aboutsummaryrefslogtreecommitdiff
path: root/drivers/rtc/rtc-ab-b5ze-s3.c
blob: 2370ac0cdb5f89ef164f3916dc51ecabee5029be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
// SPDX-License-Identifier: GPL-2.0+
/*
 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
 *                  I2C RTC / Alarm chip
 *
 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
 *
 * Detailed datasheet of the chip is available here:
 *
 *  https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
 *
 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
 *
 */

#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/i2c.h>
#include <linux/bcd.h>
#include <linux/of.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>

#define DRV_NAME "rtc-ab-b5ze-s3"

/* Control section */
#define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
#define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
#define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
#define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
#define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
#define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
#define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
#define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)

#define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
#define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
#define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
#define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
#define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
#define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
#define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
#define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
#define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */

#define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
#define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
#define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
#define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
#define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
#define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
#define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
#define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */

#define ABB5ZES3_CTRL_SEC_LEN	   3

/* RTC section */
#define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
#define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
#define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
#define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
#define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
#define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
#define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
#define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
#define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */

#define ABB5ZES3_RTC_SEC_LEN	   7

/* Alarm section (enable bits are all active low) */
#define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
#define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
#define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
#define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
#define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
#define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
#define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
#define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */

#define ABB5ZES3_ALRM_SEC_LEN	   4

/* Frequency offset section */
#define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
#define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */

/* CLOCKOUT section */
#define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
#define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
#define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
#define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
#define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
#define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
#define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
#define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
#define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */

/* Timer A Section */
#define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
#define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
#define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
#define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
#define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */

#define ABB5ZES3_TIMA_SEC_LEN	   2

/* Timer B Section */
#define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
#define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
#define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
#define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
#define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
#define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
#define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
#define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
#define ABB5ZES3_TIMB_SEC_LEN	   2

#define ABB5ZES3_MEM_MAP_LEN	   0x14

struct abb5zes3_rtc_data {
	struct rtc_device *rtc;
	struct regmap *regmap;

	int irq;

	bool battery_low;
	bool timer_alarm; /* current alarm is via timer A */
};

/*
 * Try and match register bits w/ fixed null values to see whether we
 * are dealing with an ABB5ZES3.
 */
static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
{
	u8 regs[ABB5ZES3_MEM_MAP_LEN];
	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
						       0x80, 0xc0, 0xc0, 0xf8,
						       0xe0, 0x00, 0x00, 0x40,
						       0x40, 0x78, 0x00, 0x00,
						       0xf8, 0x00, 0x88, 0x00 };
	int ret, i;

	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
	if (ret)
		return ret;

	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
		if (regs[i] & mask[i]) /* check if bits are cleared */
			return -ENODEV;
	}

	return 0;
}

/* Clear alarm status bit. */
static int _abb5zes3_rtc_clear_alarm(struct device *dev)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
				 ABB5ZES3_REG_CTRL2_AF, 0);
	if (ret)
		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);

	return ret;
}

/* Enable or disable alarm (i.e. alarm interrupt generation) */
static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
				 ABB5ZES3_REG_CTRL1_AIE,
				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
	if (ret)
		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
			__func__, ret);

	return ret;
}

/* Enable or disable timer (watchdog timer A interrupt generation) */
static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
				 ABB5ZES3_REG_CTRL2_WTAIE,
				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
	if (ret)
		dev_err(dev, "%s: writing timer INT failed (%d)\n",
			__func__, ret);

	return ret;
}

/*
 * Note: we only read, so regmap inner lock protection is sufficient, i.e.
 * we do not need driver's main lock protection.
 */
static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
	int ret = 0;

	/*
	 * As we need to read CTRL1 register anyway to access 24/12h
	 * mode bit, we do a single bulk read of both control and RTC
	 * sections (they are consecutive). This also ease indexing
	 * of register values after bulk read.
	 */
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
			       sizeof(regs));
	if (ret) {
		dev_err(dev, "%s: reading RTC time failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* If clock integrity is not guaranteed, do not return a time value */
	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
		return -ENODATA;

	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);

	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
			tm->tm_hour += 12;
	} else {						/* 24hr mode */
		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
	}

	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;

	return ret;
}

static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
	int ret;

	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);

	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
				regs + ABB5ZES3_REG_RTC_SC,
				ABB5ZES3_RTC_SEC_LEN);

	return ret;
}

/*
 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
 * given number of seconds.
 */
static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
{
	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
	*timer_a = secs;
}

/*
 * Return current number of seconds in Timer A. As we only use
 * timer A with a 1Hz freq, this is what we expect to have.
 */
static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
{
	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
		return -EINVAL;

	*secs = timer_a;

	return 0;
}

/*
 * Read alarm currently configured via a watchdog timer using timer A. This
 * is done by reading current RTC time and adding remaining timer time.
 */
static int _abb5zes3_rtc_read_timer(struct device *dev,
				    struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
	unsigned long rtc_secs;
	unsigned int reg;
	u8 timer_secs;
	int ret;

	/*
	 * Instead of doing two separate calls, because they are consecutive,
	 * we grab both clockout register and Timer A section. The latter is
	 * used to decide if timer A is enabled (as a watchdog timer).
	 */
	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
			       ABB5ZES3_TIMA_SEC_LEN + 1);
	if (ret) {
		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* get current time ... */
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		return ret;

	/* ... convert to seconds ... */
	rtc_secs = rtc_tm_to_time64(&rtc_tm);

	/* ... add remaining timer A time ... */
	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
	if (ret)
		return ret;

	/* ... and convert back. */
	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);

	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
	if (ret) {
		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
			__func__, ret);
		return ret;
	}

	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);

	return 0;
}

/* Read alarm currently configured via a RTC alarm registers. */
static int _abb5zes3_rtc_read_alarm(struct device *dev,
				    struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
	unsigned int reg;
	int ret;

	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
			       ABB5ZES3_ALRM_SEC_LEN);
	if (ret) {
		dev_err(dev, "%s: reading alarm section failed (%d)\n",
			__func__, ret);
		return ret;
	}

	alarm_tm->tm_sec  = 0;
	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
	alarm_tm->tm_wday = -1;

	/*
	 * The alarm section does not store year/month. We use the ones in rtc
	 * section as a basis and increment month and then year if needed to get
	 * alarm after current time.
	 */
	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		return ret;

	alarm_tm->tm_year = rtc_tm.tm_year;
	alarm_tm->tm_mon = rtc_tm.tm_mon;

	rtc_secs = rtc_tm_to_time64(&rtc_tm);
	alarm_secs = rtc_tm_to_time64(alarm_tm);

	if (alarm_secs < rtc_secs) {
		if (alarm_tm->tm_mon == 11) {
			alarm_tm->tm_mon = 0;
			alarm_tm->tm_year += 1;
		} else {
			alarm_tm->tm_mon += 1;
		}
	}

	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
	if (ret) {
		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
			__func__, ret);
		return ret;
	}

	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);

	return 0;
}

/*
 * As the Alarm mechanism supported by the chip is only accurate to the
 * minute, we use the watchdog timer mechanism provided by timer A
 * (up to 256 seconds w/ a second accuracy) for low alarm values (below
 * 4 minutes). Otherwise, we use the common alarm mechanism provided
 * by the chip. In order for that to work, we keep track of currently
 * configured timer type via 'timer_alarm' flag in our private data
 * structure.
 */
static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	int ret;

	if (data->timer_alarm)
		ret = _abb5zes3_rtc_read_timer(dev, alarm);
	else
		ret = _abb5zes3_rtc_read_alarm(dev, alarm);

	return ret;
}

/*
 * Set alarm using chip alarm mechanism. It is only accurate to the
 * minute (not the second). The function expects alarm interrupt to
 * be disabled.
 */
static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time *alarm_tm = &alarm->time;
	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
	struct rtc_time rtc_tm;
	int ret, enable = 1;

	if (!alarm->enabled) {
		enable = 0;
	} else {
		unsigned long rtc_secs, alarm_secs;

		/*
		 * Chip only support alarms up to one month in the future. Let's
		 * return an error if we get something after that limit.
		 * Comparison is done by incrementing rtc_tm month field by one
		 * and checking alarm value is still below.
		 */
		ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
		if (ret)
			return ret;

		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
			rtc_tm.tm_mon = 0;
			rtc_tm.tm_year += 1;
		} else {
			rtc_tm.tm_mon += 1;
		}

		rtc_secs = rtc_tm_to_time64(&rtc_tm);
		alarm_secs = rtc_tm_to_time64(alarm_tm);

		if (alarm_secs > rtc_secs) {
			dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
				__func__, ret);
			return -EINVAL;
		}
	}

	/*
	 * Program all alarm registers but DW one. For each register, setting
	 * MSB to 0 enables associated alarm.
	 */
	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */

	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
				ABB5ZES3_ALRM_SEC_LEN);
	if (ret < 0) {
		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Record currently configured alarm is not a timer */
	data->timer_alarm = 0;

	/* Enable or disable alarm interrupt generation */
	return _abb5zes3_rtc_update_alarm(dev, enable);
}

/*
 * Set alarm using timer watchdog (via timer A) mechanism. The function expects
 * timer A interrupt to be disabled.
 */
static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
				   u8 secs)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
	int ret = 0;

	/* Program given number of seconds to Timer A registers */
	sec_to_timer_a(secs, &regs[0], &regs[1]);
	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
				ABB5ZES3_TIMA_SEC_LEN);
	if (ret < 0) {
		dev_err(dev, "%s: writing timer section failed\n", __func__);
		return ret;
	}

	/* Configure Timer A as a watchdog timer */
	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
	if (ret)
		dev_err(dev, "%s: failed to update timer\n", __func__);

	/* Record currently configured alarm is a timer */
	data->timer_alarm = 1;

	/* Enable or disable timer interrupt generation */
	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
}

/*
 * The chip has an alarm which is only accurate to the minute. In order to
 * handle alarms below that limit, we use the watchdog timer function of
 * timer A. More precisely, the timer method is used for alarms below 240
 * seconds.
 */
static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct rtc_time *alarm_tm = &alarm->time;
	unsigned long rtc_secs, alarm_secs;
	struct rtc_time rtc_tm;
	int ret;

	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
	if (ret)
		return ret;

	rtc_secs = rtc_tm_to_time64(&rtc_tm);
	alarm_secs = rtc_tm_to_time64(alarm_tm);

	/* Let's first disable both the alarm and the timer interrupts */
	ret = _abb5zes3_rtc_update_alarm(dev, false);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
			ret);
		return ret;
	}
	ret = _abb5zes3_rtc_update_timer(dev, false);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
			ret);
		return ret;
	}

	data->timer_alarm = 0;

	/*
	 * Let's now configure the alarm; if we are expected to ring in
	 * more than 240s, then we setup an alarm. Otherwise, a timer.
	 */
	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
		ret = _abb5zes3_rtc_set_timer(dev, alarm,
					      alarm_secs - rtc_secs);
	else
		ret = _abb5zes3_rtc_set_alarm(dev, alarm);

	if (ret)
		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
			ret);

	return ret;
}

/* Enable or disable battery low irq generation */
static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
						       bool enable)
{
	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
				  ABB5ZES3_REG_CTRL3_BLIE,
				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
}

/*
 * Check current RTC status and enable/disable what needs to be. Return 0 if
 * everything went ok and a negative value upon error.
 */
static int abb5zes3_rtc_check_setup(struct device *dev)
{
	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
	struct regmap *regmap = data->regmap;
	unsigned int reg;
	int ret;
	u8 mask;

	/*
	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
	 * is disabled here to prevent polluting the interrupt line and
	 * uselessly triggering the IRQ handler we install for alarm and battery
	 * low events. Note: this is done before clearing int. status below
	 * in this function.
	 * We also disable all timers and set timer interrupt to permanent (not
	 * pulsed).
	 */
	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
				 ABB5ZES3_REG_TIM_CLK_COF0 |
				 ABB5ZES3_REG_TIM_CLK_COF1 |
				 ABB5ZES3_REG_TIM_CLK_COF2);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
			__func__, ret);
		return ret;
	}

	/*
	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
	 * individually by clearing/setting MSB of each associated register. So,
	 * we set all alarm enable bits to disable current alarm setting.
	 */
	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
	if (ret < 0) {
		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
			__func__, ret);
		return ret;
	}

	/*
	 * Set Control 2 register (timer int. disabled, alarm status cleared).
	 * WTAF is read-only and cleared automatically by reading the register.
	 */
	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
		ABB5ZES3_REG_CTRL2_CTAF);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
			__func__, ret);
		return ret;
	}

	/*
	 * Enable battery low detection function and battery switchover function
	 * (standard mode). Disable associated interrupts. Clear battery
	 * switchover flag but not battery low flag. The latter is checked
	 * later below.
	 */
	mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 |
		ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE |
		ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
	if (ret < 0) {
		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
			__func__, ret);
		return ret;
	}

	/* Check oscillator integrity flag */
	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
	if (ret < 0) {
		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
			__func__, ret);
		return ret;
	}

	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
		dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
	}

	/*
	 * Check battery low flag at startup: this allows reporting battery
	 * is low at startup when IRQ line is not connected. Note: we record
	 * current status to avoid reenabling this interrupt later in probe
	 * function if battery is low.
	 */
	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
	if (ret < 0) {
		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
			__func__, ret);
		return ret;
	}

	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
	if (data->battery_low) {
		dev_err(dev, "RTC battery is low; please, consider changing it!\n");

		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
		if (ret)
			dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
				__func__, ret);
	}

	return ret;
}

static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
					 unsigned int enable)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	int ret = 0;

	if (rtc_data->irq) {
		if (rtc_data->timer_alarm)
			ret = _abb5zes3_rtc_update_timer(dev, enable);
		else
			ret = _abb5zes3_rtc_update_alarm(dev, enable);
	}

	return ret;
}

static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
{
	struct i2c_client *client = data;
	struct device *dev = &client->dev;
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
	struct rtc_device *rtc = rtc_data->rtc;
	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
	int ret, handled = IRQ_NONE;

	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
			       ABB5ZES3_CTRL_SEC_LEN);
	if (ret) {
		dev_err(dev, "%s: unable to read control section (%d)!\n",
			__func__, ret);
		return handled;
	}

	/*
	 * Check battery low detection flag and disable battery low interrupt
	 * generation if flag is set (interrupt can only be cleared when
	 * battery is replaced).
	 */
	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
		dev_err(dev, "RTC battery is low; please change it!\n");

		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);

		handled = IRQ_HANDLED;
	}

	/* Check alarm flag */
	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
		dev_dbg(dev, "RTC alarm!\n");

		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);

		/* Acknowledge and disable the alarm */
		_abb5zes3_rtc_clear_alarm(dev);
		_abb5zes3_rtc_update_alarm(dev, 0);

		handled = IRQ_HANDLED;
	}

	/* Check watchdog Timer A flag */
	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
		dev_dbg(dev, "RTC timer!\n");

		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);

		/*
		 * Acknowledge and disable the alarm. Note: WTAF
		 * flag had been cleared when reading CTRL2
		 */
		_abb5zes3_rtc_update_timer(dev, 0);

		rtc_data->timer_alarm = 0;

		handled = IRQ_HANDLED;
	}

	return handled;
}

static const struct rtc_class_ops rtc_ops = {
	.read_time = _abb5zes3_rtc_read_time,
	.set_time = abb5zes3_rtc_set_time,
	.read_alarm = abb5zes3_rtc_read_alarm,
	.set_alarm = abb5zes3_rtc_set_alarm,
	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
};

static const struct regmap_config abb5zes3_rtc_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
};

static int abb5zes3_probe(struct i2c_client *client,
			  const struct i2c_device_id *id)
{
	struct abb5zes3_rtc_data *data = NULL;
	struct device *dev = &client->dev;
	struct regmap *regmap;
	int ret;

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
				     I2C_FUNC_SMBUS_BYTE_DATA |
				     I2C_FUNC_SMBUS_I2C_BLOCK))
		return -ENODEV;

	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
	if (IS_ERR(regmap)) {
		ret = PTR_ERR(regmap);
		dev_err(dev, "%s: regmap allocation failed: %d\n",
			__func__, ret);
		return ret;
	}

	ret = abb5zes3_i2c_validate_chip(regmap);
	if (ret)
		return ret;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->regmap = regmap;
	dev_set_drvdata(dev, data);

	ret = abb5zes3_rtc_check_setup(dev);
	if (ret)
		return ret;

	data->rtc = devm_rtc_allocate_device(dev);
	ret = PTR_ERR_OR_ZERO(data->rtc);
	if (ret) {
		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
			__func__, ret);
		return ret;
	}

	if (client->irq > 0) {
		ret = devm_request_threaded_irq(dev, client->irq, NULL,
						_abb5zes3_rtc_interrupt,
						IRQF_SHARED | IRQF_ONESHOT,
						DRV_NAME, client);
		if (!ret) {
			device_init_wakeup(dev, true);
			data->irq = client->irq;
			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
				client->irq);
		} else {
			dev_err(dev, "%s: irq %d unavailable (%d)\n",
				__func__, client->irq, ret);
			goto err;
		}
	}

	data->rtc->ops = &rtc_ops;
	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
	data->rtc->range_max = RTC_TIMESTAMP_END_2099;

	/* Enable battery low detection interrupt if battery not already low */
	if (!data->battery_low && data->irq) {
		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
		if (ret) {
			dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
				__func__, ret);
			goto err;
		}
	}

	ret = rtc_register_device(data->rtc);

err:
	if (ret && data->irq)
		device_init_wakeup(dev, false);
	return ret;
}

#ifdef CONFIG_PM_SLEEP
static int abb5zes3_rtc_suspend(struct device *dev)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		return enable_irq_wake(rtc_data->irq);

	return 0;
}

static int abb5zes3_rtc_resume(struct device *dev)
{
	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);

	if (device_may_wakeup(dev))
		return disable_irq_wake(rtc_data->irq);

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
			 abb5zes3_rtc_resume);

#ifdef CONFIG_OF
static const struct of_device_id abb5zes3_dt_match[] = {
	{ .compatible = "abracon,abb5zes3" },
	{ },
};
MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
#endif

static const struct i2c_device_id abb5zes3_id[] = {
	{ "abb5zes3", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, abb5zes3_id);

static struct i2c_driver abb5zes3_driver = {
	.driver = {
		.name = DRV_NAME,
		.pm = &abb5zes3_rtc_pm_ops,
		.of_match_table = of_match_ptr(abb5zes3_dt_match),
	},
	.probe	  = abb5zes3_probe,
	.id_table = abb5zes3_id,
};
module_i2c_driver(abb5zes3_driver);

MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
MODULE_LICENSE("GPL");