aboutsummaryrefslogtreecommitdiff
path: root/fs/cifs/fscache.c
blob: a638b29e906201a3128eb91e3170a673ca649df8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// SPDX-License-Identifier: LGPL-2.1
/*
 *   CIFS filesystem cache interface
 *
 *   Copyright (c) 2010 Novell, Inc.
 *   Author(s): Suresh Jayaraman <sjayaraman@suse.de>
 *
 */
#include "fscache.h"
#include "cifsglob.h"
#include "cifs_debug.h"
#include "cifs_fs_sb.h"
#include "cifsproto.h"

static void cifs_fscache_fill_volume_coherency(
	struct cifs_tcon *tcon,
	struct cifs_fscache_volume_coherency_data *cd)
{
	memset(cd, 0, sizeof(*cd));
	cd->resource_id		= cpu_to_le64(tcon->resource_id);
	cd->vol_create_time	= tcon->vol_create_time;
	cd->vol_serial_number	= cpu_to_le32(tcon->vol_serial_number);
}

int cifs_fscache_get_super_cookie(struct cifs_tcon *tcon)
{
	struct cifs_fscache_volume_coherency_data cd;
	struct TCP_Server_Info *server = tcon->ses->server;
	struct fscache_volume *vcookie;
	const struct sockaddr *sa = (struct sockaddr *)&server->dstaddr;
	size_t slen, i;
	char *sharename;
	char *key;
	int ret = -ENOMEM;

	tcon->fscache = NULL;
	switch (sa->sa_family) {
	case AF_INET:
	case AF_INET6:
		break;
	default:
		cifs_dbg(VFS, "Unknown network family '%d'\n", sa->sa_family);
		return -EINVAL;
	}

	memset(&key, 0, sizeof(key));

	sharename = extract_sharename(tcon->treeName);
	if (IS_ERR(sharename)) {
		cifs_dbg(FYI, "%s: couldn't extract sharename\n", __func__);
		return -EINVAL;
	}

	slen = strlen(sharename);
	for (i = 0; i < slen; i++)
		if (sharename[i] == '/')
			sharename[i] = ';';

	key = kasprintf(GFP_KERNEL, "cifs,%pISpc,%s", sa, sharename);
	if (!key)
		goto out;

	cifs_fscache_fill_volume_coherency(tcon, &cd);
	vcookie = fscache_acquire_volume(key,
					 NULL, /* preferred_cache */
					 &cd, sizeof(cd));
	cifs_dbg(FYI, "%s: (%s/0x%p)\n", __func__, key, vcookie);
	if (IS_ERR(vcookie)) {
		if (vcookie != ERR_PTR(-EBUSY)) {
			ret = PTR_ERR(vcookie);
			goto out_2;
		}
		pr_err("Cache volume key already in use (%s)\n", key);
		vcookie = NULL;
	}

	tcon->fscache = vcookie;
	ret = 0;
out_2:
	kfree(key);
out:
	kfree(sharename);
	return ret;
}

void cifs_fscache_release_super_cookie(struct cifs_tcon *tcon)
{
	struct cifs_fscache_volume_coherency_data cd;

	cifs_dbg(FYI, "%s: (0x%p)\n", __func__, tcon->fscache);

	cifs_fscache_fill_volume_coherency(tcon, &cd);
	fscache_relinquish_volume(tcon->fscache, &cd, false);
	tcon->fscache = NULL;
}

void cifs_fscache_get_inode_cookie(struct inode *inode)
{
	struct cifs_fscache_inode_coherency_data cd;
	struct cifsInodeInfo *cifsi = CIFS_I(inode);
	struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
	struct cifs_tcon *tcon = cifs_sb_master_tcon(cifs_sb);

	cifs_fscache_fill_coherency(&cifsi->vfs_inode, &cd);

	cifsi->netfs_ctx.cache =
		fscache_acquire_cookie(tcon->fscache, 0,
				       &cifsi->uniqueid, sizeof(cifsi->uniqueid),
				       &cd, sizeof(cd),
				       i_size_read(&cifsi->vfs_inode));
}

void cifs_fscache_unuse_inode_cookie(struct inode *inode, bool update)
{
	if (update) {
		struct cifs_fscache_inode_coherency_data cd;
		loff_t i_size = i_size_read(inode);

		cifs_fscache_fill_coherency(inode, &cd);
		fscache_unuse_cookie(cifs_inode_cookie(inode), &cd, &i_size);
	} else {
		fscache_unuse_cookie(cifs_inode_cookie(inode), NULL, NULL);
	}
}

void cifs_fscache_release_inode_cookie(struct inode *inode)
{
	struct cifsInodeInfo *cifsi = CIFS_I(inode);
	struct fscache_cookie *cookie = cifs_inode_cookie(inode);

	if (cookie) {
		cifs_dbg(FYI, "%s: (0x%p)\n", __func__, cookie);
		fscache_relinquish_cookie(cookie, false);
		cifsi->netfs_ctx.cache = NULL;
	}
}

/*
 * Fallback page reading interface.
 */
static int fscache_fallback_read_page(struct inode *inode, struct page *page)
{
	struct netfs_cache_resources cres;
	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
	struct iov_iter iter;
	struct bio_vec bvec[1];
	int ret;

	memset(&cres, 0, sizeof(cres));
	bvec[0].bv_page		= page;
	bvec[0].bv_offset	= 0;
	bvec[0].bv_len		= PAGE_SIZE;
	iov_iter_bvec(&iter, READ, bvec, ARRAY_SIZE(bvec), PAGE_SIZE);

	ret = fscache_begin_read_operation(&cres, cookie);
	if (ret < 0)
		return ret;

	ret = fscache_read(&cres, page_offset(page), &iter, NETFS_READ_HOLE_FAIL,
			   NULL, NULL);
	fscache_end_operation(&cres);
	return ret;
}

/*
 * Fallback page writing interface.
 */
static int fscache_fallback_write_page(struct inode *inode, struct page *page,
				       bool no_space_allocated_yet)
{
	struct netfs_cache_resources cres;
	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
	struct iov_iter iter;
	struct bio_vec bvec[1];
	loff_t start = page_offset(page);
	size_t len = PAGE_SIZE;
	int ret;

	memset(&cres, 0, sizeof(cres));
	bvec[0].bv_page		= page;
	bvec[0].bv_offset	= 0;
	bvec[0].bv_len		= PAGE_SIZE;
	iov_iter_bvec(&iter, WRITE, bvec, ARRAY_SIZE(bvec), PAGE_SIZE);

	ret = fscache_begin_write_operation(&cres, cookie);
	if (ret < 0)
		return ret;

	ret = cres.ops->prepare_write(&cres, &start, &len, i_size_read(inode),
				      no_space_allocated_yet);
	if (ret == 0)
		ret = fscache_write(&cres, page_offset(page), &iter, NULL, NULL);
	fscache_end_operation(&cres);
	return ret;
}

/*
 * Retrieve a page from FS-Cache
 */
int __cifs_readpage_from_fscache(struct inode *inode, struct page *page)
{
	int ret;

	cifs_dbg(FYI, "%s: (fsc:%p, p:%p, i:0x%p\n",
		 __func__, cifs_inode_cookie(inode), page, inode);

	ret = fscache_fallback_read_page(inode, page);
	if (ret < 0)
		return ret;

	/* Read completed synchronously */
	SetPageUptodate(page);
	return 0;
}

void __cifs_readpage_to_fscache(struct inode *inode, struct page *page)
{
	cifs_dbg(FYI, "%s: (fsc: %p, p: %p, i: %p)\n",
		 __func__, cifs_inode_cookie(inode), page, inode);

	fscache_fallback_write_page(inode, page, true);
}

/*
 * Query the cache occupancy.
 */
int __cifs_fscache_query_occupancy(struct inode *inode,
				   pgoff_t first, unsigned int nr_pages,
				   pgoff_t *_data_first,
				   unsigned int *_data_nr_pages)
{
	struct netfs_cache_resources cres;
	struct fscache_cookie *cookie = cifs_inode_cookie(inode);
	loff_t start, data_start;
	size_t len, data_len;
	int ret;

	ret = fscache_begin_read_operation(&cres, cookie);
	if (ret < 0)
		return ret;

	start = first * PAGE_SIZE;
	len = nr_pages * PAGE_SIZE;
	ret = cres.ops->query_occupancy(&cres, start, len, PAGE_SIZE,
					&data_start, &data_len);
	if (ret == 0) {
		*_data_first = data_start / PAGE_SIZE;
		*_data_nr_pages = len / PAGE_SIZE;
	}

	fscache_end_operation(&cres);
	return ret;
}