aboutsummaryrefslogtreecommitdiff
path: root/include/linux/rculist.h
blob: 8beb98dcf14f066fc4e9075ed0b94cc29998c9bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
#ifndef _LINUX_RCULIST_H
#define _LINUX_RCULIST_H

#ifdef __KERNEL__

/*
 * RCU-protected list version
 */
#include <linux/list.h>
#include <linux/rcupdate.h>

/*
 * Why is there no list_empty_rcu()?  Because list_empty() serves this
 * purpose.  The list_empty() function fetches the RCU-protected pointer
 * and compares it to the address of the list head, but neither dereferences
 * this pointer itself nor provides this pointer to the caller.  Therefore,
 * it is not necessary to use rcu_dereference(), so that list_empty() can
 * be used anywhere you would want to use a list_empty_rcu().
 */

/*
 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
 * @list: list to be initialized
 *
 * You should instead use INIT_LIST_HEAD() for normal initialization and
 * cleanup tasks, when readers have no access to the list being initialized.
 * However, if the list being initialized is visible to readers, you
 * need to keep the compiler from being too mischievous.
 */
static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
{
	WRITE_ONCE(list->next, list);
	WRITE_ONCE(list->prev, list);
}

/*
 * return the ->next pointer of a list_head in an rcu safe
 * way, we must not access it directly
 */
#define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add_rcu(struct list_head *new,
		struct list_head *prev, struct list_head *next)
{
	new->next = next;
	new->prev = prev;
	rcu_assign_pointer(list_next_rcu(prev), new);
	next->prev = new;
}
#else
void __list_add_rcu(struct list_head *new,
		    struct list_head *prev, struct list_head *next);
#endif

/**
 * list_add_rcu - add a new entry to rcu-protected list
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as list_add_rcu()
 * or list_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * list_for_each_entry_rcu().
 */
static inline void list_add_rcu(struct list_head *new, struct list_head *head)
{
	__list_add_rcu(new, head, head->next);
}

/**
 * list_add_tail_rcu - add a new entry to rcu-protected list
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as list_add_tail_rcu()
 * or list_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * list_for_each_entry_rcu().
 */
static inline void list_add_tail_rcu(struct list_head *new,
					struct list_head *head)
{
	__list_add_rcu(new, head->prev, head);
}

/**
 * list_del_rcu - deletes entry from list without re-initialization
 * @entry: the element to delete from the list.
 *
 * Note: list_empty() on entry does not return true after this,
 * the entry is in an undefined state. It is useful for RCU based
 * lockfree traversal.
 *
 * In particular, it means that we can not poison the forward
 * pointers that may still be used for walking the list.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as list_del_rcu()
 * or list_add_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * list_for_each_entry_rcu().
 *
 * Note that the caller is not permitted to immediately free
 * the newly deleted entry.  Instead, either synchronize_rcu()
 * or call_rcu() must be used to defer freeing until an RCU
 * grace period has elapsed.
 */
static inline void list_del_rcu(struct list_head *entry)
{
	__list_del_entry(entry);
	entry->prev = LIST_POISON2;
}

/**
 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 * @n: the element to delete from the hash list.
 *
 * Note: list_unhashed() on the node return true after this. It is
 * useful for RCU based read lockfree traversal if the writer side
 * must know if the list entry is still hashed or already unhashed.
 *
 * In particular, it means that we can not poison the forward pointers
 * that may still be used for walking the hash list and we can only
 * zero the pprev pointer so list_unhashed() will return true after
 * this.
 *
 * The caller must take whatever precautions are necessary (such as
 * holding appropriate locks) to avoid racing with another
 * list-mutation primitive, such as hlist_add_head_rcu() or
 * hlist_del_rcu(), running on this same list.  However, it is
 * perfectly legal to run concurrently with the _rcu list-traversal
 * primitives, such as hlist_for_each_entry_rcu().
 */
static inline void hlist_del_init_rcu(struct hlist_node *n)
{
	if (!hlist_unhashed(n)) {
		__hlist_del(n);
		n->pprev = NULL;
	}
}

/**
 * list_replace_rcu - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * The @old entry will be replaced with the @new entry atomically.
 * Note: @old should not be empty.
 */
static inline void list_replace_rcu(struct list_head *old,
				struct list_head *new)
{
	new->next = old->next;
	new->prev = old->prev;
	rcu_assign_pointer(list_next_rcu(new->prev), new);
	new->next->prev = new;
	old->prev = LIST_POISON2;
}

/**
 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 * @list:	the RCU-protected list to splice
 * @prev:	points to the last element of the existing list
 * @next:	points to the first element of the existing list
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
 *
 * The list pointed to by @prev and @next can be RCU-read traversed
 * concurrently with this function.
 *
 * Note that this function blocks.
 *
 * Important note: the caller must take whatever action is necessary to prevent
 * any other updates to the existing list.  In principle, it is possible to
 * modify the list as soon as sync() begins execution. If this sort of thing
 * becomes necessary, an alternative version based on call_rcu() could be
 * created.  But only if -really- needed -- there is no shortage of RCU API
 * members.
 */
static inline void __list_splice_init_rcu(struct list_head *list,
					  struct list_head *prev,
					  struct list_head *next,
					  void (*sync)(void))
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	/*
	 * "first" and "last" tracking list, so initialize it.  RCU readers
	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
	 * instead of INIT_LIST_HEAD().
	 */

	INIT_LIST_HEAD_RCU(list);

	/*
	 * At this point, the list body still points to the source list.
	 * Wait for any readers to finish using the list before splicing
	 * the list body into the new list.  Any new readers will see
	 * an empty list.
	 */

	sync();

	/*
	 * Readers are finished with the source list, so perform splice.
	 * The order is important if the new list is global and accessible
	 * to concurrent RCU readers.  Note that RCU readers are not
	 * permitted to traverse the prev pointers without excluding
	 * this function.
	 */

	last->next = next;
	rcu_assign_pointer(list_next_rcu(prev), first);
	first->prev = prev;
	next->prev = last;
}

/**
 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 *                        designed for stacks.
 * @list:	the RCU-protected list to splice
 * @head:	the place in the existing list to splice the first list into
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
 */
static inline void list_splice_init_rcu(struct list_head *list,
					struct list_head *head,
					void (*sync)(void))
{
	if (!list_empty(list))
		__list_splice_init_rcu(list, head, head->next, sync);
}

/**
 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 *                             list, designed for queues.
 * @list:	the RCU-protected list to splice
 * @head:	the place in the existing list to splice the first list into
 * @sync:	function to sync: synchronize_rcu(), synchronize_sched(), ...
 */
static inline void list_splice_tail_init_rcu(struct list_head *list,
					     struct list_head *head,
					     void (*sync)(void))
{
	if (!list_empty(list))
		__list_splice_init_rcu(list, head->prev, head, sync);
}

/**
 * list_entry_rcu - get the struct for this entry
 * @ptr:        the &struct list_head pointer.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * This primitive may safely run concurrently with the _rcu list-mutation
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 */
#define list_entry_rcu(ptr, type, member) \
	container_of(lockless_dereference(ptr), type, member)

/**
 * Where are list_empty_rcu() and list_first_entry_rcu()?
 *
 * Implementing those functions following their counterparts list_empty() and
 * list_first_entry() is not advisable because they lead to subtle race
 * conditions as the following snippet shows:
 *
 * if (!list_empty_rcu(mylist)) {
 *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 *	do_something(bar);
 * }
 *
 * The list may not be empty when list_empty_rcu checks it, but it may be when
 * list_first_entry_rcu rereads the ->next pointer.
 *
 * Rereading the ->next pointer is not a problem for list_empty() and
 * list_first_entry() because they would be protected by a lock that blocks
 * writers.
 *
 * See list_first_or_null_rcu for an alternative.
 */

/**
 * list_first_or_null_rcu - get the first element from a list
 * @ptr:        the list head to take the element from.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * Note that if the list is empty, it returns NULL.
 *
 * This primitive may safely run concurrently with the _rcu list-mutation
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 */
#define list_first_or_null_rcu(ptr, type, member) \
({ \
	struct list_head *__ptr = (ptr); \
	struct list_head *__next = READ_ONCE(__ptr->next); \
	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
})

/**
 * list_next_or_null_rcu - get the first element from a list
 * @head:	the head for the list.
 * @ptr:        the list head to take the next element from.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * Note that if the ptr is at the end of the list, NULL is returned.
 *
 * This primitive may safely run concurrently with the _rcu list-mutation
 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 */
#define list_next_or_null_rcu(head, ptr, type, member) \
({ \
	struct list_head *__head = (head); \
	struct list_head *__ptr = (ptr); \
	struct list_head *__next = READ_ONCE(__ptr->next); \
	likely(__next != __head) ? list_entry_rcu(__next, type, \
						  member) : NULL; \
})

/**
 * list_for_each_entry_rcu	-	iterate over rcu list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as list_add_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 */
#define list_for_each_entry_rcu(pos, head, member) \
	for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
		&pos->member != (head); \
		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))

/**
 * list_entry_lockless - get the struct for this entry
 * @ptr:        the &struct list_head pointer.
 * @type:       the type of the struct this is embedded in.
 * @member:     the name of the list_head within the struct.
 *
 * This primitive may safely run concurrently with the _rcu list-mutation
 * primitives such as list_add_rcu(), but requires some implicit RCU
 * read-side guarding.  One example is running within a special
 * exception-time environment where preemption is disabled and where
 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 * example is when items are added to the list, but never deleted.
 */
#define list_entry_lockless(ptr, type, member) \
	container_of((typeof(ptr))lockless_dereference(ptr), type, member)

/**
 * list_for_each_entry_lockless - iterate over rcu list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_struct within the struct.
 *
 * This primitive may safely run concurrently with the _rcu list-mutation
 * primitives such as list_add_rcu(), but requires some implicit RCU
 * read-side guarding.  One example is running within a special
 * exception-time environment where preemption is disabled and where
 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 * example is when items are added to the list, but never deleted.
 */
#define list_for_each_entry_lockless(pos, head, member) \
	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
	     &pos->member != (head); \
	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))

/**
 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_rcu(pos, head, member) 		\
	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
	     &pos->member != (head);	\
	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))

/**
 * hlist_del_rcu - deletes entry from hash list without re-initialization
 * @n: the element to delete from the hash list.
 *
 * Note: list_unhashed() on entry does not return true after this,
 * the entry is in an undefined state. It is useful for RCU based
 * lockfree traversal.
 *
 * In particular, it means that we can not poison the forward
 * pointers that may still be used for walking the hash list.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry().
 */
static inline void hlist_del_rcu(struct hlist_node *n)
{
	__hlist_del(n);
	n->pprev = LIST_POISON2;
}

/**
 * hlist_replace_rcu - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * The @old entry will be replaced with the @new entry atomically.
 */
static inline void hlist_replace_rcu(struct hlist_node *old,
					struct hlist_node *new)
{
	struct hlist_node *next = old->next;

	new->next = next;
	new->pprev = old->pprev;
	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
	if (next)
		new->next->pprev = &new->next;
	old->pprev = LIST_POISON2;
}

/*
 * return the first or the next element in an RCU protected hlist
 */
#define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
#define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
#define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))

/**
 * hlist_add_head_rcu
 * @n: the element to add to the hash list.
 * @h: the list to add to.
 *
 * Description:
 * Adds the specified element to the specified hlist,
 * while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 * list-traversal primitive must be guarded by rcu_read_lock().
 */
static inline void hlist_add_head_rcu(struct hlist_node *n,
					struct hlist_head *h)
{
	struct hlist_node *first = h->first;

	n->next = first;
	n->pprev = &h->first;
	rcu_assign_pointer(hlist_first_rcu(h), n);
	if (first)
		first->pprev = &n->next;
}

/**
 * hlist_add_tail_rcu
 * @n: the element to add to the hash list.
 * @h: the list to add to.
 *
 * Description:
 * Adds the specified element to the specified hlist,
 * while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 * list-traversal primitive must be guarded by rcu_read_lock().
 */
static inline void hlist_add_tail_rcu(struct hlist_node *n,
				      struct hlist_head *h)
{
	struct hlist_node *i, *last = NULL;

	for (i = hlist_first_rcu(h); i; i = hlist_next_rcu(i))
		last = i;

	if (last) {
		n->next = last->next;
		n->pprev = &last->next;
		rcu_assign_pointer(hlist_next_rcu(last), n);
	} else {
		hlist_add_head_rcu(n, h);
	}
}

/**
 * hlist_add_before_rcu
 * @n: the new element to add to the hash list.
 * @next: the existing element to add the new element before.
 *
 * Description:
 * Adds the specified element to the specified hlist
 * before the specified node while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.
 */
static inline void hlist_add_before_rcu(struct hlist_node *n,
					struct hlist_node *next)
{
	n->pprev = next->pprev;
	n->next = next;
	rcu_assign_pointer(hlist_pprev_rcu(n), n);
	next->pprev = &n->next;
}

/**
 * hlist_add_behind_rcu
 * @n: the new element to add to the hash list.
 * @prev: the existing element to add the new element after.
 *
 * Description:
 * Adds the specified element to the specified hlist
 * after the specified node while permitting racing traversals.
 *
 * The caller must take whatever precautions are necessary
 * (such as holding appropriate locks) to avoid racing
 * with another list-mutation primitive, such as hlist_add_head_rcu()
 * or hlist_del_rcu(), running on this same list.
 * However, it is perfectly legal to run concurrently with
 * the _rcu list-traversal primitives, such as
 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 * problems on Alpha CPUs.
 */
static inline void hlist_add_behind_rcu(struct hlist_node *n,
					struct hlist_node *prev)
{
	n->next = prev->next;
	n->pprev = &prev->next;
	rcu_assign_pointer(hlist_next_rcu(prev), n);
	if (n->next)
		n->next->pprev = &n->next;
}

#define __hlist_for_each_rcu(pos, head)				\
	for (pos = rcu_dereference(hlist_first_rcu(head));	\
	     pos;						\
	     pos = rcu_dereference(hlist_next_rcu(pos)))

/**
 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the hlist_node within the struct.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 */
#define hlist_for_each_entry_rcu(pos, head, member)			\
	for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
			typeof(*(pos)), member);			\
		pos;							\
		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
			&(pos)->member)), typeof(*(pos)), member))

/**
 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the hlist_node within the struct.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 *
 * This is the same as hlist_for_each_entry_rcu() except that it does
 * not do any RCU debugging or tracing.
 */
#define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
	for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
			typeof(*(pos)), member);			\
		pos;							\
		pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
			&(pos)->member)), typeof(*(pos)), member))

/**
 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the hlist_node within the struct.
 *
 * This list-traversal primitive may safely run concurrently with
 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 * as long as the traversal is guarded by rcu_read_lock().
 */
#define hlist_for_each_entry_rcu_bh(pos, head, member)			\
	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
			typeof(*(pos)), member);			\
		pos;							\
		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
			&(pos)->member)), typeof(*(pos)), member))

/**
 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 * @pos:	the type * to use as a loop cursor.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_continue_rcu(pos, member)			\
	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
			&(pos)->member)), typeof(*(pos)), member);	\
	     pos;							\
	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
			&(pos)->member)), typeof(*(pos)), member))

/**
 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 * @pos:	the type * to use as a loop cursor.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
			&(pos)->member)), typeof(*(pos)), member);	\
	     pos;							\
	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
			&(pos)->member)), typeof(*(pos)), member))

/**
 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 * @pos:	the type * to use as a loop cursor.
 * @member:	the name of the hlist_node within the struct.
 */
#define hlist_for_each_entry_from_rcu(pos, member)			\
	for (; pos;							\
	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
			&(pos)->member)), typeof(*(pos)), member))

#endif	/* __KERNEL__ */
#endif