BR) {
			printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
				dev->name);
			/* ... to help debug DMA problems causing endless interrupts. */
			/* Bounce the eth interface to turn on the interrupt again. */
			SONIC_WRITE(SONIC_IMR, 0);
		}

		status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
	} while (status);

	spin_unlock_irqrestore(&lp->lock, flags);

	return IRQ_HANDLED;
}

/* Return the array index corresponding to a given Receive Buffer pointer. */
static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
			   unsigned int last)
{
	unsigned int i = last;

	do {
		i = (i + 1) & SONIC_RRS_MASK;
		if (addr == lp->rx_laddr[i])
			return i;
	} while (i != last);

	return -ENOENT;
}

/* Allocate and map a new skb to be used as a receive buffer. */
static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
			   struct sk_buff **new_skb, dma_addr_t *new_addr)
{
	*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
	if (!*new_skb)
		return false;

	if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
		skb_reserve(*new_skb, 2);

	*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
				   SONIC_RBSIZE, DMA_FROM_DEVICE);
	if (!*new_addr) {
		dev_kfree_skb(*new_skb);
		*new_skb = NULL;
		return false;
	}

	return true;
}

/* Place a new receive resource in the Receive Resource Area and update RWP. */
static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
			     dma_addr_t old_addr, dma_addr_t new_addr)
{
	unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
	unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
	u32 buf;

	/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
	 * scans the other resources in the RRA, those in the range [RWP, RRP).
	 */
	do {
		buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
		      sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);

		if (buf == old_addr)
			break;

		entry = (entry + 1) & SONIC_RRS_MASK;
	} while (entry != end);

	WARN_ONCE(buf != old_addr, "failed to find resource!\n");

	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);

	entry = (entry + 1) & SONIC_RRS_MASK;

	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
}

/*
 * We have a good packet(s), pass it/them up the network stack.
 */
static void sonic_rx(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);
	int entry = lp->cur_rx;
	int prev_entry = lp->eol_rx;
	bool rbe = false;

	while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
		u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);

		/* If the RD has LPKT set, the chip has finished with the RB */
		if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
			struct sk_buff *new_skb;
			dma_addr_t new_laddr;
			u32 addr = (sonic_rda_get(dev, entry,
						  SONIC_RD_PKTPTR_H) << 16) |
				   sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
			int i = index_from_addr(lp, addr, entry);

			if (i < 0) {
				WARN_ONCE(1, "failed to find buffer!\n");
				break;
			}

			if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
				struct sk_buff *used_skb = lp->rx_skb[i];
				int pkt_len;

				/* Pass the used buffer up the stack */
				dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
						 DMA_FROM_DEVICE);

				pkt_len = sonic_rda_get(dev, entry,
							SONIC_RD_PKTLEN);
				skb_trim(used_skb, pkt_len);
				used_skb->protocol = eth_type_trans(used_skb,
								    dev);
				netif_rx(used_skb);
				lp->stats.rx_packets++;
				lp->stats.rx_bytes += pkt_len;

				lp->rx_skb[i] = new_skb;
				lp->rx_laddr[i] = new_laddr;
			} else {
				/* Failed to obtain a new buffer so re-use it */
				new_laddr = addr;
				lp->stats.rx_dropped++;
			}
			/* If RBE is already asserted when RWP advances then
			 * it's safe to clear RBE after processing this packet.
			 */
			rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
			sonic_update_rra(dev, lp, addr, new_laddr);
		}
		/*
		 * give back the descriptor
		 */
		sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
		sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);

		prev_entry = entry;
		entry = (entry + 1) & SONIC_RDS_MASK;
	}

	lp->cur_rx = entry;

	if (prev_entry != lp->eol_rx) {
		/* Advance the EOL flag to put descriptors back into service */
		sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
			      sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
		sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
			      sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
		lp->eol_rx = prev_entry;
	}

	if (rbe)
		SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
}


/*
 * Get the current statistics.
 * This may be called with the device open or closed.
 */
static struct net_device_stats *sonic_get_stats(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);

	/* read the tally counter from the SONIC and reset them */
	lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
	SONIC_WRITE(SONIC_CRCT, 0xffff);
	lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
	SONIC_WRITE(SONIC_FAET, 0xffff);
	lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
	SONIC_WRITE(SONIC_MPT, 0xffff);

	return &lp->stats;
}


/*
 * Set or clear the multicast filter for this adaptor.
 */
static void sonic_multicast_list(struct net_device *dev)
{
	struct sonic_local *lp = netdev_priv(dev);
	unsigned int rcr;
	struct netdev_hw_addr *ha;
	unsigned char *addr;
	int i;

	rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
	rcr |= SONIC_RCR_BRD;	/* accept broadcast packets */

	if (dev->flags & IFF_PROMISC) {	/* set promiscuous mode */
		rcr |= SONIC_RCR_PRO;
	} else {
		if ((dev->flags & IFF_ALLMULTI) ||
		    (netdev_mc_count(dev) > 15)) {
			rcr |= SONIC_RCR_AMC;
		} else {
			unsigned long flags;

			netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
				  netdev_mc_count(dev));
			sonic_set_cam_enable(dev, 1);  /* always enable our own address */
			i = 1;
			netdev_for_each_mc_addr(ha, dev) {
				addr = ha->addr;
				sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
				sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
				sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
				sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
				i++;
			}
			SONIC_WRITE(SONIC_CDC, 16);
			SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);

			/* LCAM and TXP commands can't be used simultaneously */
			spin_lock_irqsave(&lp->lock, flags);
			sonic_quiesce(dev, SONIC_CR_TXP, false);
			SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
			sonic_quiesce(dev, SONIC_CR_LCAM, false);
			spin_unlock_irqrestore(&lp->lock, flags);
		}
	}

	netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);

	SONIC_WRITE(SONIC_RCR, rcr);
}


/*
 * Initialize the SONIC ethernet controller.
 */
static int sonic_init(struct net_device *dev, bool may_sleep)
{
	struct sonic_local *lp = netdev_priv(dev);
	int i;

	/*
	 * put the Sonic into software-reset mode and
	 * disable all interrupts
	 */
	SONIC_WRITE(SONIC_IMR, 0);
	SONIC_WRITE(SONIC_ISR, 0x7fff);
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);

	/* While in reset mode, clear CAM Enable register */
	SONIC_WRITE(SONIC_CE, 0);

	/*
	 * clear software reset flag, disable receiver, clear and
	 * enable interrupts, then completely initialize the SONIC
	 */
	SONIC_WRITE(SONIC_CMD, 0);
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
	sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);

	/*
	 * initialize the receive resource area
	 */
	netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
		  __func__);

	for (i = 0; i < SONIC_NUM_RRS; i++) {
		u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
		u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
		sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
		sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
	}

	/* initialize all RRA registers */
	SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
	SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
	SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
	SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
	SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));

	/* load the resource pointers */
	netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);

	SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
	sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);

	/*
	 * Initialize the receive descriptors so that they
	 * become a circular linked list, ie. let the last
	 * descriptor point to the first again.
	 */
	netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
		  __func__);

	for (i=0; i<SONIC_NUM_RDS; i++) {
		sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
		sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
		sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
		sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
		sonic_rda_put(dev, i, SONIC_RD_LINK,
			lp->rda_laddr +
			((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
	}
	/* fix last descriptor */
	sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
		(lp->rda_laddr & 0xffff) | SONIC_EOL);
	lp->eol_rx = SONIC_NUM_RDS - 1;
	lp->cur_rx = 0;
	SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
	SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);

	/*
	 * initialize transmit descriptors
	 */
	netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
		  __func__);

	for (i = 0; i < SONIC_NUM_TDS; i++) {
		sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
		sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
		sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
		sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
		sonic_tda_put(dev, i, SONIC_TD_LINK,
			(lp->tda_laddr & 0xffff) +
			(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
		lp->tx_skb[i] = NULL;
	}
	/* fix last descriptor */
	sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
		(lp->tda_laddr & 0xffff));

	SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
	SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
	lp->cur_tx = 0;
	lp->eol_tx = SONIC_NUM_TDS - 1;

	/*
	 * put our own address to CAM desc[0]
	 */
	sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
	sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
	sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
	sonic_set_cam_enable(dev, 1);

	for (i = 0; i < 16; i++)
		sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);

	/*
	 * initialize CAM registers
	 */
	SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
	SONIC_WRITE(SONIC_CDC, 16);

	/*
	 * load the CAM
	 */
	SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
	sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);

	/*
	 * enable receiver, disable loopback
	 * and enable all interrupts
	 */
	SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
	SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
	SONIC_WRITE(SONIC_ISR, 0x7fff);
	SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);

	netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
		  SONIC_READ(SONIC_CMD));

	return 0;
}

MODULE_LICENSE("GPL");