aboutsummaryrefslogtreecommitdiff
path: root/kernel/dma/mapping.c
blob: 49cbf3e33de71cb8fbff2d67fc4b23e1e7b4c4f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// SPDX-License-Identifier: GPL-2.0
/*
 * arch-independent dma-mapping routines
 *
 * Copyright (c) 2006  SUSE Linux Products GmbH
 * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
 */
#include <linux/memblock.h> /* for max_pfn */
#include <linux/acpi.h>
#include <linux/dma-map-ops.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include "debug.h"
#include "direct.h"

bool dma_default_coherent;

/*
 * Managed DMA API
 */
struct dma_devres {
	size_t		size;
	void		*vaddr;
	dma_addr_t	dma_handle;
	unsigned long	attrs;
};

static void dmam_release(struct device *dev, void *res)
{
	struct dma_devres *this = res;

	dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
			this->attrs);
}

static int dmam_match(struct device *dev, void *res, void *match_data)
{
	struct dma_devres *this = res, *match = match_data;

	if (this->vaddr == match->vaddr) {
		WARN_ON(this->size != match->size ||
			this->dma_handle != match->dma_handle);
		return 1;
	}
	return 0;
}

/**
 * dmam_free_coherent - Managed dma_free_coherent()
 * @dev: Device to free coherent memory for
 * @size: Size of allocation
 * @vaddr: Virtual address of the memory to free
 * @dma_handle: DMA handle of the memory to free
 *
 * Managed dma_free_coherent().
 */
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
			dma_addr_t dma_handle)
{
	struct dma_devres match_data = { size, vaddr, dma_handle };

	dma_free_coherent(dev, size, vaddr, dma_handle);
	WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
}
EXPORT_SYMBOL(dmam_free_coherent);

/**
 * dmam_alloc_attrs - Managed dma_alloc_attrs()
 * @dev: Device to allocate non_coherent memory for
 * @size: Size of allocation
 * @dma_handle: Out argument for allocated DMA handle
 * @gfp: Allocation flags
 * @attrs: Flags in the DMA_ATTR_* namespace.
 *
 * Managed dma_alloc_attrs().  Memory allocated using this function will be
 * automatically released on driver detach.
 *
 * RETURNS:
 * Pointer to allocated memory on success, NULL on failure.
 */
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t gfp, unsigned long attrs)
{
	struct dma_devres *dr;
	void *vaddr;

	dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
	if (!dr)
		return NULL;

	vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
	if (!vaddr) {
		devres_free(dr);
		return NULL;
	}

	dr->vaddr = vaddr;
	dr->dma_handle = *dma_handle;
	dr->size = size;
	dr->attrs = attrs;

	devres_add(dev, dr);

	return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_attrs);

static bool dma_go_direct(struct device *dev, dma_addr_t mask,
		const struct dma_map_ops *ops)
{
	if (likely(!ops))
		return true;
#ifdef CONFIG_DMA_OPS_BYPASS
	if (dev->dma_ops_bypass)
		return min_not_zero(mask, dev->bus_dma_limit) >=
			    dma_direct_get_required_mask(dev);
#endif
	return false;
}


/*
 * Check if the devices uses a direct mapping for streaming DMA operations.
 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
 * enough.
 */
static inline bool dma_alloc_direct(struct device *dev,
		const struct dma_map_ops *ops)
{
	return dma_go_direct(dev, dev->coherent_dma_mask, ops);
}

static inline bool dma_map_direct(struct device *dev,
		const struct dma_map_ops *ops)
{
	return dma_go_direct(dev, *dev->dma_mask, ops);
}

dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
		size_t offset, size_t size, enum dma_data_direction dir,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	dma_addr_t addr;

	BUG_ON(!valid_dma_direction(dir));

	if (WARN_ON_ONCE(!dev->dma_mask))
		return DMA_MAPPING_ERROR;

	if (dma_map_direct(dev, ops) ||
	    arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
		addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
	else
		addr = ops->map_page(dev, page, offset, size, dir, attrs);
	debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);

	return addr;
}
EXPORT_SYMBOL(dma_map_page_attrs);

void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops) ||
	    arch_dma_unmap_page_direct(dev, addr + size))
		dma_direct_unmap_page(dev, addr, size, dir, attrs);
	else if (ops->unmap_page)
		ops->unmap_page(dev, addr, size, dir, attrs);
	debug_dma_unmap_page(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_page_attrs);

static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
	 int nents, enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	int ents;

	BUG_ON(!valid_dma_direction(dir));

	if (WARN_ON_ONCE(!dev->dma_mask))
		return 0;

	if (dma_map_direct(dev, ops) ||
	    arch_dma_map_sg_direct(dev, sg, nents))
		ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
	else
		ents = ops->map_sg(dev, sg, nents, dir, attrs);

	if (ents > 0)
		debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
	else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
			      ents != -EIO && ents != -EREMOTEIO))
		return -EIO;

	return ents;
}

/**
 * dma_map_sg_attrs - Map the given buffer for DMA
 * @dev:	The device for which to perform the DMA operation
 * @sg:		The sg_table object describing the buffer
 * @nents:	Number of entries to map
 * @dir:	DMA direction
 * @attrs:	Optional DMA attributes for the map operation
 *
 * Maps a buffer described by a scatterlist passed in the sg argument with
 * nents segments for the @dir DMA operation by the @dev device.
 *
 * Returns the number of mapped entries (which can be less than nents)
 * on success. Zero is returned for any error.
 *
 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
 * original sg and original nents (not the value returned by this funciton).
 */
unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
		    int nents, enum dma_data_direction dir, unsigned long attrs)
{
	int ret;

	ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
	if (ret < 0)
		return 0;
	return ret;
}
EXPORT_SYMBOL(dma_map_sg_attrs);

/**
 * dma_map_sgtable - Map the given buffer for DMA
 * @dev:	The device for which to perform the DMA operation
 * @sgt:	The sg_table object describing the buffer
 * @dir:	DMA direction
 * @attrs:	Optional DMA attributes for the map operation
 *
 * Maps a buffer described by a scatterlist stored in the given sg_table
 * object for the @dir DMA operation by the @dev device. After success, the
 * ownership for the buffer is transferred to the DMA domain.  One has to
 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
 * ownership of the buffer back to the CPU domain before touching the
 * buffer by the CPU.
 *
 * Returns 0 on success or a negative error code on error. The following
 * error codes are supported with the given meaning:
 *
 *   -EINVAL		An invalid argument, unaligned access or other error
 *			in usage. Will not succeed if retried.
 *   -ENOMEM		Insufficient resources (like memory or IOVA space) to
 *			complete the mapping. Should succeed if retried later.
 *   -EIO		Legacy error code with an unknown meaning. eg. this is
 *			returned if a lower level call returned
 *			DMA_MAPPING_ERROR.
 *   -EREMOTEIO		The DMA device cannot access P2PDMA memory specified
 *			in the sg_table. This will not succeed if retried.
 */
int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
		    enum dma_data_direction dir, unsigned long attrs)
{
	int nents;

	nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
	if (nents < 0)
		return nents;
	sgt->nents = nents;
	return 0;
}
EXPORT_SYMBOL_GPL(dma_map_sgtable);

void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
				      int nents, enum dma_data_direction dir,
				      unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	debug_dma_unmap_sg(dev, sg, nents, dir);
	if (dma_map_direct(dev, ops) ||
	    arch_dma_unmap_sg_direct(dev, sg, nents))
		dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
	else if (ops->unmap_sg)
		ops->unmap_sg(dev, sg, nents, dir, attrs);
}
EXPORT_SYMBOL(dma_unmap_sg_attrs);

dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
		size_t size, enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	dma_addr_t addr = DMA_MAPPING_ERROR;

	BUG_ON(!valid_dma_direction(dir));

	if (WARN_ON_ONCE(!dev->dma_mask))
		return DMA_MAPPING_ERROR;

	if (dma_map_direct(dev, ops))
		addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
	else if (ops->map_resource)
		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);

	debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
	return addr;
}
EXPORT_SYMBOL(dma_map_resource);

void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (!dma_map_direct(dev, ops) && ops->unmap_resource)
		ops->unmap_resource(dev, addr, size, dir, attrs);
	debug_dma_unmap_resource(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_unmap_resource);

void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
		enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
	else if (ops->sync_single_for_cpu)
		ops->sync_single_for_cpu(dev, addr, size, dir);
	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);

void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
		size_t size, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_single_for_device(dev, addr, size, dir);
	else if (ops->sync_single_for_device)
		ops->sync_single_for_device(dev, addr, size, dir);
	debug_dma_sync_single_for_device(dev, addr, size, dir);
}
EXPORT_SYMBOL(dma_sync_single_for_device);

void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
		    int nelems, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
	else if (ops->sync_sg_for_cpu)
		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);

void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
		       int nelems, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	BUG_ON(!valid_dma_direction(dir));
	if (dma_map_direct(dev, ops))
		dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
	else if (ops->sync_sg_for_device)
		ops->sync_sg_for_device(dev, sg, nelems, dir);
	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
}
EXPORT_SYMBOL(dma_sync_sg_for_device);

/*
 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
 * that the intention is to allow exporting memory allocated via the
 * coherent DMA APIs through the dma_buf API, which only accepts a
 * scattertable.  This presents a couple of problems:
 * 1. Not all memory allocated via the coherent DMA APIs is backed by
 *    a struct page
 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
 *    as we will try to flush the memory through a different alias to that
 *    actually being used (and the flushes are redundant.)
 */
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
				size, attrs);
	if (!ops->get_sgtable)
		return -ENXIO;
	return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_get_sgtable_attrs);

#ifdef CONFIG_MMU
/*
 * Return the page attributes used for mapping dma_alloc_* memory, either in
 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
 */
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
{
	if (dev_is_dma_coherent(dev))
		return prot;
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
	if (attrs & DMA_ATTR_WRITE_COMBINE)
		return pgprot_writecombine(prot);
#endif
	return pgprot_dmacoherent(prot);
}
#endif /* CONFIG_MMU */

/**
 * dma_can_mmap - check if a given device supports dma_mmap_*
 * @dev: device to check
 *
 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
 * map DMA allocations to userspace.
 */
bool dma_can_mmap(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_can_mmap(dev);
	return ops->mmap != NULL;
}
EXPORT_SYMBOL_GPL(dma_can_mmap);

/**
 * dma_mmap_attrs - map a coherent DMA allocation into user space
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @vma: vm_area_struct describing requested user mapping
 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
 * @dma_addr: device-view address returned from dma_alloc_attrs
 * @size: size of memory originally requested in dma_alloc_attrs
 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
 *
 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
 * space.  The coherent DMA buffer must not be freed by the driver until the
 * user space mapping has been released.
 */
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		void *cpu_addr, dma_addr_t dma_addr, size_t size,
		unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
				attrs);
	if (!ops->mmap)
		return -ENXIO;
	return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_mmap_attrs);

u64 dma_get_required_mask(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_alloc_direct(dev, ops))
		return dma_direct_get_required_mask(dev);
	if (ops->get_required_mask)
		return ops->get_required_mask(dev);

	/*
	 * We require every DMA ops implementation to at least support a 32-bit
	 * DMA mask (and use bounce buffering if that isn't supported in
	 * hardware).  As the direct mapping code has its own routine to
	 * actually report an optimal mask we default to 32-bit here as that
	 * is the right thing for most IOMMUs, and at least not actively
	 * harmful in general.
	 */
	return DMA_BIT_MASK(32);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);

void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
		gfp_t flag, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	void *cpu_addr;

	WARN_ON_ONCE(!dev->coherent_dma_mask);

	if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
		return cpu_addr;

	/* let the implementation decide on the zone to allocate from: */
	flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);

	if (dma_alloc_direct(dev, ops))
		cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
	else if (ops->alloc)
		cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
	else
		return NULL;

	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
	return cpu_addr;
}
EXPORT_SYMBOL(dma_alloc_attrs);

void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
		dma_addr_t dma_handle, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
		return;
	/*
	 * On non-coherent platforms which implement DMA-coherent buffers via
	 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
	 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
	 * sleep on some machines, and b) an indication that the driver is
	 * probably misusing the coherent API anyway.
	 */
	WARN_ON(irqs_disabled());

	if (!cpu_addr)
		return;

	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
	if (dma_alloc_direct(dev, ops))
		dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
	else if (ops->free)
		ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
EXPORT_SYMBOL(dma_free_attrs);

static struct page *__dma_alloc_pages(struct device *dev, size_t size,
		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (WARN_ON_ONCE(!dev->coherent_dma_mask))
		return NULL;
	if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
		return NULL;

	size = PAGE_ALIGN(size);
	if (dma_alloc_direct(dev, ops))
		return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
	if (!ops->alloc_pages)
		return NULL;
	return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
}

struct page *dma_alloc_pages(struct device *dev, size_t size,
		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
{
	struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);

	if (page)
		debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
	return page;
}
EXPORT_SYMBOL_GPL(dma_alloc_pages);

static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
		dma_addr_t dma_handle, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	size = PAGE_ALIGN(size);
	if (dma_alloc_direct(dev, ops))
		dma_direct_free_pages(dev, size, page, dma_handle, dir);
	else if (ops->free_pages)
		ops->free_pages(dev, size, page, dma_handle, dir);
}

void dma_free_pages(struct device *dev, size_t size, struct page *page,
		dma_addr_t dma_handle, enum dma_data_direction dir)
{
	debug_dma_unmap_page(dev, dma_handle, size, dir);
	__dma_free_pages(dev, size, page, dma_handle, dir);
}
EXPORT_SYMBOL_GPL(dma_free_pages);

int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
		size_t size, struct page *page)
{
	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;

	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
		return -ENXIO;
	return remap_pfn_range(vma, vma->vm_start,
			       page_to_pfn(page) + vma->vm_pgoff,
			       vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
}
EXPORT_SYMBOL_GPL(dma_mmap_pages);

static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
		enum dma_data_direction dir, gfp_t gfp)
{
	struct sg_table *sgt;
	struct page *page;

	sgt = kmalloc(sizeof(*sgt), gfp);
	if (!sgt)
		return NULL;
	if (sg_alloc_table(sgt, 1, gfp))
		goto out_free_sgt;
	page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
	if (!page)
		goto out_free_table;
	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	sg_dma_len(sgt->sgl) = sgt->sgl->length;
	return sgt;
out_free_table:
	sg_free_table(sgt);
out_free_sgt:
	kfree(sgt);
	return NULL;
}

struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	struct sg_table *sgt;

	if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
		return NULL;

	if (ops && ops->alloc_noncontiguous)
		sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
	else
		sgt = alloc_single_sgt(dev, size, dir, gfp);

	if (sgt) {
		sgt->nents = 1;
		debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
	}
	return sgt;
}
EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);

static void free_single_sgt(struct device *dev, size_t size,
		struct sg_table *sgt, enum dma_data_direction dir)
{
	__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
			 dir);
	sg_free_table(sgt);
	kfree(sgt);
}

void dma_free_noncontiguous(struct device *dev, size_t size,
		struct sg_table *sgt, enum dma_data_direction dir)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
	if (ops && ops->free_noncontiguous)
		ops->free_noncontiguous(dev, size, sgt, dir);
	else
		free_single_sgt(dev, size, sgt, dir);
}
EXPORT_SYMBOL_GPL(dma_free_noncontiguous);

void *dma_vmap_noncontiguous(struct device *dev, size_t size,
		struct sg_table *sgt)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;

	if (ops && ops->alloc_noncontiguous)
		return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
	return page_address(sg_page(sgt->sgl));
}
EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);

void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (ops && ops->alloc_noncontiguous)
		vunmap(vaddr);
}
EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);

int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
		size_t size, struct sg_table *sgt)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (ops && ops->alloc_noncontiguous) {
		unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;

		if (vma->vm_pgoff >= count ||
		    vma_pages(vma) > count - vma->vm_pgoff)
			return -ENXIO;
		return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
	}
	return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
}
EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);

int dma_supported(struct device *dev, u64 mask)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	/*
	 * ->dma_supported sets the bypass flag, so we must always call
	 * into the method here unless the device is truly direct mapped.
	 */
	if (!ops)
		return dma_direct_supported(dev, mask);
	if (!ops->dma_supported)
		return 1;
	return ops->dma_supported(dev, mask);
}
EXPORT_SYMBOL(dma_supported);

bool dma_pci_p2pdma_supported(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	/* if ops is not set, dma direct will be used which supports P2PDMA */
	if (!ops)
		return true;

	/*
	 * Note: dma_ops_bypass is not checked here because P2PDMA should
	 * not be used with dma mapping ops that do not have support even
	 * if the specific device is bypassing them.
	 */

	return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
}
EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);

#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
void arch_dma_set_mask(struct device *dev, u64 mask);
#else
#define arch_dma_set_mask(dev, mask)	do { } while (0)
#endif

int dma_set_mask(struct device *dev, u64 mask)
{
	/*
	 * Truncate the mask to the actually supported dma_addr_t width to
	 * avoid generating unsupportable addresses.
	 */
	mask = (dma_addr_t)mask;

	if (!dev->dma_mask || !dma_supported(dev, mask))
		return -EIO;

	arch_dma_set_mask(dev, mask);
	*dev->dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_mask);

int dma_set_coherent_mask(struct device *dev, u64 mask)
{
	/*
	 * Truncate the mask to the actually supported dma_addr_t width to
	 * avoid generating unsupportable addresses.
	 */
	mask = (dma_addr_t)mask;

	if (!dma_supported(dev, mask))
		return -EIO;

	dev->coherent_dma_mask = mask;
	return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);

size_t dma_max_mapping_size(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	size_t size = SIZE_MAX;

	if (dma_map_direct(dev, ops))
		size = dma_direct_max_mapping_size(dev);
	else if (ops && ops->max_mapping_size)
		size = ops->max_mapping_size(dev);

	return size;
}
EXPORT_SYMBOL_GPL(dma_max_mapping_size);

size_t dma_opt_mapping_size(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);
	size_t size = SIZE_MAX;

	if (ops && ops->opt_mapping_size)
		size = ops->opt_mapping_size();

	return min(dma_max_mapping_size(dev), size);
}
EXPORT_SYMBOL_GPL(dma_opt_mapping_size);

bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (dma_map_direct(dev, ops))
		return dma_direct_need_sync(dev, dma_addr);
	return ops->sync_single_for_cpu || ops->sync_single_for_device;
}
EXPORT_SYMBOL_GPL(dma_need_sync);

unsigned long dma_get_merge_boundary(struct device *dev)
{
	const struct dma_map_ops *ops = get_dma_ops(dev);

	if (!ops || !ops->get_merge_boundary)
		return 0;	/* can't merge */

	return ops->get_merge_boundary(dev);
}
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);