aboutsummaryrefslogtreecommitdiff
path: root/drivers/spi/spi-pxa2xx-dma.c
blob: 2fa7f4b4349295a714d7e145881d96250f9b3795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*
 * PXA2xx SPI DMA engine support.
 *
 * Copyright (C) 2013, Intel Corporation
 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/pxa2xx_ssp.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/spi/spi.h>
#include <linux/spi/pxa2xx_spi.h>

#include "spi-pxa2xx.h"

static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
					     bool error)
{
	struct spi_message *msg = drv_data->master->cur_msg;

	/*
	 * It is possible that one CPU is handling ROR interrupt and other
	 * just gets DMA completion. Calling pump_transfers() twice for the
	 * same transfer leads to problems thus we prevent concurrent calls
	 * by using ->dma_running.
	 */
	if (atomic_dec_and_test(&drv_data->dma_running)) {
		/*
		 * If the other CPU is still handling the ROR interrupt we
		 * might not know about the error yet. So we re-check the
		 * ROR bit here before we clear the status register.
		 */
		if (!error) {
			u32 status = pxa2xx_spi_read(drv_data, SSSR)
				     & drv_data->mask_sr;
			error = status & SSSR_ROR;
		}

		/* Clear status & disable interrupts */
		pxa2xx_spi_write(drv_data, SSCR1,
				 pxa2xx_spi_read(drv_data, SSCR1)
				 & ~drv_data->dma_cr1);
		write_SSSR_CS(drv_data, drv_data->clear_sr);
		if (!pxa25x_ssp_comp(drv_data))
			pxa2xx_spi_write(drv_data, SSTO, 0);

		if (error) {
			/* In case we got an error we disable the SSP now */
			pxa2xx_spi_write(drv_data, SSCR0,
					 pxa2xx_spi_read(drv_data, SSCR0)
					 & ~SSCR0_SSE);
			msg->status = -EIO;
		}

		spi_finalize_current_transfer(drv_data->master);
	}
}

static void pxa2xx_spi_dma_callback(void *data)
{
	pxa2xx_spi_dma_transfer_complete(data, false);
}

static struct dma_async_tx_descriptor *
pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
			   enum dma_transfer_direction dir,
			   struct spi_transfer *xfer)
{
	struct chip_data *chip =
		spi_get_ctldata(drv_data->master->cur_msg->spi);
	enum dma_slave_buswidth width;
	struct dma_slave_config cfg;
	struct dma_chan *chan;
	struct sg_table *sgt;
	int ret;

	switch (drv_data->n_bytes) {
	case 1:
		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
		break;
	case 2:
		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
		break;
	default:
		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
		break;
	}

	memset(&cfg, 0, sizeof(cfg));
	cfg.direction = dir;

	if (dir == DMA_MEM_TO_DEV) {
		cfg.dst_addr = drv_data->ssdr_physical;
		cfg.dst_addr_width = width;
		cfg.dst_maxburst = chip->dma_burst_size;

		sgt = &xfer->tx_sg;
		chan = drv_data->master->dma_tx;
	} else {
		cfg.src_addr = drv_data->ssdr_physical;
		cfg.src_addr_width = width;
		cfg.src_maxburst = chip->dma_burst_size;

		sgt = &xfer->rx_sg;
		chan = drv_data->master->dma_rx;
	}

	ret = dmaengine_slave_config(chan, &cfg);
	if (ret) {
		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
		return NULL;
	}

	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
}

irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
{
	u32 status;

	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
	if (status & SSSR_ROR) {
		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");

		dmaengine_terminate_async(drv_data->master->dma_rx);
		dmaengine_terminate_async(drv_data->master->dma_tx);

		pxa2xx_spi_dma_transfer_complete(drv_data, true);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
			   struct spi_transfer *xfer)
{
	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
	int err;

	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
	if (!tx_desc) {
		dev_err(&drv_data->pdev->dev,
			"failed to get DMA TX descriptor\n");
		err = -EBUSY;
		goto err_tx;
	}

	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
	if (!rx_desc) {
		dev_err(&drv_data->pdev->dev,
			"failed to get DMA RX descriptor\n");
		err = -EBUSY;
		goto err_rx;
	}

	/* We are ready when RX completes */
	rx_desc->callback = pxa2xx_spi_dma_callback;
	rx_desc->callback_param = drv_data;

	dmaengine_submit(rx_desc);
	dmaengine_submit(tx_desc);
	return 0;

err_rx:
	dmaengine_terminate_async(drv_data->master->dma_tx);
err_tx:
	return err;
}

void pxa2xx_spi_dma_start(struct driver_data *drv_data)
{
	dma_async_issue_pending(drv_data->master->dma_rx);
	dma_async_issue_pending(drv_data->master->dma_tx);

	atomic_set(&drv_data->dma_running, 1);
}

void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
{
	atomic_set(&drv_data->dma_running, 0);
	dmaengine_terminate_sync(drv_data->master->dma_rx);
	dmaengine_terminate_sync(drv_data->master->dma_tx);
}

int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
{
	struct pxa2xx_spi_master *pdata = drv_data->master_info;
	struct device *dev = &drv_data->pdev->dev;
	struct spi_controller *master = drv_data->master;
	dma_cap_mask_t mask;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	master->dma_tx = dma_request_slave_channel_compat(mask,
				pdata->dma_filter, pdata->tx_param, dev, "tx");
	if (!master->dma_tx)
		return -ENODEV;

	master->dma_rx = dma_request_slave_channel_compat(mask,
				pdata->dma_filter, pdata->rx_param, dev, "rx");
	if (!master->dma_rx) {
		dma_release_channel(master->dma_tx);
		master->dma_tx = NULL;
		return -ENODEV;
	}

	return 0;
}

void pxa2xx_spi_dma_release(struct driver_data *drv_data)
{
	struct spi_controller *master = drv_data->master;

	if (master->dma_rx) {
		dmaengine_terminate_sync(master->dma_rx);
		dma_release_channel(master->dma_rx);
		master->dma_rx = NULL;
	}
	if (master->dma_tx) {
		dmaengine_terminate_sync(master->dma_tx);
		dma_release_channel(master->dma_tx);
		master->dma_tx = NULL;
	}
}

int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
					   struct spi_device *spi,
					   u8 bits_per_word, u32 *burst_code,
					   u32 *threshold)
{
	struct pxa2xx_spi_chip *chip_info = spi->controller_data;

	/*
	 * If the DMA burst size is given in chip_info we use that,
	 * otherwise we use the default. Also we use the default FIFO
	 * thresholds for now.
	 */
	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
		   | SSCR1_TxTresh(TX_THRESH_DFLT);

	return 0;
}