aboutsummaryrefslogtreecommitdiff
path: root/include/asm-generic/bitops-instrumented.h
blob: ddd1c6d9d8db2e391c2564d63fc23a022f510aee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/* SPDX-License-Identifier: GPL-2.0 */

/*
 * This file provides wrappers with sanitizer instrumentation for bit
 * operations.
 *
 * To use this functionality, an arch's bitops.h file needs to define each of
 * the below bit operations with an arch_ prefix (e.g. arch_set_bit(),
 * arch___set_bit(), etc.).
 */
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_H
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_H

#include <linux/kasan-checks.h>

/**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This is a relaxed atomic operation (no implied memory barriers).
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static inline void set_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch_set_bit(nr, addr);
}

/**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic. If it is called on the same
 * region of memory concurrently, the effect may be that only one operation
 * succeeds.
 */
static inline void __set_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch___set_bit(nr, addr);
}

/**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * This is a relaxed atomic operation (no implied memory barriers).
 */
static inline void clear_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch_clear_bit(nr, addr);
}

/**
 * __clear_bit - Clears a bit in memory
 * @nr: the bit to clear
 * @addr: the address to start counting from
 *
 * Unlike clear_bit(), this function is non-atomic. If it is called on the same
 * region of memory concurrently, the effect may be that only one operation
 * succeeds.
 */
static inline void __clear_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch___clear_bit(nr, addr);
}

/**
 * clear_bit_unlock - Clear a bit in memory, for unlock
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This operation is atomic and provides release barrier semantics.
 */
static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch_clear_bit_unlock(nr, addr);
}

/**
 * __clear_bit_unlock - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * This is a non-atomic operation but implies a release barrier before the
 * memory operation. It can be used for an unlock if no other CPUs can
 * concurrently modify other bits in the word.
 */
static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch___clear_bit_unlock(nr, addr);
}

/**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to change
 * @addr: Address to start counting from
 *
 * This is a relaxed atomic operation (no implied memory barriers).
 *
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
static inline void change_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch_change_bit(nr, addr);
}

/**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to change
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic. If it is called on the same
 * region of memory concurrently, the effect may be that only one operation
 * succeeds.
 */
static inline void __change_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	arch___change_bit(nr, addr);
}

/**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is an atomic fully-ordered operation (implied full memory barrier).
 */
static inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch_test_and_set_bit(nr, addr);
}

/**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic. If two instances of this operation race, one
 * can appear to succeed but actually fail.
 */
static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch___test_and_set_bit(nr, addr);
}

/**
 * test_and_set_bit_lock - Set a bit and return its old value, for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and provides acquire barrier semantics if
 * the returned value is 0.
 * It can be used to implement bit locks.
 */
static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch_test_and_set_bit_lock(nr, addr);
}

/**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This is an atomic fully-ordered operation (implied full memory barrier).
 */
static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch_test_and_clear_bit(nr, addr);
}

/**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic. If two instances of this operation race, one
 * can appear to succeed but actually fail.
 */
static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch___test_and_clear_bit(nr, addr);
}

/**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This is an atomic fully-ordered operation (implied full memory barrier).
 */
static inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch_test_and_change_bit(nr, addr);
}

/**
 * __test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is non-atomic. If two instances of this operation race, one
 * can appear to succeed but actually fail.
 */
static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch___test_and_change_bit(nr, addr);
}

/**
 * test_bit - Determine whether a bit is set
 * @nr: bit number to test
 * @addr: Address to start counting from
 */
static inline bool test_bit(long nr, const volatile unsigned long *addr)
{
	kasan_check_read(addr + BIT_WORD(nr), sizeof(long));
	return arch_test_bit(nr, addr);
}

#if defined(arch_clear_bit_unlock_is_negative_byte)
/**
 * clear_bit_unlock_is_negative_byte - Clear a bit in memory and test if bottom
 *                                     byte is negative, for unlock.
 * @nr: the bit to clear
 * @addr: the address to start counting from
 *
 * This operation is atomic and provides release barrier semantics.
 *
 * This is a bit of a one-trick-pony for the filemap code, which clears
 * PG_locked and tests PG_waiters,
 */
static inline bool
clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
{
	kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
	return arch_clear_bit_unlock_is_negative_byte(nr, addr);
}
/* Let everybody know we have it. */
#define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
#endif

#endif /* _ASM_GENERIC_BITOPS_INSTRUMENTED_H */