aboutsummaryrefslogtreecommitdiff
path: root/drivers/vfio/pci/vfio_pci_config.c
blob: 688691d9058dd98e134459fbaed507721ae507f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
/*
 * VFIO PCI config space virtualization
 *
 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
 *     Author: Alex Williamson <alex.williamson@redhat.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Derived from original vfio:
 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
 * Author: Tom Lyon, pugs@cisco.com
 */

/*
 * This code handles reading and writing of PCI configuration registers.
 * This is hairy because we want to allow a lot of flexibility to the
 * user driver, but cannot trust it with all of the config fields.
 * Tables determine which fields can be read and written, as well as
 * which fields are 'virtualized' - special actions and translations to
 * make it appear to the user that he has control, when in fact things
 * must be negotiated with the underlying OS.
 */

#include <linux/fs.h>
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <linux/vfio.h>
#include <linux/slab.h>

#include "vfio_pci_private.h"

#define PCI_CFG_SPACE_SIZE	256

/* Fake capability ID for standard config space */
#define PCI_CAP_ID_BASIC	0

#define is_bar(offset)	\
	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))

/*
 * Lengths of PCI Config Capabilities
 *   0: Removed from the user visible capability list
 *   FF: Variable length
 */
static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
	[PCI_CAP_ID_SATA]	= 0xFF,
	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
};

/*
 * Lengths of PCIe/PCI-X Extended Config Capabilities
 *   0: Removed or masked from the user visible capabilty list
 *   FF: Variable length
 */
static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
	[PCI_EXT_CAP_ID_VC]	=	0xFF,
	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
};

/*
 * Read/Write Permission Bits - one bit for each bit in capability
 * Any field can be read if it exists, but what is read depends on
 * whether the field is 'virtualized', or just pass thru to the
 * hardware.  Any virtualized field is also virtualized for writes.
 * Writes are only permitted if they have a 1 bit here.
 */
struct perm_bits {
	u8	*virt;		/* read/write virtual data, not hw */
	u8	*write;		/* writeable bits */
	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
			  struct perm_bits *perm, int offset, __le32 *val);
	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
			   struct perm_bits *perm, int offset, __le32 val);
};

#define	NO_VIRT		0
#define	ALL_VIRT	0xFFFFFFFFU
#define	NO_WRITE	0
#define	ALL_WRITE	0xFFFFFFFFU

static int vfio_user_config_read(struct pci_dev *pdev, int offset,
				 __le32 *val, int count)
{
	int ret = -EINVAL;
	u32 tmp_val = 0;

	switch (count) {
	case 1:
	{
		u8 tmp;
		ret = pci_user_read_config_byte(pdev, offset, &tmp);
		tmp_val = tmp;
		break;
	}
	case 2:
	{
		u16 tmp;
		ret = pci_user_read_config_word(pdev, offset, &tmp);
		tmp_val = tmp;
		break;
	}
	case 4:
		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
		break;
	}

	*val = cpu_to_le32(tmp_val);

	return pcibios_err_to_errno(ret);
}

static int vfio_user_config_write(struct pci_dev *pdev, int offset,
				  __le32 val, int count)
{
	int ret = -EINVAL;
	u32 tmp_val = le32_to_cpu(val);

	switch (count) {
	case 1:
		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
		break;
	case 2:
		ret = pci_user_write_config_word(pdev, offset, tmp_val);
		break;
	case 4:
		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
		break;
	}

	return pcibios_err_to_errno(ret);
}

static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
				    int count, struct perm_bits *perm,
				    int offset, __le32 *val)
{
	__le32 virt = 0;

	memcpy(val, vdev->vconfig + pos, count);

	memcpy(&virt, perm->virt + offset, count);

	/* Any non-virtualized bits? */
	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
		struct pci_dev *pdev = vdev->pdev;
		__le32 phys_val = 0;
		int ret;

		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
		if (ret)
			return ret;

		*val = (phys_val & ~virt) | (*val & virt);
	}

	return count;
}

static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
				     int count, struct perm_bits *perm,
				     int offset, __le32 val)
{
	__le32 virt = 0, write = 0;

	memcpy(&write, perm->write + offset, count);

	if (!write)
		return count; /* drop, no writable bits */

	memcpy(&virt, perm->virt + offset, count);

	/* Virtualized and writable bits go to vconfig */
	if (write & virt) {
		__le32 virt_val = 0;

		memcpy(&virt_val, vdev->vconfig + pos, count);

		virt_val &= ~(write & virt);
		virt_val |= (val & (write & virt));

		memcpy(vdev->vconfig + pos, &virt_val, count);
	}

	/* Non-virtualzed and writable bits go to hardware */
	if (write & ~virt) {
		struct pci_dev *pdev = vdev->pdev;
		__le32 phys_val = 0;
		int ret;

		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
		if (ret)
			return ret;

		phys_val &= ~(write & ~virt);
		phys_val |= (val & (write & ~virt));

		ret = vfio_user_config_write(pdev, pos, phys_val, count);
		if (ret)
			return ret;
	}

	return count;
}

/* Allow direct read from hardware, except for capability next pointer */
static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
				   int count, struct perm_bits *perm,
				   int offset, __le32 *val)
{
	int ret;

	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
	if (ret)
		return pcibios_err_to_errno(ret);

	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
		if (offset < 4)
			memcpy(val, vdev->vconfig + pos, count);
	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
		if (offset == PCI_CAP_LIST_ID && count > 1)
			memcpy(val, vdev->vconfig + pos,
			       min(PCI_CAP_FLAGS, count));
		else if (offset == PCI_CAP_LIST_NEXT)
			memcpy(val, vdev->vconfig + pos, 1);
	}

	return count;
}

/* Raw access skips any kind of virtualization */
static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	int ret;

	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
	if (ret)
		return ret;

	return count;
}

static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 *val)
{
	int ret;

	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
	if (ret)
		return pcibios_err_to_errno(ret);

	return count;
}

/* Virt access uses only virtualization */
static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
				  int count, struct perm_bits *perm,
				  int offset, __le32 val)
{
	memcpy(vdev->vconfig + pos, &val, count);
	return count;
}

static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 *val)
{
	memcpy(val, vdev->vconfig + pos, count);
	return count;
}

/* Default capability regions to read-only, no-virtualization */
static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
};
static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
};
/*
 * Default unassigned regions to raw read-write access.  Some devices
 * require this to function as they hide registers between the gaps in
 * config space (be2net).  Like MMIO and I/O port registers, we have
 * to trust the hardware isolation.
 */
static struct perm_bits unassigned_perms = {
	.readfn = vfio_raw_config_read,
	.writefn = vfio_raw_config_write
};

static struct perm_bits virt_perms = {
	.readfn = vfio_virt_config_read,
	.writefn = vfio_virt_config_write
};

static void free_perm_bits(struct perm_bits *perm)
{
	kfree(perm->virt);
	kfree(perm->write);
	perm->virt = NULL;
	perm->write = NULL;
}

static int alloc_perm_bits(struct perm_bits *perm, int size)
{
	/*
	 * Round up all permission bits to the next dword, this lets us
	 * ignore whether a read/write exceeds the defined capability
	 * structure.  We can do this because:
	 *  - Standard config space is already dword aligned
	 *  - Capabilities are all dword alinged (bits 0:1 of next reserved)
	 *  - Express capabilities defined as dword aligned
	 */
	size = round_up(size, 4);

	/*
	 * Zero state is
	 * - All Readable, None Writeable, None Virtualized
	 */
	perm->virt = kzalloc(size, GFP_KERNEL);
	perm->write = kzalloc(size, GFP_KERNEL);
	if (!perm->virt || !perm->write) {
		free_perm_bits(perm);
		return -ENOMEM;
	}

	perm->readfn = vfio_default_config_read;
	perm->writefn = vfio_default_config_write;

	return 0;
}

/*
 * Helper functions for filling in permission tables
 */
static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
{
	p->virt[off] = virt;
	p->write[off] = write;
}

/* Handle endian-ness - pci and tables are little-endian */
static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
{
	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
}

/* Handle endian-ness - pci and tables are little-endian */
static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
{
	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
}

/*
 * Restore the *real* BARs after we detect a FLR or backdoor reset.
 * (backdoor = some device specific technique that we didn't catch)
 */
static void vfio_bar_restore(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u32 *rbar = vdev->rbar;
	u16 cmd;
	int i;

	if (pdev->is_virtfn)
		return;

	pr_info("%s: %s reset recovery - restoring bars\n",
		__func__, dev_name(&pdev->dev));

	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
		pci_user_write_config_dword(pdev, i, *rbar);

	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);

	if (vdev->nointx) {
		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
		cmd |= PCI_COMMAND_INTX_DISABLE;
		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
	}
}

static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
{
	unsigned long flags = pci_resource_flags(pdev, bar);
	u32 val;

	if (flags & IORESOURCE_IO)
		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);

	val = PCI_BASE_ADDRESS_SPACE_MEMORY;

	if (flags & IORESOURCE_PREFETCH)
		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;

	if (flags & IORESOURCE_MEM_64)
		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;

	return cpu_to_le32(val);
}

/*
 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
 * to reflect the hardware capabilities.  This implements BAR sizing.
 */
static void vfio_bar_fixup(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	int i;
	__le32 *bar;
	u64 mask;

	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];

	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
		if (!pci_resource_start(pdev, i)) {
			*bar = 0; /* Unmapped by host = unimplemented to user */
			continue;
		}

		mask = ~(pci_resource_len(pdev, i) - 1);

		*bar &= cpu_to_le32((u32)mask);
		*bar |= vfio_generate_bar_flags(pdev, i);

		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
			bar++;
			*bar &= cpu_to_le32((u32)(mask >> 32));
			i++;
		}
	}

	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];

	/*
	 * NB. REGION_INFO will have reported zero size if we weren't able
	 * to read the ROM, but we still return the actual BAR size here if
	 * it exists (or the shadow ROM space).
	 */
	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
		mask |= PCI_ROM_ADDRESS_ENABLE;
		*bar &= cpu_to_le32((u32)mask);
	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
					IORESOURCE_ROM_SHADOW) {
		mask = ~(0x20000 - 1);
		mask |= PCI_ROM_ADDRESS_ENABLE;
		*bar &= cpu_to_le32((u32)mask);
	} else
		*bar = 0;

	vdev->bardirty = false;
}

static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
				  int count, struct perm_bits *perm,
				  int offset, __le32 *val)
{
	if (is_bar(offset)) /* pos == offset for basic config */
		vfio_bar_fixup(vdev);

	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);

	/* Mask in virtual memory enable for SR-IOV devices */
	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
		u32 tmp_val = le32_to_cpu(*val);

		tmp_val |= cmd & PCI_COMMAND_MEMORY;
		*val = cpu_to_le32(tmp_val);
	}

	return count;
}

/* Test whether BARs match the value we think they should contain */
static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
{
	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
	u32 bar;

	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
		if (vdev->rbar[i]) {
			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
			if (ret || vdev->rbar[i] != bar)
				return true;
		}
	}

	return false;
}

static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
				   int count, struct perm_bits *perm,
				   int offset, __le32 val)
{
	struct pci_dev *pdev = vdev->pdev;
	__le16 *virt_cmd;
	u16 new_cmd = 0;
	int ret;

	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];

	if (offset == PCI_COMMAND) {
		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
		u16 phys_cmd;

		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
		if (ret)
			return ret;

		new_cmd = le32_to_cpu(val);

		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);

		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
		new_io = !!(new_cmd & PCI_COMMAND_IO);

		/*
		 * If the user is writing mem/io enable (new_mem/io) and we
		 * think it's already enabled (virt_mem/io), but the hardware
		 * shows it disabled (phys_mem/io, then the device has
		 * undergone some kind of backdoor reset and needs to be
		 * restored before we allow it to enable the bars.
		 * SR-IOV devices will trigger this, but we catch them later
		 */
		if ((new_mem && virt_mem && !phys_mem) ||
		    (new_io && virt_io && !phys_io) ||
		    vfio_need_bar_restore(vdev))
			vfio_bar_restore(vdev);
	}

	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	/*
	 * Save current memory/io enable bits in vconfig to allow for
	 * the test above next time.
	 */
	if (offset == PCI_COMMAND) {
		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;

		*virt_cmd &= cpu_to_le16(~mask);
		*virt_cmd |= cpu_to_le16(new_cmd & mask);
	}

	/* Emulate INTx disable */
	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
		bool virt_intx_disable;

		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
				       PCI_COMMAND_INTX_DISABLE);

		if (virt_intx_disable && !vdev->virq_disabled) {
			vdev->virq_disabled = true;
			vfio_pci_intx_mask(vdev);
		} else if (!virt_intx_disable && vdev->virq_disabled) {
			vdev->virq_disabled = false;
			vfio_pci_intx_unmask(vdev);
		}
	}

	if (is_bar(offset))
		vdev->bardirty = true;

	return count;
}

/* Permissions for the Basic PCI Header */
static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
		return -ENOMEM;

	perm->readfn = vfio_basic_config_read;
	perm->writefn = vfio_basic_config_write;

	/* Virtualized for SR-IOV functions, which just have FFFF */
	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);

	/*
	 * Virtualize INTx disable, we use it internally for interrupt
	 * control and can emulate it for non-PCI 2.3 devices.
	 */
	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);

	/* Virtualize capability list, we might want to skip/disable */
	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);

	/* No harm to write */
	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);

	/* Virtualize all bars, can't touch the real ones */
	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);

	/* Allow us to adjust capability chain */
	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);

	/* Sometimes used by sw, just virtualize */
	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);

	/* Virtualize interrupt pin to allow hiding INTx */
	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);

	return 0;
}

static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 val)
{
	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	if (offset == PCI_PM_CTRL) {
		pci_power_t state;

		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
		case 0:
			state = PCI_D0;
			break;
		case 1:
			state = PCI_D1;
			break;
		case 2:
			state = PCI_D2;
			break;
		case 3:
			state = PCI_D3hot;
			break;
		}

		pci_set_power_state(vdev->pdev, state);
	}

	return count;
}

/* Permissions for the Power Management capability */
static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
		return -ENOMEM;

	perm->writefn = vfio_pm_config_write;

	/*
	 * We always virtualize the next field so we can remove
	 * capabilities from the chain if we want to.
	 */
	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * Power management is defined *per function*, so we can let
	 * the user change power state, but we trap and initiate the
	 * change ourselves, so the state bits are read-only.
	 */
	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
	return 0;
}

static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	struct pci_dev *pdev = vdev->pdev;
	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
	u16 addr;
	u32 data;

	/*
	 * Write through to emulation.  If the write includes the upper byte
	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
	 * have work to do.
	 */
	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
	    offset + count <= PCI_VPD_ADDR + 1)
		return count;

	addr = le16_to_cpu(*paddr);

	if (addr & PCI_VPD_ADDR_F) {
		data = le32_to_cpu(*pdata);
		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
			return count;
	} else {
		data = 0;
		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
			return count;
		*pdata = cpu_to_le32(data);
	}

	/*
	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
	 * signal completion.  If an error occurs above, we assume that not
	 * toggling this bit will induce a driver timeout.
	 */
	addr ^= PCI_VPD_ADDR_F;
	*paddr = cpu_to_le16(addr);

	return count;
}

/* Permissions for Vital Product Data capability */
static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
		return -ENOMEM;

	perm->writefn = vfio_vpd_config_write;

	/*
	 * We always virtualize the next field so we can remove
	 * capabilities from the chain if we want to.
	 */
	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * Both the address and data registers are virtualized to
	 * enable access through the pci_vpd_read/write functions
	 */
	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);

	return 0;
}

/* Permissions for PCI-X capability */
static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
{
	/* Alloc 24, but only 8 are used in v0 */
	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
		return -ENOMEM;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
	return 0;
}

/* Permissions for PCI Express capability */
static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
{
	/* Alloc larger of two possible sizes */
	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
		return -ENOMEM;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * Allow writes to device control fields (includes FLR!)
	 * but not to devctl_phantom which could confuse IOMMU
	 * or to the ARI bit in devctl2 which is set at probe time
	 */
	p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
	return 0;
}

/* Permissions for Advanced Function capability */
static int __init init_pci_cap_af_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
		return -ENOMEM;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
	p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
	return 0;
}

/* Permissions for Advanced Error Reporting extended capability */
static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
{
	u32 mask;

	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
		return -ENOMEM;

	/*
	 * Virtualize the first dword of all express capabilities
	 * because it includes the next pointer.  This lets us later
	 * remove capabilities from the chain if we need to.
	 */
	p_setd(perm, 0, ALL_VIRT, NO_WRITE);

	/* Writable bits mask */
	mask =	PCI_ERR_UNC_UND |		/* Undefined */
		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
		PCI_ERR_UNC_ACSV |		/* ACS Violation */
		PCI_ERR_UNC_INTN |		/* internal error */
		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);

	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);

	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
	return 0;
}

/* Permissions for Power Budgeting extended capability */
static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
{
	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
		return -ENOMEM;

	p_setd(perm, 0, ALL_VIRT, NO_WRITE);

	/* Writing the data selector is OK, the info is still read-only */
	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
	return 0;
}

/*
 * Initialize the shared permission tables
 */
void vfio_pci_uninit_perm_bits(void)
{
	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);

	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);

	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
}

int __init vfio_pci_init_perm_bits(void)
{
	int ret;

	/* Basic config space */
	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);

	/* Capabilities */
	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);

	/* Extended capabilities */
	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;

	if (ret)
		vfio_pci_uninit_perm_bits();

	return ret;
}

static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
{
	u8 cap;
	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
						 PCI_STD_HEADER_SIZEOF;
	cap = vdev->pci_config_map[pos];

	if (cap == PCI_CAP_ID_BASIC)
		return 0;

	/* XXX Can we have to abutting capabilities of the same type? */
	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
		pos--;

	return pos;
}

static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
				int count, struct perm_bits *perm,
				int offset, __le32 *val)
{
	/* Update max available queue size from msi_qmax */
	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
		__le16 *flags;
		int start;

		start = vfio_find_cap_start(vdev, pos);

		flags = (__le16 *)&vdev->vconfig[start];

		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
	}

	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
}

static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
				 int count, struct perm_bits *perm,
				 int offset, __le32 val)
{
	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
	if (count < 0)
		return count;

	/* Fixup and write configured queue size and enable to hardware */
	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
		__le16 *pflags;
		u16 flags;
		int start, ret;

		start = vfio_find_cap_start(vdev, pos);

		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];

		flags = le16_to_cpu(*pflags);

		/* MSI is enabled via ioctl */
		if  (!is_msi(vdev))
			flags &= ~PCI_MSI_FLAGS_ENABLE;

		/* Check queue size */
		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
			flags &= ~PCI_MSI_FLAGS_QSIZE;
			flags |= vdev->msi_qmax << 4;
		}

		/* Write back to virt and to hardware */
		*pflags = cpu_to_le16(flags);
		ret = pci_user_write_config_word(vdev->pdev,
						 start + PCI_MSI_FLAGS,
						 flags);
		if (ret)
			return pcibios_err_to_errno(ret);
	}

	return count;
}

/*
 * MSI determination is per-device, so this routine gets used beyond
 * initialization time. Don't add __init
 */
static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
{
	if (alloc_perm_bits(perm, len))
		return -ENOMEM;

	perm->readfn = vfio_msi_config_read;
	perm->writefn = vfio_msi_config_write;

	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);

	/*
	 * The upper byte of the control register is reserved,
	 * just setup the lower byte.
	 */
	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
	if (flags & PCI_MSI_FLAGS_64BIT) {
		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
		if (flags & PCI_MSI_FLAGS_MASKBIT) {
			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
		}
	} else {
		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
		if (flags & PCI_MSI_FLAGS_MASKBIT) {
			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
		}
	}
	return 0;
}

/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
{
	struct pci_dev *pdev = vdev->pdev;
	int len, ret;
	u16 flags;

	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
	if (ret)
		return pcibios_err_to_errno(ret);

	len = 10; /* Minimum size */
	if (flags & PCI_MSI_FLAGS_64BIT)
		len += 4;
	if (flags & PCI_MSI_FLAGS_MASKBIT)
		len += 10;

	if (vdev->msi_perm)
		return len;

	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
	if (!vdev->msi_perm)
		return -ENOMEM;

	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
	if (ret)
		return ret;

	return len;
}

/* Determine extended capability length for VC (2 & 9) and MFVC */
static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
{
	struct pci_dev *pdev = vdev->pdev;
	u32 tmp;
	int ret, evcc, phases, vc_arb;
	int len = PCI_CAP_VC_BASE_SIZEOF;

	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
	if (ret)
		return pcibios_err_to_errno(ret);

	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
	if (ret)
		return pcibios_err_to_errno(ret);

	if (tmp & PCI_VC_CAP2_128_PHASE)
		phases = 128;
	else if (tmp & PCI_VC_CAP2_64_PHASE)
		phases = 64;
	else if (tmp & PCI_VC_CAP2_32_PHASE)
		phases = 32;
	else
		phases = 0;

	vc_arb = phases * 4;

	/*
	 * Port arbitration tables are root & switch only;
	 * function arbitration tables are function 0 only.
	 * In either case, we'll never let user write them so
	 * we don't care how big they are
	 */
	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
	if (vc_arb) {
		len = round_up(len, 16);
		len += vc_arb / 8;
	}
	return len;
}

static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
{
	struct pci_dev *pdev = vdev->pdev;
	u32 dword;
	u16 word;
	u8 byte;
	int ret;

	switch (cap) {
	case PCI_CAP_ID_MSI:
		return vfio_msi_cap_len(vdev, pos);
	case PCI_CAP_ID_PCIX:
		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
		if (ret)
			return pcibios_err_to_errno(ret);

		if (PCI_X_CMD_VERSION(word)) {
			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
				/* Test for extended capabilities */
				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
						      &dword);
				vdev->extended_caps = (dword != 0);
			}
			return PCI_CAP_PCIX_SIZEOF_V2;
		} else
			return PCI_CAP_PCIX_SIZEOF_V0;
	case PCI_CAP_ID_VNDR:
		/* length follows next field */
		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		return byte;
	case PCI_CAP_ID_EXP:
		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
			/* Test for extended capabilities */
			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
			vdev->extended_caps = (dword != 0);
		}

		/* length based on version */
		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
		else
			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
	case PCI_CAP_ID_HT:
		ret = pci_read_config_byte(pdev, pos + 3, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		return (byte & HT_3BIT_CAP_MASK) ?
			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
	case PCI_CAP_ID_SATA:
		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		byte &= PCI_SATA_REGS_MASK;
		if (byte == PCI_SATA_REGS_INLINE)
			return PCI_SATA_SIZEOF_LONG;
		else
			return PCI_SATA_SIZEOF_SHORT;
	default:
		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
			dev_name(&pdev->dev), __func__, cap, pos);
	}

	return 0;
}

static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 byte;
	u32 dword;
	int ret;

	switch (ecap) {
	case PCI_EXT_CAP_ID_VNDR:
		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
		if (ret)
			return pcibios_err_to_errno(ret);

		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
	case PCI_EXT_CAP_ID_VC:
	case PCI_EXT_CAP_ID_VC9:
	case PCI_EXT_CAP_ID_MFVC:
		return vfio_vc_cap_len(vdev, epos);
	case PCI_EXT_CAP_ID_ACS:
		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		if (byte & PCI_ACS_EC) {
			int bits;

			ret = pci_read_config_byte(pdev,
						   epos + PCI_ACS_EGRESS_BITS,
						   &byte);
			if (ret)
				return pcibios_err_to_errno(ret);

			bits = byte ? round_up(byte, 32) : 256;
			return 8 + (bits / 8);
		}
		return 8;

	case PCI_EXT_CAP_ID_REBAR:
		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		byte &= PCI_REBAR_CTRL_NBAR_MASK;
		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;

		return 4 + (byte * 8);
	case PCI_EXT_CAP_ID_DPA:
		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
		if (ret)
			return pcibios_err_to_errno(ret);

		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
		return PCI_DPA_BASE_SIZEOF + byte + 1;
	case PCI_EXT_CAP_ID_TPH:
		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
		if (ret)
			return pcibios_err_to_errno(ret);

		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
			int sts;

			sts = dword & PCI_TPH_CAP_ST_MASK;
			sts >>= PCI_TPH_CAP_ST_SHIFT;
			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
		}
		return PCI_TPH_BASE_SIZEOF;
	default:
		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
			dev_name(&pdev->dev), __func__, ecap, epos);
	}

	return 0;
}

static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
				   int offset, int size)
{
	struct pci_dev *pdev = vdev->pdev;
	int ret = 0;

	/*
	 * We try to read physical config space in the largest chunks
	 * we can, assuming that all of the fields support dword access.
	 * pci_save_state() makes this same assumption and seems to do ok.
	 */
	while (size) {
		int filled;

		if (size >= 4 && !(offset % 4)) {
			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
			u32 dword;

			ret = pci_read_config_dword(pdev, offset, &dword);
			if (ret)
				return ret;
			*dwordp = cpu_to_le32(dword);
			filled = 4;
		} else if (size >= 2 && !(offset % 2)) {
			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
			u16 word;

			ret = pci_read_config_word(pdev, offset, &word);
			if (ret)
				return ret;
			*wordp = cpu_to_le16(word);
			filled = 2;
		} else {
			u8 *byte = &vdev->vconfig[offset];
			ret = pci_read_config_byte(pdev, offset, byte);
			if (ret)
				return ret;
			filled = 1;
		}

		offset += filled;
		size -= filled;
	}

	return ret;
}

static int vfio_cap_init(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 *map = vdev->pci_config_map;
	u16 status;
	u8 pos, *prev, cap;
	int loops, ret, caps = 0;

	/* Any capabilities? */
	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
	if (ret)
		return ret;

	if (!(status & PCI_STATUS_CAP_LIST))
		return 0; /* Done */

	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
	if (ret)
		return ret;

	/* Mark the previous position in case we want to skip a capability */
	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];

	/* We can bound our loop, capabilities are dword aligned */
	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
	while (pos && loops--) {
		u8 next;
		int i, len = 0;

		ret = pci_read_config_byte(pdev, pos, &cap);
		if (ret)
			return ret;

		ret = pci_read_config_byte(pdev,
					   pos + PCI_CAP_LIST_NEXT, &next);
		if (ret)
			return ret;

		if (cap <= PCI_CAP_ID_MAX) {
			len = pci_cap_length[cap];
			if (len == 0xFF) { /* Variable length */
				len = vfio_cap_len(vdev, cap, pos);
				if (len < 0)
					return len;
			}
		}

		if (!len) {
			pr_info("%s: %s hiding cap 0x%x\n",
				__func__, dev_name(&pdev->dev), cap);
			*prev = next;
			pos = next;
			continue;
		}

		/* Sanity check, do we overlap other capabilities? */
		for (i = 0; i < len; i++) {
			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
				continue;

			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
				__func__, dev_name(&pdev->dev),
				pos + i, map[pos + i], cap);
		}

		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);

		memset(map + pos, cap, len);
		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
		if (ret)
			return ret;

		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
		pos = next;
		caps++;
	}

	/* If we didn't fill any capabilities, clear the status flag */
	if (!caps) {
		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
	}

	return 0;
}

static int vfio_ecap_init(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 *map = vdev->pci_config_map;
	u16 epos;
	__le32 *prev = NULL;
	int loops, ret, ecaps = 0;

	if (!vdev->extended_caps)
		return 0;

	epos = PCI_CFG_SPACE_SIZE;

	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;

	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
		u32 header;
		u16 ecap;
		int i, len = 0;
		bool hidden = false;

		ret = pci_read_config_dword(pdev, epos, &header);
		if (ret)
			return ret;

		ecap = PCI_EXT_CAP_ID(header);

		if (ecap <= PCI_EXT_CAP_ID_MAX) {
			len = pci_ext_cap_length[ecap];
			if (len == 0xFF) {
				len = vfio_ext_cap_len(vdev, ecap, epos);
				if (len < 0)
					return ret;
			}
		}

		if (!len) {
			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
				__func__, dev_name(&pdev->dev), ecap, epos);

			/* If not the first in the chain, we can skip over it */
			if (prev) {
				u32 val = epos = PCI_EXT_CAP_NEXT(header);
				*prev &= cpu_to_le32(~(0xffcU << 20));
				*prev |= cpu_to_le32(val << 20);
				continue;
			}

			/*
			 * Otherwise, fill in a placeholder, the direct
			 * readfn will virtualize this automatically
			 */
			len = PCI_CAP_SIZEOF;
			hidden = true;
		}

		for (i = 0; i < len; i++) {
			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
				continue;

			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
				__func__, dev_name(&pdev->dev),
				epos + i, map[epos + i], ecap);
		}

		/*
		 * Even though ecap is 2 bytes, we're currently a long way
		 * from exceeding 1 byte capabilities.  If we ever make it
		 * up to 0xFE we'll need to up this to a two-byte, byte map.
		 */
		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);

		memset(map + epos, ecap, len);
		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
		if (ret)
			return ret;

		/*
		 * If we're just using this capability to anchor the list,
		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
		 * indicates to use cap id = 0, version = 0, next = 0 if
		 * ecaps are absent, hope users check all the way to next.
		 */
		if (hidden)
			*(__le32 *)&vdev->vconfig[epos] &=
				cpu_to_le32((0xffcU << 20));
		else
			ecaps++;

		prev = (__le32 *)&vdev->vconfig[epos];
		epos = PCI_EXT_CAP_NEXT(header);
	}

	if (!ecaps)
		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;

	return 0;
}

/*
 * For each device we allocate a pci_config_map that indicates the
 * capability occupying each dword and thus the struct perm_bits we
 * use for read and write.  We also allocate a virtualized config
 * space which tracks reads and writes to bits that we emulate for
 * the user.  Initial values filled from device.
 *
 * Using shared stuct perm_bits between all vfio-pci devices saves
 * us from allocating cfg_size buffers for virt and write for every
 * device.  We could remove vconfig and allocate individual buffers
 * for each area requring emulated bits, but the array of pointers
 * would be comparable in size (at least for standard config space).
 */
int vfio_config_init(struct vfio_pci_device *vdev)
{
	struct pci_dev *pdev = vdev->pdev;
	u8 *map, *vconfig;
	int ret;

	/*
	 * Config space, caps and ecaps are all dword aligned, so we could
	 * use one byte per dword to record the type.  However, there are
	 * no requiremenst on the length of a capability, so the gap between
	 * capabilities needs byte granularity.
	 */
	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
	if (!map)
		return -ENOMEM;

	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
	if (!vconfig) {
		kfree(map);
		return -ENOMEM;
	}

	vdev->pci_config_map = map;
	vdev->vconfig = vconfig;

	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);

	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
	if (ret)
		goto out;

	vdev->bardirty = true;

	/*
	 * XXX can we just pci_load_saved_state/pci_restore_state?
	 * may need to rebuild vconfig after that
	 */

	/* For restore after reset */
	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);

	if (pdev->is_virtfn) {
		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
	}

	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
		vconfig[PCI_INTERRUPT_PIN] = 0;

	ret = vfio_cap_init(vdev);
	if (ret)
		goto out;

	ret = vfio_ecap_init(vdev);
	if (ret)
		goto out;

	return 0;

out:
	kfree(map);
	vdev->pci_config_map = NULL;
	kfree(vconfig);
	vdev->vconfig = NULL;
	return pcibios_err_to_errno(ret);
}

void vfio_config_free(struct vfio_pci_device *vdev)
{
	kfree(vdev->vconfig);
	vdev->vconfig = NULL;
	kfree(vdev->pci_config_map);
	vdev->pci_config_map = NULL;
	kfree(vdev->msi_perm);
	vdev->msi_perm = NULL;
}

/*
 * Find the remaining number of bytes in a dword that match the given
 * position.  Stop at either the end of the capability or the dword boundary.
 */
static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
					   loff_t pos)
{
	u8 cap = vdev->pci_config_map[pos];
	size_t i;

	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
		/* nop */;

	return i;
}

static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
				 size_t count, loff_t *ppos, bool iswrite)
{
	struct pci_dev *pdev = vdev->pdev;
	struct perm_bits *perm;
	__le32 val = 0;
	int cap_start = 0, offset;
	u8 cap_id;
	ssize_t ret;

	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
	    *ppos + count > pdev->cfg_size)
		return -EFAULT;

	/*
	 * Chop accesses into aligned chunks containing no more than a
	 * single capability.  Caller increments to the next chunk.
	 */
	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
	if (count >= 4 && !(*ppos % 4))
		count = 4;
	else if (count >= 2 && !(*ppos % 2))
		count = 2;
	else
		count = 1;

	ret = count;

	cap_id = vdev->pci_config_map[*ppos];

	if (cap_id == PCI_CAP_ID_INVALID) {
		perm = &unassigned_perms;
		cap_start = *ppos;
	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
		perm = &virt_perms;
		cap_start = *ppos;
	} else {
		if (*ppos >= PCI_CFG_SPACE_SIZE) {
			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);

			perm = &ecap_perms[cap_id];
			cap_start = vfio_find_cap_start(vdev, *ppos);
		} else {
			WARN_ON(cap_id > PCI_CAP_ID_MAX);

			perm = &cap_perms[cap_id];

			if (cap_id == PCI_CAP_ID_MSI)
				perm = vdev->msi_perm;

			if (cap_id > PCI_CAP_ID_BASIC)
				cap_start = vfio_find_cap_start(vdev, *ppos);
		}
	}

	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
	WARN_ON(cap_start > *ppos);

	offset = *ppos - cap_start;

	if (iswrite) {
		if (!perm->writefn)
			return ret;

		if (copy_from_user(&val, buf, count))
			return -EFAULT;

		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
	} else {
		if (perm->readfn) {
			ret = perm->readfn(vdev, *ppos, count,
					   perm, offset, &val);
			if (ret < 0)
				return ret;
		}

		if (copy_to_user(buf, &val, count))
			return -EFAULT;
	}

	return ret;
}

ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
			   size_t count, loff_t *ppos, bool iswrite)
{
	size_t done = 0;
	int ret = 0;
	loff_t pos = *ppos;

	pos &= VFIO_PCI_OFFSET_MASK;

	while (count) {
		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
		if (ret < 0)
			return ret;

		count -= ret;
		done += ret;
		buf += ret;
		pos += ret;
	}

	*ppos += done;

	return done;
}