aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/discard.c
blob: 5615320fa659f31835f9415d0208a15b80404b0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
// SPDX-License-Identifier: GPL-2.0

#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/ktime.h>
#include <linux/list.h>
#include <linux/math64.h>
#include <linux/sizes.h>
#include <linux/workqueue.h>
#include "ctree.h"
#include "block-group.h"
#include "discard.h"
#include "free-space-cache.h"

/*
 * This contains the logic to handle async discard.
 *
 * Async discard manages trimming of free space outside of transaction commit.
 * Discarding is done by managing the block_groups on a LRU list based on free
 * space recency.  Two passes are used to first prioritize discarding extents
 * and then allow for trimming in the bitmap the best opportunity to coalesce.
 * The block_groups are maintained on multiple lists to allow for multiple
 * passes with different discard filter requirements.  A delayed work item is
 * used to manage discarding with timeout determined by a max of the delay
 * incurred by the iops rate limit, the byte rate limit, and the max delay of
 * BTRFS_DISCARD_MAX_DELAY.
 *
 * Note, this only keeps track of block_groups that are explicitly for data.
 * Mixed block_groups are not supported.
 *
 * The first list is special to manage discarding of fully free block groups.
 * This is necessary because we issue a final trim for a full free block group
 * after forgetting it.  When a block group becomes unused, instead of directly
 * being added to the unused_bgs list, we add it to this first list.  Then
 * from there, if it becomes fully discarded, we place it onto the unused_bgs
 * list.
 *
 * The in-memory free space cache serves as the backing state for discard.
 * Consequently this means there is no persistence.  We opt to load all the
 * block groups in as not discarded, so the mount case degenerates to the
 * crashing case.
 *
 * As the free space cache uses bitmaps, there exists a tradeoff between
 * ease/efficiency for find_free_extent() and the accuracy of discard state.
 * Here we opt to let untrimmed regions merge with everything while only letting
 * trimmed regions merge with other trimmed regions.  This can cause
 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
 * this resets the state and we will retry trimming the whole bitmap.  This is a
 * tradeoff between discard state accuracy and the cost of accounting.
 */

/* This is an initial delay to give some chance for block reuse */
#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)

/* Target completion latency of discarding all discardable extents */
#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
#define BTRFS_DISCARD_MAX_IOPS		(10U)

/* Montonically decreasing minimum length filters after index 0 */
static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
	0,
	BTRFS_ASYNC_DISCARD_MAX_FILTER,
	BTRFS_ASYNC_DISCARD_MIN_FILTER
};

static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
					  struct btrfs_block_group *block_group)
{
	return &discard_ctl->discard_list[block_group->discard_index];
}

static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
				  struct btrfs_block_group *block_group)
{
	if (!btrfs_run_discard_work(discard_ctl))
		return;

	if (list_empty(&block_group->discard_list) ||
	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
		block_group->discard_eligible_time = (ktime_get_ns() +
						      BTRFS_DISCARD_DELAY);
		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
	}

	list_move_tail(&block_group->discard_list,
		       get_discard_list(discard_ctl, block_group));
}

static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
				struct btrfs_block_group *block_group)
{
	if (!btrfs_is_block_group_data_only(block_group))
		return;

	spin_lock(&discard_ctl->lock);
	__add_to_discard_list(discard_ctl, block_group);
	spin_unlock(&discard_ctl->lock);
}

static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
				       struct btrfs_block_group *block_group)
{
	spin_lock(&discard_ctl->lock);

	if (!btrfs_run_discard_work(discard_ctl)) {
		spin_unlock(&discard_ctl->lock);
		return;
	}

	list_del_init(&block_group->discard_list);

	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
	block_group->discard_eligible_time = (ktime_get_ns() +
					      BTRFS_DISCARD_UNUSED_DELAY);
	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
	list_add_tail(&block_group->discard_list,
		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);

	spin_unlock(&discard_ctl->lock);
}

static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
				     struct btrfs_block_group *block_group)
{
	bool running = false;

	spin_lock(&discard_ctl->lock);

	if (block_group == discard_ctl->block_group) {
		running = true;
		discard_ctl->block_group = NULL;
	}

	block_group->discard_eligible_time = 0;
	list_del_init(&block_group->discard_list);

	spin_unlock(&discard_ctl->lock);

	return running;
}

/**
 * find_next_block_group - find block_group that's up next for discarding
 * @discard_ctl: discard control
 * @now: current time
 *
 * Iterate over the discard lists to find the next block_group up for
 * discarding checking the discard_eligible_time of block_group.
 */
static struct btrfs_block_group *find_next_block_group(
					struct btrfs_discard_ctl *discard_ctl,
					u64 now)
{
	struct btrfs_block_group *ret_block_group = NULL, *block_group;
	int i;

	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
		struct list_head *discard_list = &discard_ctl->discard_list[i];

		if (!list_empty(discard_list)) {
			block_group = list_first_entry(discard_list,
						       struct btrfs_block_group,
						       discard_list);

			if (!ret_block_group)
				ret_block_group = block_group;

			if (ret_block_group->discard_eligible_time < now)
				break;

			if (ret_block_group->discard_eligible_time >
			    block_group->discard_eligible_time)
				ret_block_group = block_group;
		}
	}

	return ret_block_group;
}

/**
 * peek_discard_list - wrap find_next_block_group()
 * @discard_ctl: discard control
 * @discard_state: the discard_state of the block_group after state management
 * @discard_index: the discard_index of the block_group after state management
 *
 * This wraps find_next_block_group() and sets the block_group to be in use.
 * discard_state's control flow is managed here.  Variables related to
 * discard_state are reset here as needed (eg discard_cursor).  @discard_state
 * and @discard_index are remembered as it may change while we're discarding,
 * but we want the discard to execute in the context determined here.
 */
static struct btrfs_block_group *peek_discard_list(
					struct btrfs_discard_ctl *discard_ctl,
					enum btrfs_discard_state *discard_state,
					int *discard_index)
{
	struct btrfs_block_group *block_group;
	const u64 now = ktime_get_ns();

	spin_lock(&discard_ctl->lock);
again:
	block_group = find_next_block_group(discard_ctl, now);

	if (block_group && now > block_group->discard_eligible_time) {
		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
		    block_group->used != 0) {
			if (btrfs_is_block_group_data_only(block_group))
				__add_to_discard_list(discard_ctl, block_group);
			else
				list_del_init(&block_group->discard_list);
			goto again;
		}
		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
			block_group->discard_cursor = block_group->start;
			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
		}
		discard_ctl->block_group = block_group;
		*discard_state = block_group->discard_state;
		*discard_index = block_group->discard_index;
	} else {
		block_group = NULL;
	}

	spin_unlock(&discard_ctl->lock);

	return block_group;
}

/**
 * btrfs_discard_check_filter - updates a block groups filters
 * @block_group: block group of interest
 * @bytes: recently freed region size after coalescing
 *
 * Async discard maintains multiple lists with progressively smaller filters
 * to prioritize discarding based on size.  Should a free space that matches
 * a larger filter be returned to the free_space_cache, prioritize that discard
 * by moving @block_group to the proper filter.
 */
void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
				u64 bytes)
{
	struct btrfs_discard_ctl *discard_ctl;

	if (!block_group ||
	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		return;

	discard_ctl = &block_group->fs_info->discard_ctl;

	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
	    bytes >= discard_minlen[block_group->discard_index - 1]) {
		int i;

		remove_from_discard_list(discard_ctl, block_group);

		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
		     i++) {
			if (bytes >= discard_minlen[i]) {
				block_group->discard_index = i;
				add_to_discard_list(discard_ctl, block_group);
				break;
			}
		}
	}
}

/**
 * btrfs_update_discard_index - moves a block group along the discard lists
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * Increment @block_group's discard_index.  If it falls of the list, let it be.
 * Otherwise add it back to the appropriate list.
 */
static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
				       struct btrfs_block_group *block_group)
{
	block_group->discard_index++;
	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
		block_group->discard_index = 1;
		return;
	}

	add_to_discard_list(discard_ctl, block_group);
}

/**
 * btrfs_discard_cancel_work - remove a block_group from the discard lists
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * This removes @block_group from the discard lists.  If necessary, it waits on
 * the current work and then reschedules the delayed work.
 */
void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
			       struct btrfs_block_group *block_group)
{
	if (remove_from_discard_list(discard_ctl, block_group)) {
		cancel_delayed_work_sync(&discard_ctl->work);
		btrfs_discard_schedule_work(discard_ctl, true);
	}
}

/**
 * btrfs_discard_queue_work - handles queuing the block_groups
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * This maintains the LRU order of the discard lists.
 */
void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
			      struct btrfs_block_group *block_group)
{
	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
		return;

	if (block_group->used == 0)
		add_to_discard_unused_list(discard_ctl, block_group);
	else
		add_to_discard_list(discard_ctl, block_group);

	if (!delayed_work_pending(&discard_ctl->work))
		btrfs_discard_schedule_work(discard_ctl, false);
}

/**
 * btrfs_discard_schedule_work - responsible for scheduling the discard work
 * @discard_ctl: discard control
 * @override: override the current timer
 *
 * Discards are issued by a delayed workqueue item.  @override is used to
 * update the current delay as the baseline delay interval is reevaluated on
 * transaction commit.  This is also maxed with any other rate limit.
 */
void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
				 bool override)
{
	struct btrfs_block_group *block_group;
	const u64 now = ktime_get_ns();

	spin_lock(&discard_ctl->lock);

	if (!btrfs_run_discard_work(discard_ctl))
		goto out;

	if (!override && delayed_work_pending(&discard_ctl->work))
		goto out;

	block_group = find_next_block_group(discard_ctl, now);
	if (block_group) {
		unsigned long delay = discard_ctl->delay;
		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);

		/*
		 * A single delayed workqueue item is responsible for
		 * discarding, so we can manage the bytes rate limit by keeping
		 * track of the previous discard.
		 */
		if (kbps_limit && discard_ctl->prev_discard) {
			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
						  MSEC_PER_SEC, bps_limit);

			delay = max(delay, msecs_to_jiffies(bps_delay));
		}

		/*
		 * This timeout is to hopefully prevent immediate discarding
		 * in a recently allocated block group.
		 */
		if (now < block_group->discard_eligible_time) {
			u64 bg_timeout = block_group->discard_eligible_time - now;

			delay = max(delay, nsecs_to_jiffies(bg_timeout));
		}

		mod_delayed_work(discard_ctl->discard_workers,
				 &discard_ctl->work, delay);
	}
out:
	spin_unlock(&discard_ctl->lock);
}

/**
 * btrfs_finish_discard_pass - determine next step of a block_group
 * @discard_ctl: discard control
 * @block_group: block_group of interest
 *
 * This determines the next step for a block group after it's finished going
 * through a pass on a discard list.  If it is unused and fully trimmed, we can
 * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
 * the appropriate filter list or let it fall off.
 */
static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
				      struct btrfs_block_group *block_group)
{
	remove_from_discard_list(discard_ctl, block_group);

	if (block_group->used == 0) {
		if (btrfs_is_free_space_trimmed(block_group))
			btrfs_mark_bg_unused(block_group);
		else
			add_to_discard_unused_list(discard_ctl, block_group);
	} else {
		btrfs_update_discard_index(discard_ctl, block_group);
	}
}

/**
 * btrfs_discard_workfn - discard work function
 * @work: work
 *
 * This finds the next block_group to start discarding and then discards a
 * single region.  It does this in a two-pass fashion: first extents and second
 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
 */
static void btrfs_discard_workfn(struct work_struct *work)
{
	struct btrfs_discard_ctl *discard_ctl;
	struct btrfs_block_group *block_group;
	enum btrfs_discard_state discard_state;
	int discard_index = 0;
	u64 trimmed = 0;
	u64 minlen = 0;

	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);

	block_group = peek_discard_list(discard_ctl, &discard_state,
					&discard_index);
	if (!block_group || !btrfs_run_discard_work(discard_ctl))
		return;

	/* Perform discarding */
	minlen = discard_minlen[discard_index];

	if (discard_state == BTRFS_DISCARD_BITMAPS) {
		u64 maxlen = 0;

		/*
		 * Use the previous levels minimum discard length as the max
		 * length filter.  In the case something is added to make a
		 * region go beyond the max filter, the entire bitmap is set
		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
		 */
		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
			maxlen = discard_minlen[discard_index - 1];

		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
				       block_group->discard_cursor,
				       btrfs_block_group_end(block_group),
				       minlen, maxlen, true);
		discard_ctl->discard_bitmap_bytes += trimmed;
	} else {
		btrfs_trim_block_group_extents(block_group, &trimmed,
				       block_group->discard_cursor,
				       btrfs_block_group_end(block_group),
				       minlen, true);
		discard_ctl->discard_extent_bytes += trimmed;
	}

	discard_ctl->prev_discard = trimmed;

	/* Determine next steps for a block_group */
	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
		if (discard_state == BTRFS_DISCARD_BITMAPS) {
			btrfs_finish_discard_pass(discard_ctl, block_group);
		} else {
			block_group->discard_cursor = block_group->start;
			spin_lock(&discard_ctl->lock);
			if (block_group->discard_state !=
			    BTRFS_DISCARD_RESET_CURSOR)
				block_group->discard_state =
							BTRFS_DISCARD_BITMAPS;
			spin_unlock(&discard_ctl->lock);
		}
	}

	spin_lock(&discard_ctl->lock);
	discard_ctl->block_group = NULL;
	spin_unlock(&discard_ctl->lock);

	btrfs_discard_schedule_work(discard_ctl, false);
}

/**
 * btrfs_run_discard_work - determines if async discard should be running
 * @discard_ctl: discard control
 *
 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
 */
bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
{
	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
						     struct btrfs_fs_info,
						     discard_ctl);

	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
}

/**
 * btrfs_discard_calc_delay - recalculate the base delay
 * @discard_ctl: discard control
 *
 * Recalculate the base delay which is based off the total number of
 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
 */
void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
{
	s32 discardable_extents;
	s64 discardable_bytes;
	u32 iops_limit;
	unsigned long delay;
	unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;

	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
	if (!discardable_extents)
		return;

	spin_lock(&discard_ctl->lock);

	/*
	 * The following is to fix a potential -1 discrepenancy that we're not
	 * sure how to reproduce. But given that this is the only place that
	 * utilizes these numbers and this is only called by from
	 * btrfs_finish_extent_commit() which is synchronized, we can correct
	 * here.
	 */
	if (discardable_extents < 0)
		atomic_add(-discardable_extents,
			   &discard_ctl->discardable_extents);

	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
	if (discardable_bytes < 0)
		atomic64_add(-discardable_bytes,
			     &discard_ctl->discardable_bytes);

	if (discardable_extents <= 0) {
		spin_unlock(&discard_ctl->lock);
		return;
	}

	iops_limit = READ_ONCE(discard_ctl->iops_limit);
	if (iops_limit)
		lower_limit = max_t(unsigned long, lower_limit,
				    MSEC_PER_SEC / iops_limit);

	delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
	delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
	discard_ctl->delay = msecs_to_jiffies(delay);

	spin_unlock(&discard_ctl->lock);
}

/**
 * btrfs_discard_update_discardable - propagate discard counters
 * @block_group: block_group of interest
 * @ctl: free_space_ctl of @block_group
 *
 * This propagates deltas of counters up to the discard_ctl.  It maintains a
 * current counter and a previous counter passing the delta up to the global
 * stat.  Then the current counter value becomes the previous counter value.
 */
void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
				      struct btrfs_free_space_ctl *ctl)
{
	struct btrfs_discard_ctl *discard_ctl;
	s32 extents_delta;
	s64 bytes_delta;

	if (!block_group ||
	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
	    !btrfs_is_block_group_data_only(block_group))
		return;

	discard_ctl = &block_group->fs_info->discard_ctl;

	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
			ctl->discardable_extents[BTRFS_STAT_PREV];
	if (extents_delta) {
		atomic_add(extents_delta, &discard_ctl->discardable_extents);
		ctl->discardable_extents[BTRFS_STAT_PREV] =
			ctl->discardable_extents[BTRFS_STAT_CURR];
	}

	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
		      ctl->discardable_bytes[BTRFS_STAT_PREV];
	if (bytes_delta) {
		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
		ctl->discardable_bytes[BTRFS_STAT_PREV] =
			ctl->discardable_bytes[BTRFS_STAT_CURR];
	}
}

/**
 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
 * @fs_info: fs_info of interest
 *
 * The unused_bgs list needs to be punted to the discard lists because the
 * order of operations is changed.  In the normal sychronous discard path, the
 * block groups are trimmed via a single large trim in transaction commit.  This
 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
 * it must be done before going down the unused_bgs path.
 */
void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
{
	struct btrfs_block_group *block_group, *next;

	spin_lock(&fs_info->unused_bgs_lock);
	/* We enabled async discard, so punt all to the queue */
	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
				 bg_list) {
		list_del_init(&block_group->bg_list);
		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
	}
	spin_unlock(&fs_info->unused_bgs_lock);
}

/**
 * btrfs_discard_purge_list - purge discard lists
 * @discard_ctl: discard control
 *
 * If we are disabling async discard, we may have intercepted block groups that
 * are completely free and ready for the unused_bgs path.  As discarding will
 * now happen in transaction commit or not at all, we can safely mark the
 * corresponding block groups as unused and they will be sent on their merry
 * way to the unused_bgs list.
 */
static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
{
	struct btrfs_block_group *block_group, *next;
	int i;

	spin_lock(&discard_ctl->lock);
	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
		list_for_each_entry_safe(block_group, next,
					 &discard_ctl->discard_list[i],
					 discard_list) {
			list_del_init(&block_group->discard_list);
			spin_unlock(&discard_ctl->lock);
			if (block_group->used == 0)
				btrfs_mark_bg_unused(block_group);
			spin_lock(&discard_ctl->lock);
		}
	}
	spin_unlock(&discard_ctl->lock);
}

void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
{
	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
		btrfs_discard_cleanup(fs_info);
		return;
	}

	btrfs_discard_punt_unused_bgs_list(fs_info);

	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
}

void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
{
	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
}

void btrfs_discard_init(struct btrfs_fs_info *fs_info)
{
	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
	int i;

	spin_lock_init(&discard_ctl->lock);
	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);

	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);

	discard_ctl->prev_discard = 0;
	atomic_set(&discard_ctl->discardable_extents, 0);
	atomic64_set(&discard_ctl->discardable_bytes, 0);
	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
	discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
	discard_ctl->kbps_limit = 0;
	discard_ctl->discard_extent_bytes = 0;
	discard_ctl->discard_bitmap_bytes = 0;
	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
}

void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
{
	btrfs_discard_stop(fs_info);
	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
	btrfs_discard_purge_list(&fs_info->discard_ctl);
}