aboutsummaryrefslogtreecommitdiff
path: root/drivers/spi/spi-sirf.c
blob: 7072276ad354b8498c50734a9b333f7952a2e022 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
/*
 * SPI bus driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/reset.h>

#define DRIVER_NAME "sirfsoc_spi"
/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE		BIT(16)
#define SIRFSOC_SPI_CMD_MODE		BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x)	((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR	BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE	BIT(31)

/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN	BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN	BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN	BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN	BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)

/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE		BIT(0)
#define SIRFSOC_SPI_TX_DONE		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA		BIT(4)
#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
#define SIRFSOC_SPI_FRM_END		BIT(10)

/* TX RX enable */
#define SIRFSOC_SPI_RX_EN		BIT(0)
#define SIRFSOC_SPI_TX_EN		BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)

#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)

/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
#define SIRFSOC_SPI_FIFO_START		BIT(1)

/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
/* USP related */
#define SIRFSOC_USP_SYNC_MODE		BIT(0)
#define SIRFSOC_USP_SLV_MODE		BIT(1)
#define SIRFSOC_USP_LSB			BIT(4)
#define SIRFSOC_USP_EN			BIT(5)
#define SIRFSOC_USP_RXD_FALLING_EDGE	BIT(6)
#define SIRFSOC_USP_TXD_FALLING_EDGE	BIT(7)
#define SIRFSOC_USP_CS_HIGH_VALID	BIT(9)
#define SIRFSOC_USP_SCLK_IDLE_STAT	BIT(11)
#define SIRFSOC_USP_TFS_IO_MODE		BIT(14)
#define SIRFSOC_USP_TFS_IO_INPUT	BIT(19)

#define SIRFSOC_USP_RXD_DELAY_LEN_MASK	0xFF
#define SIRFSOC_USP_TXD_DELAY_LEN_MASK	0xFF
#define SIRFSOC_USP_RXD_DELAY_OFFSET	0
#define SIRFSOC_USP_TXD_DELAY_OFFSET	8
#define SIRFSOC_USP_RXD_DELAY_LEN	1
#define SIRFSOC_USP_TXD_DELAY_LEN	1
#define SIRFSOC_USP_CLK_DIVISOR_OFFSET	21
#define SIRFSOC_USP_CLK_DIVISOR_MASK	0x3FF
#define SIRFSOC_USP_CLK_10_11_MASK	0x3
#define SIRFSOC_USP_CLK_10_11_OFFSET	30
#define SIRFSOC_USP_CLK_12_15_MASK	0xF
#define SIRFSOC_USP_CLK_12_15_OFFSET	24

#define SIRFSOC_USP_TX_DATA_OFFSET	0
#define SIRFSOC_USP_TX_SYNC_OFFSET	8
#define SIRFSOC_USP_TX_FRAME_OFFSET	16
#define SIRFSOC_USP_TX_SHIFTER_OFFSET	24

#define SIRFSOC_USP_TX_DATA_MASK	0xFF
#define SIRFSOC_USP_TX_SYNC_MASK	0xFF
#define SIRFSOC_USP_TX_FRAME_MASK	0xFF
#define SIRFSOC_USP_TX_SHIFTER_MASK	0x1F

#define SIRFSOC_USP_RX_DATA_OFFSET	0
#define SIRFSOC_USP_RX_FRAME_OFFSET	8
#define SIRFSOC_USP_RX_SHIFTER_OFFSET	16

#define SIRFSOC_USP_RX_DATA_MASK	0xFF
#define SIRFSOC_USP_RX_FRAME_MASK	0xFF
#define SIRFSOC_USP_RX_SHIFTER_MASK	0x1F
#define SIRFSOC_USP_CS_HIGH_VALUE	BIT(1)

#define SIRFSOC_SPI_FIFO_SC_OFFSET	0
#define SIRFSOC_SPI_FIFO_LC_OFFSET	10
#define SIRFSOC_SPI_FIFO_HC_OFFSET	20

#define SIRFSOC_SPI_FIFO_FULL_MASK(s)	(1 << ((s)->fifo_full_offset))
#define SIRFSOC_SPI_FIFO_EMPTY_MASK(s)	(1 << ((s)->fifo_full_offset + 1))
#define SIRFSOC_SPI_FIFO_THD_MASK(s)	((s)->fifo_size - 1)
#define SIRFSOC_SPI_FIFO_THD_OFFSET	2
#define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val)	\
	((val) & (s)->fifo_level_chk_mask)

enum sirf_spi_type {
	SIRF_REAL_SPI,
	SIRF_USP_SPI_P2,
	SIRF_USP_SPI_A7,
};

/*
 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 * due to the limitation of dma controller
 */

#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))

#define SIRFSOC_MAX_CMD_BYTES	4
#define SIRFSOC_SPI_DEFAULT_FRQ 1000000

struct sirf_spi_register {
	/*SPI and USP-SPI common*/
	u32 tx_rx_en;
	u32 int_en;
	u32 int_st;
	u32 tx_dma_io_ctrl;
	u32 tx_dma_io_len;
	u32 txfifo_ctrl;
	u32 txfifo_level_chk;
	u32 txfifo_op;
	u32 txfifo_st;
	u32 txfifo_data;
	u32 rx_dma_io_ctrl;
	u32 rx_dma_io_len;
	u32 rxfifo_ctrl;
	u32 rxfifo_level_chk;
	u32 rxfifo_op;
	u32 rxfifo_st;
	u32 rxfifo_data;
	/*SPI self*/
	u32 spi_ctrl;
	u32 spi_cmd;
	u32 spi_dummy_delay_ctrl;
	/*USP-SPI self*/
	u32 usp_mode1;
	u32 usp_mode2;
	u32 usp_tx_frame_ctrl;
	u32 usp_rx_frame_ctrl;
	u32 usp_pin_io_data;
	u32 usp_risc_dsp_mode;
	u32 usp_async_param_reg;
	u32 usp_irda_x_mode_div;
	u32 usp_sm_cfg;
	u32 usp_int_en_clr;
};

static const struct sirf_spi_register real_spi_register = {
	.tx_rx_en		= 0x8,
	.int_en		= 0xc,
	.int_st		= 0x10,
	.tx_dma_io_ctrl	= 0x100,
	.tx_dma_io_len	= 0x104,
	.txfifo_ctrl	= 0x108,
	.txfifo_level_chk	= 0x10c,
	.txfifo_op		= 0x110,
	.txfifo_st		= 0x114,
	.txfifo_data	= 0x118,
	.rx_dma_io_ctrl	= 0x120,
	.rx_dma_io_len	= 0x124,
	.rxfifo_ctrl	= 0x128,
	.rxfifo_level_chk	= 0x12c,
	.rxfifo_op		= 0x130,
	.rxfifo_st		= 0x134,
	.rxfifo_data	= 0x138,
	.spi_ctrl		= 0x0,
	.spi_cmd		= 0x4,
	.spi_dummy_delay_ctrl	= 0x144,
};

static const struct sirf_spi_register usp_spi_register = {
	.tx_rx_en		= 0x10,
	.int_en		= 0x14,
	.int_st		= 0x18,
	.tx_dma_io_ctrl	= 0x100,
	.tx_dma_io_len	= 0x104,
	.txfifo_ctrl	= 0x108,
	.txfifo_level_chk	= 0x10c,
	.txfifo_op		= 0x110,
	.txfifo_st		= 0x114,
	.txfifo_data	= 0x118,
	.rx_dma_io_ctrl	= 0x120,
	.rx_dma_io_len	= 0x124,
	.rxfifo_ctrl	= 0x128,
	.rxfifo_level_chk	= 0x12c,
	.rxfifo_op		= 0x130,
	.rxfifo_st		= 0x134,
	.rxfifo_data	= 0x138,
	.usp_mode1		= 0x0,
	.usp_mode2		= 0x4,
	.usp_tx_frame_ctrl	= 0x8,
	.usp_rx_frame_ctrl	= 0xc,
	.usp_pin_io_data	= 0x1c,
	.usp_risc_dsp_mode	= 0x20,
	.usp_async_param_reg	= 0x24,
	.usp_irda_x_mode_div	= 0x28,
	.usp_sm_cfg		= 0x2c,
	.usp_int_en_clr		= 0x140,
};

struct sirfsoc_spi {
	struct spi_bitbang bitbang;
	struct completion rx_done;
	struct completion tx_done;

	void __iomem *base;
	u32 ctrl_freq;  /* SPI controller clock speed */
	struct clk *clk;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	/* place received word into rx buffer */
	void (*rx_word) (struct sirfsoc_spi *);
	/* get word from tx buffer for sending */
	void (*tx_word) (struct sirfsoc_spi *);

	/* number of words left to be tranmitted/received */
	unsigned int left_tx_word;
	unsigned int left_rx_word;

	/* rx & tx DMA channels */
	struct dma_chan *rx_chan;
	struct dma_chan *tx_chan;
	dma_addr_t src_start;
	dma_addr_t dst_start;
	int word_width; /* in bytes */

	/*
	 * if tx size is not more than 4 and rx size is NULL, use
	 * command model
	 */
	bool	tx_by_cmd;
	bool	hw_cs;
	enum sirf_spi_type type;
	const struct sirf_spi_register *regs;
	unsigned int fifo_size;
	/* fifo empty offset is (fifo full offset + 1)*/
	unsigned int fifo_full_offset;
	/* fifo_level_chk_mask is (fifo_size/4 - 1) */
	unsigned int fifo_level_chk_mask;
	unsigned int dat_max_frm_len;
};

struct sirf_spi_comp_data {
	const struct sirf_spi_register *regs;
	enum sirf_spi_type type;
	unsigned int dat_max_frm_len;
	unsigned int fifo_size;
	void (*hwinit)(struct sirfsoc_spi *sspi);
};

static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi)
{
	/* reset USP and let USP can operate */
	writel(readl(sspi->base + sspi->regs->usp_mode1) &
		~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
	writel(readl(sspi->base + sspi->regs->usp_mode1) |
		SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
}

static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data;
	u8 *rx = sspi->rx;

	data = readl(sspi->base + sspi->regs->rxfifo_data);

	if (rx) {
		*rx++ = (u8) data;
		sspi->rx = rx;
	}

	sspi->left_rx_word--;
}

static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u8 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}
	writel(data, sspi->base + sspi->regs->txfifo_data);
	sspi->left_tx_word--;
}

static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data;
	u16 *rx = sspi->rx;

	data = readl(sspi->base + sspi->regs->rxfifo_data);

	if (rx) {
		*rx++ = (u16) data;
		sspi->rx = rx;
	}

	sspi->left_rx_word--;
}

static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u16 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + sspi->regs->txfifo_data);
	sspi->left_tx_word--;
}

static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data;
	u32 *rx = sspi->rx;

	data = readl(sspi->base + sspi->regs->rxfifo_data);

	if (rx) {
		*rx++ = (u32) data;
		sspi->rx = rx;
	}

	sspi->left_rx_word--;

}

static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u32 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + sspi->regs->txfifo_data);
	sspi->left_tx_word--;
}

static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
	struct sirfsoc_spi *sspi = dev_id;
	u32 spi_stat;

	spi_stat = readl(sspi->base + sspi->regs->int_st);
	if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI
		&& (spi_stat & SIRFSOC_SPI_FRM_END)) {
		complete(&sspi->tx_done);
		writel(0x0, sspi->base + sspi->regs->int_en);
		writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
		return IRQ_HANDLED;
	}
	/* Error Conditions */
	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
		complete(&sspi->tx_done);
		complete(&sspi->rx_done);
		switch (sspi->type) {
		case SIRF_REAL_SPI:
		case SIRF_USP_SPI_P2:
			writel(0x0, sspi->base + sspi->regs->int_en);
			break;
		case SIRF_USP_SPI_A7:
			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
			break;
		}
		writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
		return IRQ_HANDLED;
	}
	if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
		complete(&sspi->tx_done);
	while (!(readl(sspi->base + sspi->regs->int_st) &
		SIRFSOC_SPI_RX_IO_DMA))
		cpu_relax();
	complete(&sspi->rx_done);
	switch (sspi->type) {
	case SIRF_REAL_SPI:
	case SIRF_USP_SPI_P2:
		writel(0x0, sspi->base + sspi->regs->int_en);
		break;
	case SIRF_USP_SPI_A7:
		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
		break;
	}
	writel(readl(sspi->base + sspi->regs->int_st),
			sspi->base + sspi->regs->int_st);

	return IRQ_HANDLED;
}

static void spi_sirfsoc_dma_fini_callback(void *data)
{
	struct completion *dma_complete = data;

	complete(dma_complete);
}

static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
	struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	u32 cmd;

	sspi = spi_master_get_devdata(spi->master);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
	memcpy(&cmd, sspi->tx, t->len);
	if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
		cmd = cpu_to_be32(cmd) >>
			((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
	if (sspi->word_width == 2 && t->len == 4 &&
			(!(spi->mode & SPI_LSB_FIRST)))
		cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
	writel(cmd, sspi->base + sspi->regs->spi_cmd);
	writel(SIRFSOC_SPI_FRM_END_INT_EN,
		sspi->base + sspi->regs->int_en);
	writel(SIRFSOC_SPI_CMD_TX_EN,
		sspi->base + sspi->regs->tx_rx_en);
	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
		dev_err(&spi->dev, "cmd transfer timeout\n");
		return;
	}
	sspi->left_rx_word -= t->len;
}

static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
	struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
	int timeout = t->len * 10;

	sspi = spi_master_get_devdata(spi->master);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
	switch (sspi->type) {
	case SIRF_REAL_SPI:
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->rxfifo_op);
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->txfifo_op);
		writel(0, sspi->base + sspi->regs->int_en);
		break;
	case SIRF_USP_SPI_P2:
		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
		writel(0x0, sspi->base + sspi->regs->txfifo_op);
		writel(0, sspi->base + sspi->regs->int_en);
		break;
	case SIRF_USP_SPI_A7:
		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
		writel(0x0, sspi->base + sspi->regs->txfifo_op);
		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
		break;
	}
	writel(readl(sspi->base + sspi->regs->int_st),
		sspi->base + sspi->regs->int_st);
	if (sspi->left_tx_word < sspi->dat_max_frm_len) {
		switch (sspi->type) {
		case SIRF_REAL_SPI:
			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
				SIRFSOC_SPI_ENA_AUTO_CLR |
				SIRFSOC_SPI_MUL_DAT_MODE,
				sspi->base + sspi->regs->spi_ctrl);
			writel(sspi->left_tx_word - 1,
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(sspi->left_tx_word - 1,
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		case SIRF_USP_SPI_P2:
		case SIRF_USP_SPI_A7:
			/*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/
			writel(sspi->left_tx_word * sspi->word_width,
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(sspi->left_tx_word * sspi->word_width,
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		}
	} else {
		if (sspi->type == SIRF_REAL_SPI)
			writel(readl(sspi->base + sspi->regs->spi_ctrl),
				sspi->base + sspi->regs->spi_ctrl);
		writel(0, sspi->base + sspi->regs->tx_dma_io_len);
		writel(0, sspi->base + sspi->regs->rx_dma_io_len);
	}
	sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
					(t->tx_buf != t->rx_buf) ?
					DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
	rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
		sspi->dst_start, t->len, DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	rx_desc->callback = spi_sirfsoc_dma_fini_callback;
	rx_desc->callback_param = &sspi->rx_done;

	sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
					(t->tx_buf != t->rx_buf) ?
					DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
	tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
		sspi->src_start, t->len, DMA_MEM_TO_DEV,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	tx_desc->callback = spi_sirfsoc_dma_fini_callback;
	tx_desc->callback_param = &sspi->tx_done;

	dmaengine_submit(tx_desc);
	dmaengine_submit(rx_desc);
	dma_async_issue_pending(sspi->tx_chan);
	dma_async_issue_pending(sspi->rx_chan);
	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
			sspi->base + sspi->regs->tx_rx_en);
	if (sspi->type == SIRF_USP_SPI_P2 ||
		sspi->type == SIRF_USP_SPI_A7) {
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->rxfifo_op);
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->txfifo_op);
	}
	if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
		dev_err(&spi->dev, "transfer timeout\n");
		dmaengine_terminate_all(sspi->rx_chan);
	} else
		sspi->left_rx_word = 0;
	/*
	 * we only wait tx-done event if transferring by DMA. for PIO,
	 * we get rx data by writing tx data, so if rx is done, tx has
	 * done earlier
	 */
	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
		dev_err(&spi->dev, "transfer timeout\n");
		if (sspi->type == SIRF_USP_SPI_P2 ||
			sspi->type == SIRF_USP_SPI_A7)
			writel(0, sspi->base + sspi->regs->tx_rx_en);
		dmaengine_terminate_all(sspi->tx_chan);
	}
	dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
	dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
	/* TX, RX FIFO stop */
	writel(0, sspi->base + sspi->regs->rxfifo_op);
	writel(0, sspi->base + sspi->regs->txfifo_op);
	if (sspi->left_tx_word >= sspi->dat_max_frm_len)
		writel(0, sspi->base + sspi->regs->tx_rx_en);
	if (sspi->type == SIRF_USP_SPI_P2 ||
		sspi->type == SIRF_USP_SPI_A7)
		writel(0, sspi->base + sspi->regs->tx_rx_en);
}

static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
		struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	unsigned int data_units;

	sspi = spi_master_get_devdata(spi->master);
	do {
		writel(SIRFSOC_SPI_FIFO_RESET,
			sspi->base + sspi->regs->rxfifo_op);
		writel(SIRFSOC_SPI_FIFO_RESET,
			sspi->base + sspi->regs->txfifo_op);
		switch (sspi->type) {
		case SIRF_USP_SPI_P2:
			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
			writel(0x0, sspi->base + sspi->regs->txfifo_op);
			writel(0, sspi->base + sspi->regs->int_en);
			writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
			writel(min((sspi->left_tx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(min((sspi->left_rx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		case SIRF_USP_SPI_A7:
			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
			writel(0x0, sspi->base + sspi->regs->txfifo_op);
			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
			writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
			writel(min((sspi->left_tx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(min((sspi->left_rx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		case SIRF_REAL_SPI:
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->rxfifo_op);
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->txfifo_op);
			writel(0, sspi->base + sspi->regs->int_en);
			writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
				SIRFSOC_SPI_MUL_DAT_MODE |
				SIRFSOC_SPI_ENA_AUTO_CLR,
				sspi->base + sspi->regs->spi_ctrl);
			data_units = sspi->fifo_size / sspi->word_width;
			writel(min(sspi->left_tx_word, data_units) - 1,
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(min(sspi->left_rx_word, data_units) - 1,
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		}
		while (!((readl(sspi->base + sspi->regs->txfifo_st)
			& SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) &&
			sspi->left_tx_word)
			sspi->tx_word(sspi);
		writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
			SIRFSOC_SPI_TX_UFLOW_INT_EN |
			SIRFSOC_SPI_RX_OFLOW_INT_EN |
			SIRFSOC_SPI_RX_IO_DMA_INT_EN,
			sspi->base + sspi->regs->int_en);
		writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
			sspi->base + sspi->regs->tx_rx_en);
		if (sspi->type == SIRF_USP_SPI_P2 ||
			sspi->type == SIRF_USP_SPI_A7) {
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->rxfifo_op);
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->txfifo_op);
		}
		if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
			!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
			dev_err(&spi->dev, "transfer timeout\n");
			if (sspi->type == SIRF_USP_SPI_P2 ||
				sspi->type == SIRF_USP_SPI_A7)
				writel(0, sspi->base + sspi->regs->tx_rx_en);
			break;
		}
		while (!((readl(sspi->base + sspi->regs->rxfifo_st)
			& SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) &&
			sspi->left_rx_word)
			sspi->rx_word(sspi);
		if (sspi->type == SIRF_USP_SPI_P2 ||
			sspi->type == SIRF_USP_SPI_A7)
			writel(0, sspi->base + sspi->regs->tx_rx_en);
		writel(0, sspi->base + sspi->regs->rxfifo_op);
		writel(0, sspi->base + sspi->regs->txfifo_op);
	} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
}

static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;

	sspi = spi_master_get_devdata(spi->master);
	sspi->tx = t->tx_buf;
	sspi->rx = t->rx_buf;
	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
	reinit_completion(&sspi->rx_done);
	reinit_completion(&sspi->tx_done);
	/*
	 * in the transfer, if transfer data using command register with rx_buf
	 * null, just fill command data into command register and wait for its
	 * completion.
	 */
	if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd)
		spi_sirfsoc_cmd_transfer(spi, t);
	else if (IS_DMA_VALID(t))
		spi_sirfsoc_dma_transfer(spi, t);
	else
		spi_sirfsoc_pio_transfer(spi, t);

	return t->len - sspi->left_rx_word * sspi->word_width;
}

static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);

	if (sspi->hw_cs) {
		u32 regval;

		switch (sspi->type) {
		case SIRF_REAL_SPI:
			regval = readl(sspi->base + sspi->regs->spi_ctrl);
			switch (value) {
			case BITBANG_CS_ACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval |= SIRFSOC_SPI_CS_IO_OUT;
				else
					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
				break;
			case BITBANG_CS_INACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
				else
					regval |= SIRFSOC_SPI_CS_IO_OUT;
				break;
			}
			writel(regval, sspi->base + sspi->regs->spi_ctrl);
			break;
		case SIRF_USP_SPI_P2:
		case SIRF_USP_SPI_A7:
			regval = readl(sspi->base +
					sspi->regs->usp_pin_io_data);
			switch (value) {
			case BITBANG_CS_ACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
				else
					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
				break;
			case BITBANG_CS_INACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
				else
					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
				break;
			}
			writel(regval,
				sspi->base + sspi->regs->usp_pin_io_data);
			break;
		}
	} else {
		switch (value) {
		case BITBANG_CS_ACTIVE:
			gpio_direction_output(spi->cs_gpio,
					spi->mode & SPI_CS_HIGH ? 1 : 0);
			break;
		case BITBANG_CS_INACTIVE:
			gpio_direction_output(spi->cs_gpio,
					spi->mode & SPI_CS_HIGH ? 0 : 1);
			break;
		}
	}
}

static int spi_sirfsoc_config_mode(struct spi_device *spi)
{
	struct sirfsoc_spi *sspi;
	u32 regval, usp_mode1;

	sspi = spi_master_get_devdata(spi->master);
	regval = readl(sspi->base + sspi->regs->spi_ctrl);
	usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1);
	if (!(spi->mode & SPI_CS_HIGH)) {
		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
		usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID;
	} else {
		regval &= ~SIRFSOC_SPI_CS_IDLE_STAT;
		usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID;
	}
	if (!(spi->mode & SPI_LSB_FIRST)) {
		regval |= SIRFSOC_SPI_TRAN_MSB;
		usp_mode1 &= ~SIRFSOC_USP_LSB;
	} else {
		regval &= ~SIRFSOC_SPI_TRAN_MSB;
		usp_mode1 |= SIRFSOC_USP_LSB;
	}
	if (spi->mode & SPI_CPOL) {
		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
		usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT;
	} else {
		regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT;
		usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT;
	}
	/*
	 * Data should be driven at least 1/2 cycle before the fetch edge
	 * to make sure that data gets stable at the fetch edge.
	 */
	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) {
		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
		usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE |
				SIRFSOC_USP_RXD_FALLING_EDGE);
	} else {
		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
		usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE |
				SIRFSOC_USP_TXD_FALLING_EDGE);
	}
	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
		SIRFSOC_SPI_FIFO_SC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
		SIRFSOC_SPI_FIFO_LC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
		SIRFSOC_SPI_FIFO_HC_OFFSET),
		sspi->base + sspi->regs->txfifo_level_chk);
	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
		SIRFSOC_SPI_FIFO_SC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
		SIRFSOC_SPI_FIFO_LC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
		SIRFSOC_SPI_FIFO_HC_OFFSET),
		sspi->base + sspi->regs->rxfifo_level_chk);
	/*
	 * it should never set to hardware cs mode because in hardware cs mode,
	 * cs signal can't controlled by driver.
	 */
	switch (sspi->type) {
	case SIRF_REAL_SPI:
		regval |= SIRFSOC_SPI_CS_IO_MODE;
		writel(regval, sspi->base + sspi->regs->spi_ctrl);
		break;
	case SIRF_USP_SPI_P2:
	case SIRF_USP_SPI_A7:
		usp_mode1 |= SIRFSOC_USP_SYNC_MODE;
		usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE;
		usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT;
		writel(usp_mode1, sspi->base + sspi->regs->usp_mode1);
		break;
	}

	return 0;
}

static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	u8 bits_per_word = 0;
	int hz = 0;
	u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2;

	sspi = spi_master_get_devdata(spi->master);

	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;

	usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1;
	if (regval > 0xFFFF || regval < 0) {
		dev_err(&spi->dev, "Speed %d not supported\n", hz);
		return -EINVAL;
	}
	switch (bits_per_word) {
	case 8:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
		sspi->rx_word = spi_sirfsoc_rx_word_u8;
		sspi->tx_word = spi_sirfsoc_tx_word_u8;
		break;
	case 12:
	case 16:
		regval |= (bits_per_word ==  12) ?
			SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
		sspi->rx_word = spi_sirfsoc_rx_word_u16;
		sspi->tx_word = spi_sirfsoc_tx_word_u16;
		break;
	case 32:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
		sspi->rx_word = spi_sirfsoc_rx_word_u32;
		sspi->tx_word = spi_sirfsoc_tx_word_u32;
		break;
	default:
		dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word);
		return -EINVAL;
	}
	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
	txfifo_ctrl = (((sspi->fifo_size / 2) &
			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
			(sspi->word_width >> 1);
	rxfifo_ctrl = (((sspi->fifo_size / 2) &
			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
			(sspi->word_width >> 1);
	writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl);
	writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl);
	if (sspi->type == SIRF_USP_SPI_P2 ||
		sspi->type == SIRF_USP_SPI_A7) {
		tx_frm_ctl = 0;
		tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK)
				<< SIRFSOC_USP_TX_DATA_OFFSET;
		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
				- 1) & SIRFSOC_USP_TX_SYNC_MASK) <<
				SIRFSOC_USP_TX_SYNC_OFFSET;
		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
				+ 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) <<
				SIRFSOC_USP_TX_FRAME_OFFSET;
		tx_frm_ctl |= ((bits_per_word - 1) &
				SIRFSOC_USP_TX_SHIFTER_MASK) <<
				SIRFSOC_USP_TX_SHIFTER_OFFSET;
		rx_frm_ctl = 0;
		rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK)
				<< SIRFSOC_USP_RX_DATA_OFFSET;
		rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN
				+ 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) <<
				SIRFSOC_USP_RX_FRAME_OFFSET;
		rx_frm_ctl |= ((bits_per_word - 1)
				& SIRFSOC_USP_RX_SHIFTER_MASK) <<
				SIRFSOC_USP_RX_SHIFTER_OFFSET;
		writel(tx_frm_ctl | (((usp_mode2 >> 10) &
			SIRFSOC_USP_CLK_10_11_MASK) <<
			SIRFSOC_USP_CLK_10_11_OFFSET),
			sspi->base + sspi->regs->usp_tx_frame_ctrl);
		writel(rx_frm_ctl | (((usp_mode2 >> 12) &
			SIRFSOC_USP_CLK_12_15_MASK) <<
			SIRFSOC_USP_CLK_12_15_OFFSET),
			sspi->base + sspi->regs->usp_rx_frame_ctrl);
		writel(readl(sspi->base + sspi->regs->usp_mode2) |
			((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) <<
			SIRFSOC_USP_CLK_DIVISOR_OFFSET) |
			(SIRFSOC_USP_RXD_DELAY_LEN <<
			 SIRFSOC_USP_RXD_DELAY_OFFSET) |
			(SIRFSOC_USP_TXD_DELAY_LEN <<
			 SIRFSOC_USP_TXD_DELAY_OFFSET),
			sspi->base + sspi->regs->usp_mode2);
	}
	if (sspi->type == SIRF_REAL_SPI)
		writel(regval, sspi->base + sspi->regs->spi_ctrl);
	spi_sirfsoc_config_mode(spi);
	if (sspi->type == SIRF_REAL_SPI) {
		if (t && t->tx_buf && !t->rx_buf &&
			(t->len <= SIRFSOC_MAX_CMD_BYTES)) {
			sspi->tx_by_cmd = true;
			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
				(SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
				SIRFSOC_SPI_CMD_MODE),
				sspi->base + sspi->regs->spi_ctrl);
		} else {
			sspi->tx_by_cmd = false;
			writel(readl(sspi->base + sspi->regs->spi_ctrl) &
				~SIRFSOC_SPI_CMD_MODE,
				sspi->base + sspi->regs->spi_ctrl);
		}
	}
	if (IS_DMA_VALID(t)) {
		/* Enable DMA mode for RX, TX */
		writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl);
		writel(SIRFSOC_SPI_RX_DMA_FLUSH,
			sspi->base + sspi->regs->rx_dma_io_ctrl);
	} else {
		/* Enable IO mode for RX, TX */
		writel(SIRFSOC_SPI_IO_MODE_SEL,
			sspi->base + sspi->regs->tx_dma_io_ctrl);
		writel(SIRFSOC_SPI_IO_MODE_SEL,
			sspi->base + sspi->regs->rx_dma_io_ctrl);
	}
	return 0;
}

static int spi_sirfsoc_setup(struct spi_device *spi)
{
	struct sirfsoc_spi *sspi;
	int ret = 0;

	sspi = spi_master_get_devdata(spi->master);
	if (spi->cs_gpio == -ENOENT)
		sspi->hw_cs = true;
	else {
		sspi->hw_cs = false;
		if (!spi_get_ctldata(spi)) {
			void *cs = kmalloc(sizeof(int), GFP_KERNEL);
			if (!cs) {
				ret = -ENOMEM;
				goto exit;
			}
			ret = gpio_is_valid(spi->cs_gpio);
			if (!ret) {
				dev_err(&spi->dev, "no valid gpio\n");
				ret = -ENOENT;
				goto exit;
			}
			ret = gpio_request(spi->cs_gpio, DRIVER_NAME);
			if (ret) {
				dev_err(&spi->dev, "failed to request gpio\n");
				goto exit;
			}
			spi_set_ctldata(spi, cs);
		}
	}
	spi_sirfsoc_config_mode(spi);
	spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE);
exit:
	return ret;
}

static void spi_sirfsoc_cleanup(struct spi_device *spi)
{
	if (spi_get_ctldata(spi)) {
		gpio_free(spi->cs_gpio);
		kfree(spi_get_ctldata(spi));
	}
}

static const struct sirf_spi_comp_data sirf_real_spi = {
	.regs = &real_spi_register,
	.type = SIRF_REAL_SPI,
	.dat_max_frm_len = 64 * 1024,
	.fifo_size = 256,
};

static const struct sirf_spi_comp_data sirf_usp_spi_p2 = {
	.regs = &usp_spi_register,
	.type = SIRF_USP_SPI_P2,
	.dat_max_frm_len = 1024 * 1024,
	.fifo_size = 128,
	.hwinit = sirfsoc_usp_hwinit,
};

static const struct sirf_spi_comp_data sirf_usp_spi_a7 = {
	.regs = &usp_spi_register,
	.type = SIRF_USP_SPI_A7,
	.dat_max_frm_len = 1024 * 1024,
	.fifo_size = 512,
	.hwinit = sirfsoc_usp_hwinit,
};

static const struct of_device_id spi_sirfsoc_of_match[] = {
	{ .compatible = "sirf,prima2-spi", .data = &sirf_real_spi},
	{ .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2},
	{ .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7},
	{}
};
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);

static int spi_sirfsoc_probe(struct platform_device *pdev)
{
	struct sirfsoc_spi *sspi;
	struct spi_master *master;
	struct resource *mem_res;
	struct sirf_spi_comp_data *spi_comp_data;
	int irq;
	int ret;
	const struct of_device_id *match;

	ret = device_reset(&pdev->dev);
	if (ret) {
		dev_err(&pdev->dev, "SPI reset failed!\n");
		return ret;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
		return -ENOMEM;
	}
	match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node);
	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);
	sspi->fifo_full_offset = ilog2(sspi->fifo_size);
	spi_comp_data = (struct sirf_spi_comp_data *)match->data;
	sspi->regs = spi_comp_data->regs;
	sspi->type = spi_comp_data->type;
	sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1;
	sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len;
	sspi->fifo_size = spi_comp_data->fifo_size;
	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
	if (IS_ERR(sspi->base)) {
		ret = PTR_ERR(sspi->base);
		goto free_master;
	}
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto free_master;
	}
	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
				DRIVER_NAME, sspi);
	if (ret)
		goto free_master;

	sspi->bitbang.master = master;
	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
	sspi->bitbang.master->setup = spi_sirfsoc_setup;
	sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
	master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;

	/* request DMA channels */
	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
	if (!sspi->rx_chan) {
		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
		ret = -ENODEV;
		goto free_master;
	}
	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
	if (!sspi->tx_chan) {
		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
		ret = -ENODEV;
		goto free_rx_dma;
	}

	sspi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sspi->clk)) {
		ret = PTR_ERR(sspi->clk);
		goto free_tx_dma;
	}
	clk_prepare_enable(sspi->clk);
	if (spi_comp_data->hwinit)
		spi_comp_data->hwinit(sspi);
	sspi->ctrl_freq = clk_get_rate(sspi->clk);

	init_completion(&sspi->rx_done);
	init_completion(&sspi->tx_done);

	ret = spi_bitbang_start(&sspi->bitbang);
	if (ret)
		goto free_clk;
	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);

	return 0;
free_clk:
	clk_disable_unprepare(sspi->clk);
	clk_put(sspi->clk);
free_tx_dma:
	dma_release_channel(sspi->tx_chan);
free_rx_dma:
	dma_release_channel(sspi->rx_chan);
free_master:
	spi_master_put(master);

	return ret;
}

static int  spi_sirfsoc_remove(struct platform_device *pdev)
{
	struct spi_master *master;
	struct sirfsoc_spi *sspi;

	master = platform_get_drvdata(pdev);
	sspi = spi_master_get_devdata(master);
	spi_bitbang_stop(&sspi->bitbang);
	clk_disable_unprepare(sspi->clk);
	clk_put(sspi->clk);
	dma_release_channel(sspi->rx_chan);
	dma_release_channel(sspi->tx_chan);
	spi_master_put(master);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int spi_sirfsoc_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

	clk_disable(sspi->clk);
	return 0;
}

static int spi_sirfsoc_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_enable(sspi->clk);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op);
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
			 spi_sirfsoc_resume);

static struct platform_driver spi_sirfsoc_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.pm     = &spi_sirfsoc_pm_ops,
		.of_match_table = spi_sirfsoc_of_match,
	},
	.probe = spi_sirfsoc_probe,
	.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>");
MODULE_LICENSE("GPL v2");