aboutsummaryrefslogtreecommitdiff
path: root/fs/cifs/smb1ops.c
blob: 6dec38f5522d19198beebb23942d21dd850d0dde (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
/*
 *  SMB1 (CIFS) version specific operations
 *
 *  Copyright (c) 2012, Jeff Layton <jlayton@redhat.com>
 *
 *  This library is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License v2 as published
 *  by the Free Software Foundation.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
 *  the GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public License
 *  along with this library; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

#include "cifsglob.h"
#include "cifsproto.h"
#include "cifs_debug.h"
#include "cifspdu.h"

/*
 * An NT cancel request header looks just like the original request except:
 *
 * The Command is SMB_COM_NT_CANCEL
 * The WordCount is zeroed out
 * The ByteCount is zeroed out
 *
 * This function mangles an existing request buffer into a
 * SMB_COM_NT_CANCEL request and then sends it.
 */
static int
send_nt_cancel(struct TCP_Server_Info *server, void *buf,
	       struct mid_q_entry *mid)
{
	int rc = 0;
	struct smb_hdr *in_buf = (struct smb_hdr *)buf;

	/* -4 for RFC1001 length and +2 for BCC field */
	in_buf->smb_buf_length = cpu_to_be32(sizeof(struct smb_hdr) - 4  + 2);
	in_buf->Command = SMB_COM_NT_CANCEL;
	in_buf->WordCount = 0;
	put_bcc(0, in_buf);

	mutex_lock(&server->srv_mutex);
	rc = cifs_sign_smb(in_buf, server, &mid->sequence_number);
	if (rc) {
		mutex_unlock(&server->srv_mutex);
		return rc;
	}
	rc = smb_send(server, in_buf, be32_to_cpu(in_buf->smb_buf_length));
	mutex_unlock(&server->srv_mutex);

	cFYI(1, "issued NT_CANCEL for mid %u, rc = %d",
		in_buf->Mid, rc);

	return rc;
}

static bool
cifs_compare_fids(struct cifsFileInfo *ob1, struct cifsFileInfo *ob2)
{
	return ob1->netfid == ob2->netfid;
}

static unsigned int
cifs_read_data_offset(char *buf)
{
	READ_RSP *rsp = (READ_RSP *)buf;
	return le16_to_cpu(rsp->DataOffset);
}

static unsigned int
cifs_read_data_length(char *buf)
{
	READ_RSP *rsp = (READ_RSP *)buf;
	return (le16_to_cpu(rsp->DataLengthHigh) << 16) +
	       le16_to_cpu(rsp->DataLength);
}

static struct mid_q_entry *
cifs_find_mid(struct TCP_Server_Info *server, char *buffer)
{
	struct smb_hdr *buf = (struct smb_hdr *)buffer;
	struct mid_q_entry *mid;

	spin_lock(&GlobalMid_Lock);
	list_for_each_entry(mid, &server->pending_mid_q, qhead) {
		if (mid->mid == buf->Mid &&
		    mid->mid_state == MID_REQUEST_SUBMITTED &&
		    le16_to_cpu(mid->command) == buf->Command) {
			spin_unlock(&GlobalMid_Lock);
			return mid;
		}
	}
	spin_unlock(&GlobalMid_Lock);
	return NULL;
}

static void
cifs_add_credits(struct TCP_Server_Info *server, const unsigned int add)
{
	spin_lock(&server->req_lock);
	server->credits += add;
	server->in_flight--;
	spin_unlock(&server->req_lock);
	wake_up(&server->request_q);
}

static void
cifs_set_credits(struct TCP_Server_Info *server, const int val)
{
	spin_lock(&server->req_lock);
	server->credits = val;
	server->oplocks = val > 1 ? enable_oplocks : false;
	spin_unlock(&server->req_lock);
}

static int *
cifs_get_credits_field(struct TCP_Server_Info *server)
{
	return &server->credits;
}

/*
 * Find a free multiplex id (SMB mid). Otherwise there could be
 * mid collisions which might cause problems, demultiplexing the
 * wrong response to this request. Multiplex ids could collide if
 * one of a series requests takes much longer than the others, or
 * if a very large number of long lived requests (byte range
 * locks or FindNotify requests) are pending. No more than
 * 64K-1 requests can be outstanding at one time. If no
 * mids are available, return zero. A future optimization
 * could make the combination of mids and uid the key we use
 * to demultiplex on (rather than mid alone).
 * In addition to the above check, the cifs demultiplex
 * code already used the command code as a secondary
 * check of the frame and if signing is negotiated the
 * response would be discarded if the mid were the same
 * but the signature was wrong. Since the mid is not put in the
 * pending queue until later (when it is about to be dispatched)
 * we do have to limit the number of outstanding requests
 * to somewhat less than 64K-1 although it is hard to imagine
 * so many threads being in the vfs at one time.
 */
static __u64
cifs_get_next_mid(struct TCP_Server_Info *server)
{
	__u64 mid = 0;
	__u16 last_mid, cur_mid;
	bool collision;

	spin_lock(&GlobalMid_Lock);

	/* mid is 16 bit only for CIFS/SMB */
	cur_mid = (__u16)((server->CurrentMid) & 0xffff);
	/* we do not want to loop forever */
	last_mid = cur_mid;
	cur_mid++;

	/*
	 * This nested loop looks more expensive than it is.
	 * In practice the list of pending requests is short,
	 * fewer than 50, and the mids are likely to be unique
	 * on the first pass through the loop unless some request
	 * takes longer than the 64 thousand requests before it
	 * (and it would also have to have been a request that
	 * did not time out).
	 */
	while (cur_mid != last_mid) {
		struct mid_q_entry *mid_entry;
		unsigned int num_mids;

		collision = false;
		if (cur_mid == 0)
			cur_mid++;

		num_mids = 0;
		list_for_each_entry(mid_entry, &server->pending_mid_q, qhead) {
			++num_mids;
			if (mid_entry->mid == cur_mid &&
			    mid_entry->mid_state == MID_REQUEST_SUBMITTED) {
				/* This mid is in use, try a different one */
				collision = true;
				break;
			}
		}

		/*
		 * if we have more than 32k mids in the list, then something
		 * is very wrong. Possibly a local user is trying to DoS the
		 * box by issuing long-running calls and SIGKILL'ing them. If
		 * we get to 2^16 mids then we're in big trouble as this
		 * function could loop forever.
		 *
		 * Go ahead and assign out the mid in this situation, but force
		 * an eventual reconnect to clean out the pending_mid_q.
		 */
		if (num_mids > 32768)
			server->tcpStatus = CifsNeedReconnect;

		if (!collision) {
			mid = (__u64)cur_mid;
			server->CurrentMid = mid;
			break;
		}
		cur_mid++;
	}
	spin_unlock(&GlobalMid_Lock);
	return mid;
}

struct smb_version_operations smb1_operations = {
	.send_cancel = send_nt_cancel,
	.compare_fids = cifs_compare_fids,
	.setup_request = cifs_setup_request,
	.check_receive = cifs_check_receive,
	.add_credits = cifs_add_credits,
	.set_credits = cifs_set_credits,
	.get_credits_field = cifs_get_credits_field,
	.get_next_mid = cifs_get_next_mid,
	.read_data_offset = cifs_read_data_offset,
	.read_data_length = cifs_read_data_length,
	.map_error = map_smb_to_linux_error,
	.find_mid = cifs_find_mid,
	.check_message = checkSMB,
	.dump_detail = cifs_dump_detail,
	.is_oplock_break = is_valid_oplock_break,
};

struct smb_version_values smb1_values = {
	.version_string = SMB1_VERSION_STRING,
	.large_lock_type = LOCKING_ANDX_LARGE_FILES,
	.exclusive_lock_type = 0,
	.shared_lock_type = LOCKING_ANDX_SHARED_LOCK,
	.unlock_lock_type = 0,
	.header_size = sizeof(struct smb_hdr),
	.max_header_size = MAX_CIFS_HDR_SIZE,
	.read_rsp_size = sizeof(READ_RSP),
};