aboutsummaryrefslogtreecommitdiff
path: root/kernel/futex.c
blob: 4938a00bc7857df511aab1c3b105b17bfaa47ebe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
 *
 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
#include <linux/compat.h>
#include <linux/jhash.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/hugetlb.h>
#include <linux/freezer.h>
#include <linux/memblock.h>
#include <linux/fault-inject.h>
#include <linux/time_namespace.h>

#include <asm/futex.h>

#include "locking/rtmutex_common.h"

/*
 * READ this before attempting to hack on futexes!
 *
 * Basic futex operation and ordering guarantees
 * =============================================
 *
 * The waiter reads the futex value in user space and calls
 * futex_wait(). This function computes the hash bucket and acquires
 * the hash bucket lock. After that it reads the futex user space value
 * again and verifies that the data has not changed. If it has not changed
 * it enqueues itself into the hash bucket, releases the hash bucket lock
 * and schedules.
 *
 * The waker side modifies the user space value of the futex and calls
 * futex_wake(). This function computes the hash bucket and acquires the
 * hash bucket lock. Then it looks for waiters on that futex in the hash
 * bucket and wakes them.
 *
 * In futex wake up scenarios where no tasks are blocked on a futex, taking
 * the hb spinlock can be avoided and simply return. In order for this
 * optimization to work, ordering guarantees must exist so that the waiter
 * being added to the list is acknowledged when the list is concurrently being
 * checked by the waker, avoiding scenarios like the following:
 *
 * CPU 0                               CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *   uval = *futex;
 *                                     *futex = newval;
 *                                     sys_futex(WAKE, futex);
 *                                       futex_wake(futex);
 *                                       if (queue_empty())
 *                                         return;
 *   if (uval == val)
 *      lock(hash_bucket(futex));
 *      queue();
 *     unlock(hash_bucket(futex));
 *     schedule();
 *
 * This would cause the waiter on CPU 0 to wait forever because it
 * missed the transition of the user space value from val to newval
 * and the waker did not find the waiter in the hash bucket queue.
 *
 * The correct serialization ensures that a waiter either observes
 * the changed user space value before blocking or is woken by a
 * concurrent waker:
 *
 * CPU 0                                 CPU 1
 * val = *futex;
 * sys_futex(WAIT, futex, val);
 *   futex_wait(futex, val);
 *
 *   waiters++; (a)
 *   smp_mb(); (A) <-- paired with -.
 *                                  |
 *   lock(hash_bucket(futex));      |
 *                                  |
 *   uval = *futex;                 |
 *                                  |        *futex = newval;
 *                                  |        sys_futex(WAKE, futex);
 *                                  |          futex_wake(futex);
 *                                  |
 *                                  `--------> smp_mb(); (B)
 *   if (uval == val)
 *     queue();
 *     unlock(hash_bucket(futex));
 *     schedule();                         if (waiters)
 *                                           lock(hash_bucket(futex));
 *   else                                    wake_waiters(futex);
 *     waiters--; (b)                        unlock(hash_bucket(futex));
 *
 * Where (A) orders the waiters increment and the futex value read through
 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 * to futex and the waiters read (see hb_waiters_pending()).
 *
 * This yields the following case (where X:=waiters, Y:=futex):
 *
 *	X = Y = 0
 *
 *	w[X]=1		w[Y]=1
 *	MB		MB
 *	r[Y]=y		r[X]=x
 *
 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 * the guarantee that we cannot both miss the futex variable change and the
 * enqueue.
 *
 * Note that a new waiter is accounted for in (a) even when it is possible that
 * the wait call can return error, in which case we backtrack from it in (b).
 * Refer to the comment in queue_lock().
 *
 * Similarly, in order to account for waiters being requeued on another
 * address we always increment the waiters for the destination bucket before
 * acquiring the lock. It then decrements them again  after releasing it -
 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 * will do the additional required waiter count housekeeping. This is done for
 * double_lock_hb() and double_unlock_hb(), respectively.
 */

#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
static int  __read_mostly futex_cmpxchg_enabled;
#endif

/*
 * Futex flags used to encode options to functions and preserve them across
 * restarts.
 */
#ifdef CONFIG_MMU
# define FLAGS_SHARED		0x01
#else
/*
 * NOMMU does not have per process address space. Let the compiler optimize
 * code away.
 */
# define FLAGS_SHARED		0x00
#endif
#define FLAGS_CLOCKRT		0x02
#define FLAGS_HAS_TIMEOUT	0x04

/*
 * Priority Inheritance state:
 */
struct futex_pi_state {
	/*
	 * list of 'owned' pi_state instances - these have to be
	 * cleaned up in do_exit() if the task exits prematurely:
	 */
	struct list_head list;

	/*
	 * The PI object:
	 */
	struct rt_mutex pi_mutex;

	struct task_struct *owner;
	refcount_t refcount;

	union futex_key key;
} __randomize_layout;

/**
 * struct futex_q - The hashed futex queue entry, one per waiting task
 * @list:		priority-sorted list of tasks waiting on this futex
 * @task:		the task waiting on the futex
 * @lock_ptr:		the hash bucket lock
 * @key:		the key the futex is hashed on
 * @pi_state:		optional priority inheritance state
 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 * @requeue_pi_key:	the requeue_pi target futex key
 * @bitset:		bitset for the optional bitmasked wakeup
 *
 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 * we can wake only the relevant ones (hashed queues may be shared).
 *
 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 * The order of wakeup is always to make the first condition true, then
 * the second.
 *
 * PI futexes are typically woken before they are removed from the hash list via
 * the rt_mutex code. See unqueue_me_pi().
 */
struct futex_q {
	struct plist_node list;

	struct task_struct *task;
	spinlock_t *lock_ptr;
	union futex_key key;
	struct futex_pi_state *pi_state;
	struct rt_mutex_waiter *rt_waiter;
	union futex_key *requeue_pi_key;
	u32 bitset;
} __randomize_layout;

static const struct futex_q futex_q_init = {
	/* list gets initialized in queue_me()*/
	.key = FUTEX_KEY_INIT,
	.bitset = FUTEX_BITSET_MATCH_ANY
};

/*
 * Hash buckets are shared by all the futex_keys that hash to the same
 * location.  Each key may have multiple futex_q structures, one for each task
 * waiting on a futex.
 */
struct futex_hash_bucket {
	atomic_t waiters;
	spinlock_t lock;
	struct plist_head chain;
} ____cacheline_aligned_in_smp;

/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in hash_futex()), so ensure that they
 * reside in the same cacheline.
 */
static struct {
	struct futex_hash_bucket *queues;
	unsigned long            hashsize;
} __futex_data __read_mostly __aligned(2*sizeof(long));
#define futex_queues   (__futex_data.queues)
#define futex_hashsize (__futex_data.hashsize)


/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {
	struct fault_attr attr;

	bool ignore_private;
} fail_futex = {
	.attr = FAULT_ATTR_INITIALIZER,
	.ignore_private = false,
};

static int __init setup_fail_futex(char *str)
{
	return setup_fault_attr(&fail_futex.attr, str);
}
__setup("fail_futex=", setup_fail_futex);

static bool should_fail_futex(bool fshared)
{
	if (fail_futex.ignore_private && !fshared)
		return false;

	return should_fail(&fail_futex.attr, 1);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;

	dir = fault_create_debugfs_attr("fail_futex", NULL,
					&fail_futex.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);

	debugfs_create_bool("ignore-private", mode, dir,
			    &fail_futex.ignore_private);
	return 0;
}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else
static inline bool should_fail_futex(bool fshared)
{
	return false;
}
#endif /* CONFIG_FAIL_FUTEX */

#ifdef CONFIG_COMPAT
static void compat_exit_robust_list(struct task_struct *curr);
#endif

/*
 * Reflects a new waiter being added to the waitqueue.
 */
static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_inc(&hb->waiters);
	/*
	 * Full barrier (A), see the ordering comment above.
	 */
	smp_mb__after_atomic();
#endif
}

/*
 * Reflects a waiter being removed from the waitqueue by wakeup
 * paths.
 */
static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	atomic_dec(&hb->waiters);
#endif
}

static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
	/*
	 * Full barrier (B), see the ordering comment above.
	 */
	smp_mb();
	return atomic_read(&hb->waiters);
#else
	return 1;
#endif
}

/**
 * hash_futex - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
 */
static struct futex_hash_bucket *hash_futex(union futex_key *key)
{
	u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
			  key->both.offset);

	return &futex_queues[hash & (futex_hashsize - 1)];
}


/**
 * match_futex - Check whether two futex keys are equal
 * @key1:	Pointer to key1
 * @key2:	Pointer to key2
 *
 * Return 1 if two futex_keys are equal, 0 otherwise.
 */
static inline int match_futex(union futex_key *key1, union futex_key *key2)
{
	return (key1 && key2
		&& key1->both.word == key2->both.word
		&& key1->both.ptr == key2->both.ptr
		&& key1->both.offset == key2->both.offset);
}

enum futex_access {
	FUTEX_READ,
	FUTEX_WRITE
};

/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
static inline struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{
	if (!time)
		return NULL;

	hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
				      CLOCK_REALTIME : CLOCK_MONOTONIC,
				      HRTIMER_MODE_ABS);
	/*
	 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
	 * effectively the same as calling hrtimer_set_expires().
	 */
	hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);

	return timeout;
}

/*
 * Generate a machine wide unique identifier for this inode.
 *
 * This relies on u64 not wrapping in the life-time of the machine; which with
 * 1ns resolution means almost 585 years.
 *
 * This further relies on the fact that a well formed program will not unmap
 * the file while it has a (shared) futex waiting on it. This mapping will have
 * a file reference which pins the mount and inode.
 *
 * If for some reason an inode gets evicted and read back in again, it will get
 * a new sequence number and will _NOT_ match, even though it is the exact same
 * file.
 *
 * It is important that match_futex() will never have a false-positive, esp.
 * for PI futexes that can mess up the state. The above argues that false-negatives
 * are only possible for malformed programs.
 */
static u64 get_inode_sequence_number(struct inode *inode)
{
	static atomic64_t i_seq;
	u64 old;

	/* Does the inode already have a sequence number? */
	old = atomic64_read(&inode->i_sequence);
	if (likely(old))
		return old;

	for (;;) {
		u64 new = atomic64_add_return(1, &i_seq);
		if (WARN_ON_ONCE(!new))
			continue;

		old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
		if (old)
			return old;
		return new;
	}
}

/**
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @fshared:	false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
 * @key:	address where result is stored.
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
 *
 * Return: a negative error code or 0
 *
 * The key words are stored in @key on success.
 *
 * For shared mappings (when @fshared), the key is:
 *
 *   ( inode->i_sequence, page->index, offset_within_page )
 *
 * [ also see get_inode_sequence_number() ]
 *
 * For private mappings (or when !@fshared), the key is:
 *
 *   ( current->mm, address, 0 )
 *
 * This allows (cross process, where applicable) identification of the futex
 * without keeping the page pinned for the duration of the FUTEX_WAIT.
 *
 * lock_page() might sleep, the caller should not hold a spinlock.
 */
static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
			 enum futex_access rw)
{
	unsigned long address = (unsigned long)uaddr;
	struct mm_struct *mm = current->mm;
	struct page *page, *tail;
	struct address_space *mapping;
	int err, ro = 0;

	/*
	 * The futex address must be "naturally" aligned.
	 */
	key->both.offset = address % PAGE_SIZE;
	if (unlikely((address % sizeof(u32)) != 0))
		return -EINVAL;
	address -= key->both.offset;

	if (unlikely(!access_ok(uaddr, sizeof(u32))))
		return -EFAULT;

	if (unlikely(should_fail_futex(fshared)))
		return -EFAULT;

	/*
	 * PROCESS_PRIVATE futexes are fast.
	 * As the mm cannot disappear under us and the 'key' only needs
	 * virtual address, we dont even have to find the underlying vma.
	 * Note : We do have to check 'uaddr' is a valid user address,
	 *        but access_ok() should be faster than find_vma()
	 */
	if (!fshared) {
		key->private.mm = mm;
		key->private.address = address;
		return 0;
	}

again:
	/* Ignore any VERIFY_READ mapping (futex common case) */
	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

	err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
	/*
	 * If write access is not required (eg. FUTEX_WAIT), try
	 * and get read-only access.
	 */
	if (err == -EFAULT && rw == FUTEX_READ) {
		err = get_user_pages_fast(address, 1, 0, &page);
		ro = 1;
	}
	if (err < 0)
		return err;
	else
		err = 0;

	/*
	 * The treatment of mapping from this point on is critical. The page
	 * lock protects many things but in this context the page lock
	 * stabilizes mapping, prevents inode freeing in the shared
	 * file-backed region case and guards against movement to swap cache.
	 *
	 * Strictly speaking the page lock is not needed in all cases being
	 * considered here and page lock forces unnecessarily serialization
	 * From this point on, mapping will be re-verified if necessary and
	 * page lock will be acquired only if it is unavoidable
	 *
	 * Mapping checks require the head page for any compound page so the
	 * head page and mapping is looked up now. For anonymous pages, it
	 * does not matter if the page splits in the future as the key is
	 * based on the address. For filesystem-backed pages, the tail is
	 * required as the index of the page determines the key. For
	 * base pages, there is no tail page and tail == page.
	 */
	tail = page;
	page = compound_head(page);
	mapping = READ_ONCE(page->mapping);

	/*
	 * If page->mapping is NULL, then it cannot be a PageAnon
	 * page; but it might be the ZERO_PAGE or in the gate area or
	 * in a special mapping (all cases which we are happy to fail);
	 * or it may have been a good file page when get_user_pages_fast
	 * found it, but truncated or holepunched or subjected to
	 * invalidate_complete_page2 before we got the page lock (also
	 * cases which we are happy to fail).  And we hold a reference,
	 * so refcount care in invalidate_complete_page's remove_mapping
	 * prevents drop_caches from setting mapping to NULL beneath us.
	 *
	 * The case we do have to guard against is when memory pressure made
	 * shmem_writepage move it from filecache to swapcache beneath us:
	 * an unlikely race, but we do need to retry for page->mapping.
	 */
	if (unlikely(!mapping)) {
		int shmem_swizzled;

		/*
		 * Page lock is required to identify which special case above
		 * applies. If this is really a shmem page then the page lock
		 * will prevent unexpected transitions.
		 */
		lock_page(page);
		shmem_swizzled = PageSwapCache(page) || page->mapping;
		unlock_page(page);
		put_page(page);

		if (shmem_swizzled)
			goto again;

		return -EFAULT;
	}

	/*
	 * Private mappings are handled in a simple way.
	 *
	 * If the futex key is stored on an anonymous page, then the associated
	 * object is the mm which is implicitly pinned by the calling process.
	 *
	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
	 * it's a read-only handle, it's expected that futexes attach to
	 * the object not the particular process.
	 */
	if (PageAnon(page)) {
		/*
		 * A RO anonymous page will never change and thus doesn't make
		 * sense for futex operations.
		 */
		if (unlikely(should_fail_futex(true)) || ro) {
			err = -EFAULT;
			goto out;
		}

		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
		key->private.mm = mm;
		key->private.address = address;

	} else {
		struct inode *inode;

		/*
		 * The associated futex object in this case is the inode and
		 * the page->mapping must be traversed. Ordinarily this should
		 * be stabilised under page lock but it's not strictly
		 * necessary in this case as we just want to pin the inode, not
		 * update the radix tree or anything like that.
		 *
		 * The RCU read lock is taken as the inode is finally freed
		 * under RCU. If the mapping still matches expectations then the
		 * mapping->host can be safely accessed as being a valid inode.
		 */
		rcu_read_lock();

		if (READ_ONCE(page->mapping) != mapping) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		inode = READ_ONCE(mapping->host);
		if (!inode) {
			rcu_read_unlock();
			put_page(page);

			goto again;
		}

		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
		key->shared.i_seq = get_inode_sequence_number(inode);
		key->shared.pgoff = basepage_index(tail);
		rcu_read_unlock();
	}

out:
	put_page(page);
	return err;
}

/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non-destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
static int fault_in_user_writeable(u32 __user *uaddr)
{
	struct mm_struct *mm = current->mm;
	int ret;

	mmap_read_lock(mm);
	ret = fixup_user_fault(mm, (unsigned long)uaddr,
			       FAULT_FLAG_WRITE, NULL);
	mmap_read_unlock(mm);

	return ret < 0 ? ret : 0;
}

/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
 *
 * Must be called with the hb lock held.
 */
static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
					union futex_key *key)
{
	struct futex_q *this;

	plist_for_each_entry(this, &hb->chain, list) {
		if (match_futex(&this->key, key))
			return this;
	}
	return NULL;
}

static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
				      u32 uval, u32 newval)
{
	int ret;

	pagefault_disable();
	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
	pagefault_enable();

	return ret;
}

static int get_futex_value_locked(u32 *dest, u32 __user *from)
{
	int ret;

	pagefault_disable();
	ret = __get_user(*dest, from);
	pagefault_enable();

	return ret ? -EFAULT : 0;
}


/*
 * PI code:
 */
static int refill_pi_state_cache(void)
{
	struct futex_pi_state *pi_state;

	if (likely(current->pi_state_cache))
		return 0;

	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);

	if (!pi_state)
		return -ENOMEM;

	INIT_LIST_HEAD(&pi_state->list);
	/* pi_mutex gets initialized later */
	pi_state->owner = NULL;
	refcount_set(&pi_state->refcount, 1);
	pi_state->key = FUTEX_KEY_INIT;

	current->pi_state_cache = pi_state;

	return 0;
}

static struct futex_pi_state *alloc_pi_state(void)
{
	struct futex_pi_state *pi_state = current->pi_state_cache;

	WARN_ON(!pi_state);
	current->pi_state_cache = NULL;

	return pi_state;
}

static void pi_state_update_owner(struct futex_pi_state *pi_state,
				  struct task_struct *new_owner)
{
	struct task_struct *old_owner = pi_state->owner;

	lockdep_assert_held(&pi_state->pi_mutex.wait_lock);

	if (old_owner) {
		raw_spin_lock(&old_owner->pi_lock);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		raw_spin_unlock(&old_owner->pi_lock);
	}

	if (new_owner) {
		raw_spin_lock(&new_owner->pi_lock);
		WARN_ON(!list_empty(&pi_state->list));
		list_add(&pi_state->list, &new_owner->pi_state_list);
		pi_state->owner = new_owner;
		raw_spin_unlock(&new_owner->pi_lock);
	}
}

static void get_pi_state(struct futex_pi_state *pi_state)
{
	WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
}

/*
 * Drops a reference to the pi_state object and frees or caches it
 * when the last reference is gone.
 */
static void put_pi_state(struct futex_pi_state *pi_state)
{
	if (!pi_state)
		return;

	if (!refcount_dec_and_test(&pi_state->refcount))
		return;

	/*
	 * If pi_state->owner is NULL, the owner is most probably dying
	 * and has cleaned up the pi_state already
	 */
	if (pi_state->owner) {
		unsigned long flags;

		raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
		pi_state_update_owner(pi_state, NULL);
		rt_mutex_proxy_unlock(&pi_state->pi_mutex);
		raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
	}

	if (current->pi_state_cache) {
		kfree(pi_state);
	} else {
		/*
		 * pi_state->list is already empty.
		 * clear pi_state->owner.
		 * refcount is at 0 - put it back to 1.
		 */
		pi_state->owner = NULL;
		refcount_set(&pi_state->refcount, 1);
		current->pi_state_cache = pi_state;
	}
}

#ifdef CONFIG_FUTEX_PI

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
static void exit_pi_state_list(struct task_struct *curr)
{
	struct list_head *next, *head = &curr->pi_state_list;
	struct futex_pi_state *pi_state;
	struct futex_hash_bucket *hb;
	union futex_key key = FUTEX_KEY_INIT;

	if (!futex_cmpxchg_enabled)
		return;
	/*
	 * We are a ZOMBIE and nobody can enqueue itself on
	 * pi_state_list anymore, but we have to be careful
	 * versus waiters unqueueing themselves:
	 */
	raw_spin_lock_irq(&curr->pi_lock);
	while (!list_empty(head)) {
		next = head->next;
		pi_state = list_entry(next, struct futex_pi_state, list);
		key = pi_state->key;
		hb = hash_futex(&key);

		/*
		 * We can race against put_pi_state() removing itself from the
		 * list (a waiter going away). put_pi_state() will first
		 * decrement the reference count and then modify the list, so
		 * its possible to see the list entry but fail this reference
		 * acquire.
		 *
		 * In that case; drop the locks to let put_pi_state() make
		 * progress and retry the loop.
		 */
		if (!refcount_inc_not_zero(&pi_state->refcount)) {
			raw_spin_unlock_irq(&curr->pi_lock);
			cpu_relax();
			raw_spin_lock_irq(&curr->pi_lock);
			continue;
		}
		raw_spin_unlock_irq(&curr->pi_lock);

		spin_lock(&hb->lock);
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		raw_spin_lock(&curr->pi_lock);
		/*
		 * We dropped the pi-lock, so re-check whether this
		 * task still owns the PI-state:
		 */
		if (head->next != next) {
			/* retain curr->pi_lock for the loop invariant */
			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
			spin_unlock(&hb->lock);
			put_pi_state(pi_state);
			continue;
		}

		WARN_ON(pi_state->owner != curr);
		WARN_ON(list_empty(&pi_state->list));
		list_del_init(&pi_state->list);
		pi_state->owner = NULL;

		raw_spin_unlock(&curr->pi_lock);
		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
		spin_unlock(&hb->lock);

		rt_mutex_futex_unlock(&pi_state->pi_mutex);
		put_pi_state(pi_state);

		raw_spin_lock_irq(&curr->pi_lock);
	}
	raw_spin_unlock_irq(&curr->pi_lock);
}
#else
static inline void exit_pi_state_list(struct task_struct *curr) { }
#endif

/*
 * We need to check the following states:
 *
 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 *
 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 *
 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 *
 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 *
 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 *
 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 *
 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 *
 * [1]	Indicates that the kernel can acquire the futex atomically. We
 *	came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 *
 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 *      thread is found then it indicates that the owner TID has died.
 *
 * [3]	Invalid. The waiter is queued on a non PI futex
 *
 * [4]	Valid state after exit_robust_list(), which sets the user space
 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 *
 * [5]	The user space value got manipulated between exit_robust_list()
 *	and exit_pi_state_list()
 *
 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 *	the pi_state but cannot access the user space value.
 *
 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 *
 * [8]	Owner and user space value match
 *
 * [9]	There is no transient state which sets the user space TID to 0
 *	except exit_robust_list(), but this is indicated by the
 *	FUTEX_OWNER_DIED bit. See [4]
 *
 * [10] There is no transient state which leaves owner and user space
 *	TID out of sync. Except one error case where the kernel is denied
 *	write access to the user address, see fixup_pi_state_owner().
 *
 *
 * Serialization and lifetime rules:
 *
 * hb->lock:
 *
 *	hb -> futex_q, relation
 *	futex_q -> pi_state, relation
 *
 *	(cannot be raw because hb can contain arbitrary amount
 *	 of futex_q's)
 *
 * pi_mutex->wait_lock:
 *
 *	{uval, pi_state}
 *
 *	(and pi_mutex 'obviously')
 *
 * p->pi_lock:
 *
 *	p->pi_state_list -> pi_state->list, relation
 *	pi_mutex->owner -> pi_state->owner, relation
 *
 * pi_state->refcount:
 *
 *	pi_state lifetime
 *
 *
 * Lock order:
 *
 *   hb->lock
 *     pi_mutex->wait_lock
 *       p->pi_lock
 *
 */

/*
 * Validate that the existing waiter has a pi_state and sanity check
 * the pi_state against the user space value. If correct, attach to
 * it.
 */
static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
			      struct futex_pi_state *pi_state,
			      struct futex_pi_state **ps)
{
	pid_t pid = uval & FUTEX_TID_MASK;
	u32 uval2;
	int ret;

	/*
	 * Userspace might have messed up non-PI and PI futexes [3]
	 */
	if (unlikely(!pi_state))
		return -EINVAL;

	/*
	 * We get here with hb->lock held, and having found a
	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
	 * which in turn means that futex_lock_pi() still has a reference on
	 * our pi_state.
	 *
	 * The waiter holding a reference on @pi_state also protects against
	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
	 * free pi_state before we can take a reference ourselves.
	 */
	WARN_ON(!refcount_read(&pi_state->refcount));

	/*
	 * Now that we have a pi_state, we can acquire wait_lock
	 * and do the state validation.
	 */
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Since {uval, pi_state} is serialized by wait_lock, and our current
	 * uval was read without holding it, it can have changed. Verify it
	 * still is what we expect it to be, otherwise retry the entire
	 * operation.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		goto out_efault;

	if (uval != uval2)
		goto out_eagain;

	/*
	 * Handle the owner died case:
	 */
	if (uval & FUTEX_OWNER_DIED) {
		/*
		 * exit_pi_state_list sets owner to NULL and wakes the
		 * topmost waiter. The task which acquires the
		 * pi_state->rt_mutex will fixup owner.
		 */
		if (!pi_state->owner) {
			/*
			 * No pi state owner, but the user space TID
			 * is not 0. Inconsistent state. [5]
			 */
			if (pid)
				goto out_einval;
			/*
			 * Take a ref on the state and return success. [4]
			 */
			goto out_attach;
		}

		/*
		 * If TID is 0, then either the dying owner has not
		 * yet executed exit_pi_state_list() or some waiter
		 * acquired the rtmutex in the pi state, but did not
		 * yet fixup the TID in user space.
		 *
		 * Take a ref on the state and return success. [6]
		 */
		if (!pid)
			goto out_attach;
	} else {
		/*
		 * If the owner died bit is not set, then the pi_state
		 * must have an owner. [7]
		 */
		if (!pi_state->owner)
			goto out_einval;
	}

	/*
	 * Bail out if user space manipulated the futex value. If pi
	 * state exists then the owner TID must be the same as the
	 * user space TID. [9/10]
	 */
	if (pid != task_pid_vnr(pi_state->owner))
		goto out_einval;

out_attach:
	get_pi_state(pi_state);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	*ps = pi_state;
	return 0;

out_einval:
	ret = -EINVAL;
	goto out_error;

out_eagain:
	ret = -EAGAIN;
	goto out_error;

out_efault:
	ret = -EFAULT;
	goto out_error;

out_error:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
}

/**
 * wait_for_owner_exiting - Block until the owner has exited
 * @ret: owner's current futex lock status
 * @exiting:	Pointer to the exiting task
 *
 * Caller must hold a refcount on @exiting.
 */
static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
{
	if (ret != -EBUSY) {
		WARN_ON_ONCE(exiting);
		return;
	}

	if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
		return;

	mutex_lock(&exiting->futex_exit_mutex);
	/*
	 * No point in doing state checking here. If the waiter got here
	 * while the task was in exec()->exec_futex_release() then it can
	 * have any FUTEX_STATE_* value when the waiter has acquired the
	 * mutex. OK, if running, EXITING or DEAD if it reached exit()
	 * already. Highly unlikely and not a problem. Just one more round
	 * through the futex maze.
	 */
	mutex_unlock(&exiting->futex_exit_mutex);

	put_task_struct(exiting);
}

static int handle_exit_race(u32 __user *uaddr, u32 uval,
			    struct task_struct *tsk)
{
	u32 uval2;

	/*
	 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
	 * caller that the alleged owner is busy.
	 */
	if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
		return -EBUSY;

	/*
	 * Reread the user space value to handle the following situation:
	 *
	 * CPU0				CPU1
	 *
	 * sys_exit()			sys_futex()
	 *  do_exit()			 futex_lock_pi()
	 *                                futex_lock_pi_atomic()
	 *   exit_signals(tsk)		    No waiters:
	 *    tsk->flags |= PF_EXITING;	    *uaddr == 0x00000PID
	 *  mm_release(tsk)		    Set waiter bit
	 *   exit_robust_list(tsk) {	    *uaddr = 0x80000PID;
	 *      Set owner died		    attach_to_pi_owner() {
	 *    *uaddr = 0xC0000000;	     tsk = get_task(PID);
	 *   }				     if (!tsk->flags & PF_EXITING) {
	 *  ...				       attach();
	 *  tsk->futex_state =               } else {
	 *	FUTEX_STATE_DEAD;              if (tsk->futex_state !=
	 *					  FUTEX_STATE_DEAD)
	 *				         return -EAGAIN;
	 *				       return -ESRCH; <--- FAIL
	 *				     }
	 *
	 * Returning ESRCH unconditionally is wrong here because the
	 * user space value has been changed by the exiting task.
	 *
	 * The same logic applies to the case where the exiting task is
	 * already gone.
	 */
	if (get_futex_value_locked(&uval2, uaddr))
		return -EFAULT;

	/* If the user space value has changed, try again. */
	if (uval2 != uval)
		return -EAGAIN;

	/*
	 * The exiting task did not have a robust list, the robust list was
	 * corrupted or the user space value in *uaddr is simply bogus.
	 * Give up and tell user space.
	 */
	return -ESRCH;
}

/*
 * Lookup the task for the TID provided from user space and attach to
 * it after doing proper sanity checks.
 */
static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
			      struct futex_pi_state **ps,
			      struct task_struct **exiting)
{
	pid_t pid = uval & FUTEX_TID_MASK;
	struct futex_pi_state *pi_state;
	struct task_struct *p;

	/*
	 * We are the first waiter - try to look up the real owner and attach
	 * the new pi_state to it, but bail out when TID = 0 [1]
	 *
	 * The !pid check is paranoid. None of the call sites should end up
	 * with pid == 0, but better safe than sorry. Let the caller retry
	 */
	if (!pid)
		return -EAGAIN;
	p = find_get_task_by_vpid(pid);
	if (!p)
		return handle_exit_race(uaddr, uval, NULL);

	if (unlikely(p->flags & PF_KTHREAD)) {
		put_task_struct(p);
		return -EPERM;
	}

	/*
	 * We need to look at the task state to figure out, whether the
	 * task is exiting. To protect against the change of the task state
	 * in futex_exit_release(), we do this protected by p->pi_lock:
	 */
	raw_spin_lock_irq(&p->pi_lock);
	if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
		/*
		 * The task is on the way out. When the futex state is
		 * FUTEX_STATE_DEAD, we know that the task has finished
		 * the cleanup:
		 */
		int ret = handle_exit_race(uaddr, uval, p);

		raw_spin_unlock_irq(&p->pi_lock);
		/*
		 * If the owner task is between FUTEX_STATE_EXITING and
		 * FUTEX_STATE_DEAD then store the task pointer and keep
		 * the reference on the task struct. The calling code will
		 * drop all locks, wait for the task to reach
		 * FUTEX_STATE_DEAD and then drop the refcount. This is
		 * required to prevent a live lock when the current task
		 * preempted the exiting task between the two states.
		 */
		if (ret == -EBUSY)
			*exiting = p;
		else
			put_task_struct(p);
		return ret;
	}

	/*
	 * No existing pi state. First waiter. [2]
	 *
	 * This creates pi_state, we have hb->lock held, this means nothing can
	 * observe this state, wait_lock is irrelevant.
	 */
	pi_state = alloc_pi_state();

	/*
	 * Initialize the pi_mutex in locked state and make @p
	 * the owner of it:
	 */
	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);

	/* Store the key for possible exit cleanups: */
	pi_state->key = *key;

	WARN_ON(!list_empty(&pi_state->list));
	list_add(&pi_state->list, &p->pi_state_list);
	/*
	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
	 * because there is no concurrency as the object is not published yet.
	 */
	pi_state->owner = p;
	raw_spin_unlock_irq(&p->pi_lock);

	put_task_struct(p);

	*ps = pi_state;

	return 0;
}

static int lookup_pi_state(u32 __user *uaddr, u32 uval,
			   struct futex_hash_bucket *hb,
			   union futex_key *key, struct futex_pi_state **ps,
			   struct task_struct **exiting)
{
	struct futex_q *top_waiter = futex_top_waiter(hb, key);

	/*
	 * If there is a waiter on that futex, validate it and
	 * attach to the pi_state when the validation succeeds.
	 */
	if (top_waiter)
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);

	/*
	 * We are the first waiter - try to look up the owner based on
	 * @uval and attach to it.
	 */
	return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
}

static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
{
	int err;
	u32 curval;

	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

	err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (unlikely(err))
		return err;

	/* If user space value changed, let the caller retry */
	return curval != uval ? -EAGAIN : 0;
}

/**
 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 * @uaddr:		the pi futex user address
 * @hb:			the pi futex hash bucket
 * @key:		the futex key associated with uaddr and hb
 * @ps:			the pi_state pointer where we store the result of the
 *			lookup
 * @task:		the task to perform the atomic lock work for.  This will
 *			be "current" except in the case of requeue pi.
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 *
 * Return:
 *  -  0 - ready to wait;
 *  -  1 - acquired the lock;
 *  - <0 - error
 *
 * The hb->lock and futex_key refs shall be held by the caller.
 *
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
 */
static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
				union futex_key *key,
				struct futex_pi_state **ps,
				struct task_struct *task,
				struct task_struct **exiting,
				int set_waiters)
{
	u32 uval, newval, vpid = task_pid_vnr(task);
	struct futex_q *top_waiter;
	int ret;

	/*
	 * Read the user space value first so we can validate a few
	 * things before proceeding further.
	 */
	if (get_futex_value_locked(&uval, uaddr))
		return -EFAULT;

	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

	/*
	 * Detect deadlocks.
	 */
	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
		return -EDEADLK;

	if ((unlikely(should_fail_futex(true))))
		return -EDEADLK;

	/*
	 * Lookup existing state first. If it exists, try to attach to
	 * its pi_state.
	 */
	top_waiter = futex_top_waiter(hb, key);
	if (top_waiter)
		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);

	/*
	 * No waiter and user TID is 0. We are here because the
	 * waiters or the owner died bit is set or called from
	 * requeue_cmp_pi or for whatever reason something took the
	 * syscall.
	 */
	if (!(uval & FUTEX_TID_MASK)) {
		/*
		 * We take over the futex. No other waiters and the user space
		 * TID is 0. We preserve the owner died bit.
		 */
		newval = uval & FUTEX_OWNER_DIED;
		newval |= vpid;

		/* The futex requeue_pi code can enforce the waiters bit */
		if (set_waiters)
			newval |= FUTEX_WAITERS;

		ret = lock_pi_update_atomic(uaddr, uval, newval);
		/* If the take over worked, return 1 */
		return ret < 0 ? ret : 1;
	}

	/*
	 * First waiter. Set the waiters bit before attaching ourself to
	 * the owner. If owner tries to unlock, it will be forced into
	 * the kernel and blocked on hb->lock.
	 */
	newval = uval | FUTEX_WAITERS;
	ret = lock_pi_update_atomic(uaddr, uval, newval);
	if (ret)
		return ret;
	/*
	 * If the update of the user space value succeeded, we try to
	 * attach to the owner. If that fails, no harm done, we only
	 * set the FUTEX_WAITERS bit in the user space variable.
	 */
	return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
}

/**
 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
static void __unqueue_futex(struct futex_q *q)
{
	struct futex_hash_bucket *hb;

	if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
		return;
	lockdep_assert_held(q->lock_ptr);

	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
	plist_del(&q->list, &hb->chain);
	hb_waiters_dec(hb);
}

/*
 * The hash bucket lock must be held when this is called.
 * Afterwards, the futex_q must not be accessed. Callers
 * must ensure to later call wake_up_q() for the actual
 * wakeups to occur.
 */
static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
{
	struct task_struct *p = q->task;

	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
		return;

	get_task_struct(p);
	__unqueue_futex(q);
	/*
	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
	 * is written, without taking any locks. This is possible in the event
	 * of a spurious wakeup, for example. A memory barrier is required here
	 * to prevent the following store to lock_ptr from getting ahead of the
	 * plist_del in __unqueue_futex().
	 */
	smp_store_release(&q->lock_ptr, NULL);

	/*
	 * Queue the task for later wakeup for after we've released
	 * the hb->lock.
	 */
	wake_q_add_safe(wake_q, p);
}

/*
 * Caller must hold a reference on @pi_state.
 */
static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
{
	u32 curval, newval;
	struct rt_mutex_waiter *top_waiter;
	struct task_struct *new_owner;
	bool postunlock = false;
	DEFINE_WAKE_Q(wake_q);
	int ret = 0;

	top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
	if (WARN_ON_ONCE(!top_waiter)) {
		/*
		 * As per the comment in futex_unlock_pi() this should not happen.
		 *
		 * When this happens, give up our locks and try again, giving
		 * the futex_lock_pi() instance time to complete, either by
		 * waiting on the rtmutex or removing itself from the futex
		 * queue.
		 */
		ret = -EAGAIN;
		goto out_unlock;
	}

	new_owner = top_waiter->task;

	/*
	 * We pass it to the next owner. The WAITERS bit is always kept
	 * enabled while there is PI state around. We cleanup the owner
	 * died bit, because we are the owner.
	 */
	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);

	if (unlikely(should_fail_futex(true))) {
		ret = -EFAULT;
		goto out_unlock;
	}

	ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
	if (!ret && (curval != uval)) {
		/*
		 * If a unconditional UNLOCK_PI operation (user space did not
		 * try the TID->0 transition) raced with a waiter setting the
		 * FUTEX_WAITERS flag between get_user() and locking the hash
		 * bucket lock, retry the operation.
		 */
		if ((FUTEX_TID_MASK & curval) == uval)
			ret = -EAGAIN;
		else
			ret = -EINVAL;
	}

	if (!ret) {
		/*
		 * This is a point of no return; once we modified the uval
		 * there is no going back and subsequent operations must
		 * not fail.
		 */
		pi_state_update_owner(pi_state, new_owner);
		postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
	}

out_unlock:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);

	if (postunlock)
		rt_mutex_postunlock(&wake_q);

	return ret;
}

/*
 * Express the locking dependencies for lockdep:
 */
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	if (hb1 <= hb2) {
		spin_lock(&hb1->lock);
		if (hb1 < hb2)
			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
	} else { /* hb1 > hb2 */
		spin_lock(&hb2->lock);
		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
	}
}

static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
	spin_unlock(&hb1->lock);
	if (hb1 != hb2)
		spin_unlock(&hb2->lock);
}

/*
 * Wake up waiters matching bitset queued on this futex (uaddr).
 */
static int
futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
{
	struct futex_hash_bucket *hb;
	struct futex_q *this, *next;
	union futex_key key = FUTEX_KEY_INIT;
	int ret;
	DEFINE_WAKE_Q(wake_q);

	if (!bitset)
		return -EINVAL;

	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;

	hb = hash_futex(&key);

	/* Make sure we really have tasks to wakeup */
	if (!hb_waiters_pending(hb))
		return ret;

	spin_lock(&hb->lock);

	plist_for_each_entry_safe(this, next, &hb->chain, list) {
		if (match_futex (&this->key, &key)) {
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				break;
			}

			/* Check if one of the bits is set in both bitsets */
			if (!(this->bitset & bitset))
				continue;

			mark_wake_futex(&wake_q, this);
			if (++ret >= nr_wake)
				break;
		}
	}

	spin_unlock(&hb->lock);
	wake_up_q(&wake_q);
	return ret;
}

static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
{
	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
	int oldval, ret;

	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
		if (oparg < 0 || oparg > 31) {
			char comm[sizeof(current->comm)];
			/*
			 * kill this print and return -EINVAL when userspace
			 * is sane again
			 */
			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
					get_task_comm(comm, current), oparg);
			oparg &= 31;
		}
		oparg = 1 << oparg;
	}

	pagefault_disable();
	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
	pagefault_enable();
	if (ret)
		return ret;

	switch (cmp) {
	case FUTEX_OP_CMP_EQ:
		return oldval == cmparg;
	case FUTEX_OP_CMP_NE:
		return oldval != cmparg;
	case FUTEX_OP_CMP_LT:
		return oldval < cmparg;
	case FUTEX_OP_CMP_GE:
		return oldval >= cmparg;
	case FUTEX_OP_CMP_LE:
		return oldval <= cmparg;
	case FUTEX_OP_CMP_GT:
		return oldval > cmparg;
	default:
		return -ENOSYS;
	}
}

/*
 * Wake up all waiters hashed on the physical page that is mapped
 * to this virtual address:
 */
static int
futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
	      int nr_wake, int nr_wake2, int op)
{
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
	struct futex_hash_bucket *hb1, *hb2;
	struct futex_q *this, *next;
	int ret, op_ret;
	DEFINE_WAKE_Q(wake_q);

retry:
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
	if (unlikely(ret != 0))
		return ret;

	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);

retry_private:
	double_lock_hb(hb1, hb2);
	op_ret = futex_atomic_op_inuser(op, uaddr2);
	if (unlikely(op_ret < 0)) {
		double_unlock_hb(hb1, hb2);

		if (!IS_ENABLED(CONFIG_MMU) ||
		    unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
			/*
			 * we don't get EFAULT from MMU faults if we don't have
			 * an MMU, but we might get them from range checking
			 */
			ret = op_ret;
			return ret;
		}

		if (op_ret == -EFAULT) {
			ret = fault_in_user_writeable(uaddr2);
			if (ret)
				return ret;
		}

		if (!(flags & FLAGS_SHARED)) {
			cond_resched();
			goto retry_private;
		}

		cond_resched();
		goto retry;
	}

	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
		if (match_futex (&this->key, &key1)) {
			if (this->pi_state || this->rt_waiter) {
				ret = -EINVAL;
				goto out_unlock;
			}
			mark_wake_futex(&wake_q, this);
			if (++ret >= nr_wake)
				break;
		}
	}

	if (op_ret > 0) {
		op_ret = 0;
		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
			if (match_futex (&this->key, &key2)) {
				if (this->pi_state || this->rt_waiter) {
					ret = -EINVAL;
					goto out_unlock;
				}
				mark_wake_futex(&wake_q, this);
				if (++op_ret >= nr_wake2)
					break;
			}
		}
		ret += op_ret;
	}

out_unlock:
	double_unlock_hb(hb1, hb2);
	wake_up_q(&wake_q);
	return ret;
}

/**
 * requeue_futex() - Requeue a futex_q from one hb to another
 * @q:		the futex_q to requeue
 * @hb1:	the source hash_bucket
 * @hb2:	the target hash_bucket
 * @key2:	the new key for the requeued futex_q
 */
static inline
void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
		   struct futex_hash_bucket *hb2, union futex_key *key2)
{

	/*
	 * If key1 and key2 hash to the same bucket, no need to
	 * requeue.
	 */
	if (likely(&hb1->chain != &hb2->chain)) {
		plist_del(&q->list, &hb1->chain);
		hb_waiters_dec(hb1);
		hb_waiters_inc(hb2);
		plist_add(&q->list, &hb2->chain);
		q->lock_ptr = &hb2->lock;
	}
	q->key = *key2;
}

/**
 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
 * @q:		the futex_q
 * @key:	the key of the requeue target futex
 * @hb:		the hash_bucket of the requeue target futex
 *
 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
 * to the requeue target futex so the waiter can detect the wakeup on the right
 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
 * to protect access to the pi_state to fixup the owner later.  Must be called
 * with both q->lock_ptr and hb->lock held.
 */
static inline
void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
			   struct futex_hash_bucket *hb)
{
	q->key = *key;

	__unqueue_futex(q);

	WARN_ON(!q->rt_waiter);
	q->rt_waiter = NULL;

	q->lock_ptr = &hb->lock;

	wake_up_state(q->task, TASK_NORMAL);
}

/**
 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
 * @pifutex:		the user address of the to futex
 * @hb1:		the from futex hash bucket, must be locked by the caller
 * @hb2:		the to futex hash bucket, must be locked by the caller
 * @key1:		the from futex key
 * @key2:		the to futex key
 * @ps:			address to store the pi_state pointer
 * @exiting:		Pointer to store the task pointer of the owner task
 *			which is in the middle of exiting
 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 *
 * Try and get the lock on behalf of the top waiter if we can do it atomically.
 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
 * hb1 and hb2 must be held by the caller.
 *
 * @exiting is only set when the return value is -EBUSY. If so, this holds
 * a refcount on the exiting task on return and the caller needs to drop it
 * after waiting for the exit to complete.
 *
 * Return:
 *  -  0 - failed to acquire the lock atomically;
 *  - >0 - acquired the lock, return value is vpid of the top_waiter
 *  - <0 - error
 */
static int
futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
			   struct futex_hash_bucket *hb2, union futex_key *key1,
			   union futex_key *key2, struct futex_pi_state **ps,
			   struct task_struct **exiting, int set_waiters)
{
	struct futex_q *top_waiter = NULL;
	u32 curval;
	int ret, vpid;

	if (get_futex_value_locked(&curval, pifutex))
		return -EFAULT;

	if (unlikely(should_fail_futex(true)))
		return -EFAULT;

	/*
	 * Find the top_waiter and determine if there are additional waiters.
	 * If the caller intends to requeue more than 1 waiter to pifutex,
	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
	 * as we have means to handle the possible fault.  If not, don't set
	 * the bit unecessarily as it will force the subsequent unlock to enter
	 * the kernel.
	 */
	top_waiter = futex_top_waiter(hb1, key1);

	/* There are no waiters, nothing for us to do. */
	if (!top_waiter)
		return 0;

	/* Ensure we requeue to the expected futex. */
	if (!match_futex(top_waiter->requeue_pi_key, key2))
		return -EINVAL;

	/*
	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
	 * the contended case or if set_waiters is 1.  The pi_state is returned
	 * in ps in contended cases.
	 */
	vpid = task_pid_vnr(top_waiter->task);
	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
				   exiting, set_waiters);
	if (ret == 1) {
		requeue_pi_wake_futex(top_waiter, key2, hb2);
		return vpid;
	}
	return ret;
}

/**
 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
 * @uaddr1:	source futex user address
 * @flags:	futex flags (FLAGS_SHARED, etc.)
 * @uaddr2:	target futex user address
 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
 * @cmpval:	@uaddr1 expected value (or %NULL)
 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
 *		pi futex (pi to pi requeue is not supported)
 *
 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
 * uaddr2 atomically on behalf of the top waiter.
 *
 * Return:
 *  - >=0 - on success, the number of tasks requeued or woken;
 *  -  <0 - on error
 */
static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
			 u32 *cmpval, int requeue_pi)
{
	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
	int task_count = 0, ret;
	struct futex_pi_state *pi_state = NULL;
	struct futex_hash_bucket *hb1, *hb2;
	struct futex_q *this, *next;
	DEFINE_WAKE_Q(wake_q);

	if (nr_wake < 0 || nr_requeue < 0)
		return -EINVAL;

	/*
	 * When PI not supported: return -ENOSYS if requeue_pi is true,
	 * consequently the compiler knows requeue_pi is always false past
	 * this point which will optimize away all the conditional code
	 * further down.
	 */
	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
		return -ENOSYS;

	if (requeue_pi) {
		/*
		 * Requeue PI only works on two distinct uaddrs. This
		 * check is only valid for private futexes. See below.
		 */
		if (uaddr1 == uaddr2)
			return -EINVAL;

		/*
		 * requeue_pi requires a pi_state, try to allocate it now
		 * without any locks in case it fails.
		 */
		if (refill_pi_state_cache())
			return -ENOMEM;
		/*
		 * requeue_pi must wake as many tasks as it can, up to nr_wake
		 * + nr_requeue, since it acquires the rt_mutex prior to
		 * returning to userspace, so as to not leave the rt_mutex with
		 * waiters and no owner.  However, second and third wake-ups
		 * cannot be predicted as they involve race conditions with the
		 * first wake and a fault while looking up the pi_state.  Both
		 * pthread_cond_signal() and pthread_cond_broadcast() should
		 * use nr_wake=1.
		 */
		if (nr_wake != 1)
			return -EINVAL;
	}

retry:
	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;
	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
			    requeue_pi ? FUTEX_WRITE : FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;

	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (requeue_pi && match_futex(&key1, &key2))
		return -EINVAL;

	hb1 = hash_futex(&key1);
	hb2 = hash_futex(&key2);

retry_private:
	hb_waiters_inc(hb2);
	double_lock_hb(hb1, hb2);

	if (likely(cmpval != NULL)) {
		u32 curval;

		ret = get_futex_value_locked(&curval, uaddr1);

		if (unlikely(ret)) {
			double_unlock_hb(hb1, hb2);
			hb_waiters_dec(hb2);

			ret = get_user(curval, uaddr1);
			if (ret)
				return ret;

			if (!(flags & FLAGS_SHARED))
				goto retry_private;

			goto retry;
		}
		if (curval != *cmpval) {
			ret = -EAGAIN;
			goto out_unlock;
		}
	}

	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
		struct task_struct *exiting = NULL;

		/*
		 * Attempt to acquire uaddr2 and wake the top waiter. If we
		 * intend to requeue waiters, force setting the FUTEX_WAITERS
		 * bit.  We force this here where we are able to easily handle
		 * faults rather in the requeue loop below.
		 */
		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
						 &key2, &pi_state,
						 &exiting, nr_requeue);

		/*
		 * At this point the top_waiter has either taken uaddr2 or is
		 * waiting on it.  If the former, then the pi_state will not
		 * exist yet, look it up one more time to ensure we have a
		 * reference to it. If the lock was taken, ret contains the
		 * vpid of the top waiter task.
		 * If the lock was not taken, we have pi_state and an initial
		 * refcount on it. In case of an error we have nothing.
		 */
		if (ret > 0) {
			WARN_ON(pi_state);
			task_count++;
			/*
			 * If we acquired the lock, then the user space value
			 * of uaddr2 should be vpid. It cannot be changed by
			 * the top waiter as it is blocked on hb2 lock if it
			 * tries to do so. If something fiddled with it behind
			 * our back the pi state lookup might unearth it. So
			 * we rather use the known value than rereading and
			 * handing potential crap to lookup_pi_state.
			 *
			 * If that call succeeds then we have pi_state and an
			 * initial refcount on it.
			 */
			ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
					      &pi_state, &exiting);
		}

		switch (ret) {
		case 0:
			/* We hold a reference on the pi state. */
			break;

			/* If the above failed, then pi_state is NULL */
		case -EFAULT:
			double_unlock_hb(hb1, hb2);
			hb_waiters_dec(hb2);
			ret = fault_in_user_writeable(uaddr2);
			if (!ret)
				goto retry;
			return ret;
		case -EBUSY:
		case -EAGAIN:
			/*
			 * Two reasons for this:
			 * - EBUSY: Owner is exiting and we just wait for the
			 *   exit to complete.
			 * - EAGAIN: The user space value changed.
			 */
			double_unlock_hb(hb1, hb2);
			hb_waiters_dec(hb2);
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
			cond_resched();
			goto retry;
		default:
			goto out_unlock;
		}
	}

	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
		if (task_count - nr_wake >= nr_requeue)
			break;

		if (!match_futex(&this->key, &key1))
			continue;

		/*
		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
		 * be paired with each other and no other futex ops.
		 *
		 * We should never be requeueing a futex_q with a pi_state,
		 * which is awaiting a futex_unlock_pi().
		 */
		if ((requeue_pi && !this->rt_waiter) ||
		    (!requeue_pi && this->rt_waiter) ||
		    this->pi_state) {
			ret = -EINVAL;
			break;
		}

		/*
		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
		 * lock, we already woke the top_waiter.  If not, it will be
		 * woken by futex_unlock_pi().
		 */
		if (++task_count <= nr_wake && !requeue_pi) {
			mark_wake_futex(&wake_q, this);
			continue;
		}

		/* Ensure we requeue to the expected futex for requeue_pi. */
		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
			ret = -EINVAL;
			break;
		}

		/*
		 * Requeue nr_requeue waiters and possibly one more in the case
		 * of requeue_pi if we couldn't acquire the lock atomically.
		 */
		if (requeue_pi) {
			/*
			 * Prepare the waiter to take the rt_mutex. Take a
			 * refcount on the pi_state and store the pointer in
			 * the futex_q object of the waiter.
			 */
			get_pi_state(pi_state);
			this->pi_state = pi_state;
			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
							this->rt_waiter,
							this->task);
			if (ret == 1) {
				/*
				 * We got the lock. We do neither drop the
				 * refcount on pi_state nor clear
				 * this->pi_state because the waiter needs the
				 * pi_state for cleaning up the user space
				 * value. It will drop the refcount after
				 * doing so.
				 */
				requeue_pi_wake_futex(this, &key2, hb2);
				continue;
			} else if (ret) {
				/*
				 * rt_mutex_start_proxy_lock() detected a
				 * potential deadlock when we tried to queue
				 * that waiter. Drop the pi_state reference
				 * which we took above and remove the pointer
				 * to the state from the waiters futex_q
				 * object.
				 */
				this->pi_state = NULL;
				put_pi_state(pi_state);
				/*
				 * We stop queueing more waiters and let user
				 * space deal with the mess.
				 */
				break;
			}
		}
		requeue_futex(this, hb1, hb2, &key2);
	}

	/*
	 * We took an extra initial reference to the pi_state either
	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
	 * need to drop it here again.
	 */
	put_pi_state(pi_state);

out_unlock:
	double_unlock_hb(hb1, hb2);
	wake_up_q(&wake_q);
	hb_waiters_dec(hb2);
	return ret ? ret : task_count;
}

/* The key must be already stored in q->key. */
static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
	__acquires(&hb->lock)
{
	struct futex_hash_bucket *hb;

	hb = hash_futex(&q->key);

	/*
	 * Increment the counter before taking the lock so that
	 * a potential waker won't miss a to-be-slept task that is
	 * waiting for the spinlock. This is safe as all queue_lock()
	 * users end up calling queue_me(). Similarly, for housekeeping,
	 * decrement the counter at queue_unlock() when some error has
	 * occurred and we don't end up adding the task to the list.
	 */
	hb_waiters_inc(hb); /* implies smp_mb(); (A) */

	q->lock_ptr = &hb->lock;

	spin_lock(&hb->lock);
	return hb;
}

static inline void
queue_unlock(struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	spin_unlock(&hb->lock);
	hb_waiters_dec(hb);
}

static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
{
	int prio;

	/*
	 * The priority used to register this element is
	 * - either the real thread-priority for the real-time threads
	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
	 * - or MAX_RT_PRIO for non-RT threads.
	 * Thus, all RT-threads are woken first in priority order, and
	 * the others are woken last, in FIFO order.
	 */
	prio = min(current->normal_prio, MAX_RT_PRIO);

	plist_node_init(&q->list, prio);
	plist_add(&q->list, &hb->chain);
	q->task = current;
}

/**
 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
 * @q:	The futex_q to enqueue
 * @hb:	The destination hash bucket
 *
 * The hb->lock must be held by the caller, and is released here. A call to
 * queue_me() is typically paired with exactly one call to unqueue_me().  The
 * exceptions involve the PI related operations, which may use unqueue_me_pi()
 * or nothing if the unqueue is done as part of the wake process and the unqueue
 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
 * an example).
 */
static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{
	__queue_me(q, hb);
	spin_unlock(&hb->lock);
}

/**
 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
 * be paired with exactly one earlier call to queue_me().
 *
 * Return:
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
 */
static int unqueue_me(struct futex_q *q)
{
	spinlock_t *lock_ptr;
	int ret = 0;

	/* In the common case we don't take the spinlock, which is nice. */
retry:
	/*
	 * q->lock_ptr can change between this read and the following spin_lock.
	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
	 * optimizing lock_ptr out of the logic below.
	 */
	lock_ptr = READ_ONCE(q->lock_ptr);
	if (lock_ptr != NULL) {
		spin_lock(lock_ptr);
		/*
		 * q->lock_ptr can change between reading it and
		 * spin_lock(), causing us to take the wrong lock.  This
		 * corrects the race condition.
		 *
		 * Reasoning goes like this: if we have the wrong lock,
		 * q->lock_ptr must have changed (maybe several times)
		 * between reading it and the spin_lock().  It can
		 * change again after the spin_lock() but only if it was
		 * already changed before the spin_lock().  It cannot,
		 * however, change back to the original value.  Therefore
		 * we can detect whether we acquired the correct lock.
		 */
		if (unlikely(lock_ptr != q->lock_ptr)) {
			spin_unlock(lock_ptr);
			goto retry;
		}
		__unqueue_futex(q);

		BUG_ON(q->pi_state);

		spin_unlock(lock_ptr);
		ret = 1;
	}

	return ret;
}

/*
 * PI futexes can not be requeued and must remove themself from the
 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
 */
static void unqueue_me_pi(struct futex_q *q)
{
	__unqueue_futex(q);

	BUG_ON(!q->pi_state);
	put_pi_state(q->pi_state);
	q->pi_state = NULL;
}

static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
				  struct task_struct *argowner)
{
	struct futex_pi_state *pi_state = q->pi_state;
	struct task_struct *oldowner, *newowner;
	u32 uval, curval, newval, newtid;
	int err = 0;

	oldowner = pi_state->owner;

	/*
	 * We are here because either:
	 *
	 *  - we stole the lock and pi_state->owner needs updating to reflect
	 *    that (@argowner == current),
	 *
	 * or:
	 *
	 *  - someone stole our lock and we need to fix things to point to the
	 *    new owner (@argowner == NULL).
	 *
	 * Either way, we have to replace the TID in the user space variable.
	 * This must be atomic as we have to preserve the owner died bit here.
	 *
	 * Note: We write the user space value _before_ changing the pi_state
	 * because we can fault here. Imagine swapped out pages or a fork
	 * that marked all the anonymous memory readonly for cow.
	 *
	 * Modifying pi_state _before_ the user space value would leave the
	 * pi_state in an inconsistent state when we fault here, because we
	 * need to drop the locks to handle the fault. This might be observed
	 * in the PID check in lookup_pi_state.
	 */
retry:
	if (!argowner) {
		if (oldowner != current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			return 0;
		}

		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
			/* We got the lock. pi_state is correct. Tell caller. */
			return 1;
		}

		/*
		 * The trylock just failed, so either there is an owner or
		 * there is a higher priority waiter than this one.
		 */
		newowner = rt_mutex_owner(&pi_state->pi_mutex);
		/*
		 * If the higher priority waiter has not yet taken over the
		 * rtmutex then newowner is NULL. We can't return here with
		 * that state because it's inconsistent vs. the user space
		 * state. So drop the locks and try again. It's a valid
		 * situation and not any different from the other retry
		 * conditions.
		 */
		if (unlikely(!newowner)) {
			err = -EAGAIN;
			goto handle_err;
		}
	} else {
		WARN_ON_ONCE(argowner != current);
		if (oldowner == current) {
			/*
			 * We raced against a concurrent self; things are
			 * already fixed up. Nothing to do.
			 */
			return 1;
		}
		newowner = argowner;
	}

	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
	/* Owner died? */
	if (!pi_state->owner)
		newtid |= FUTEX_OWNER_DIED;

	err = get_futex_value_locked(&uval, uaddr);
	if (err)
		goto handle_err;

	for (;;) {
		newval = (uval & FUTEX_OWNER_DIED) | newtid;

		err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
		if (err)
			goto handle_err;

		if (curval == uval)
			break;
		uval = curval;
	}

	/*
	 * We fixed up user space. Now we need to fix the pi_state
	 * itself.
	 */
	pi_state_update_owner(pi_state, newowner);

	return argowner == current;

	/*
	 * In order to reschedule or handle a page fault, we need to drop the
	 * locks here. In the case of a fault, this gives the other task
	 * (either the highest priority waiter itself or the task which stole
	 * the rtmutex) the chance to try the fixup of the pi_state. So once we
	 * are back from handling the fault we need to check the pi_state after
	 * reacquiring the locks and before trying to do another fixup. When
	 * the fixup has been done already we simply return.
	 *
	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
	 * drop hb->lock since the caller owns the hb -> futex_q relation.
	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
	 */
handle_err:
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	spin_unlock(q->lock_ptr);

	switch (err) {
	case -EFAULT:
		err = fault_in_user_writeable(uaddr);
		break;

	case -EAGAIN:
		cond_resched();
		err = 0;
		break;

	default:
		WARN_ON_ONCE(1);
		break;
	}

	spin_lock(q->lock_ptr);
	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);

	/*
	 * Check if someone else fixed it for us:
	 */
	if (pi_state->owner != oldowner)
		return argowner == current;

	/* Retry if err was -EAGAIN or the fault in succeeded */
	if (!err)
		goto retry;

	/*
	 * fault_in_user_writeable() failed so user state is immutable. At
	 * best we can make the kernel state consistent but user state will
	 * be most likely hosed and any subsequent unlock operation will be
	 * rejected due to PI futex rule [10].
	 *
	 * Ensure that the rtmutex owner is also the pi_state owner despite
	 * the user space value claiming something different. There is no
	 * point in unlocking the rtmutex if current is the owner as it
	 * would need to wait until the next waiter has taken the rtmutex
	 * to guarantee consistent state. Keep it simple. Userspace asked
	 * for this wreckaged state.
	 *
	 * The rtmutex has an owner - either current or some other
	 * task. See the EAGAIN loop above.
	 */
	pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));

	return err;
}

static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
				struct task_struct *argowner)
{
	struct futex_pi_state *pi_state = q->pi_state;
	int ret;

	lockdep_assert_held(q->lock_ptr);

	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
	ret = __fixup_pi_state_owner(uaddr, q, argowner);
	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
	return ret;
}

static long futex_wait_restart(struct restart_block *restart);

/**
 * fixup_owner() - Post lock pi_state and corner case management
 * @uaddr:	user address of the futex
 * @q:		futex_q (contains pi_state and access to the rt_mutex)
 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
 *
 * After attempting to lock an rt_mutex, this function is called to cleanup
 * the pi_state owner as well as handle race conditions that may allow us to
 * acquire the lock. Must be called with the hb lock held.
 *
 * Return:
 *  -  1 - success, lock taken;
 *  -  0 - success, lock not taken;
 *  - <0 - on error (-EFAULT)
 */
static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
{
	if (locked) {
		/*
		 * Got the lock. We might not be the anticipated owner if we
		 * did a lock-steal - fix up the PI-state in that case:
		 *
		 * Speculative pi_state->owner read (we don't hold wait_lock);
		 * since we own the lock pi_state->owner == current is the
		 * stable state, anything else needs more attention.
		 */
		if (q->pi_state->owner != current)
			return fixup_pi_state_owner(uaddr, q, current);
		return 1;
	}

	/*
	 * If we didn't get the lock; check if anybody stole it from us. In
	 * that case, we need to fix up the uval to point to them instead of
	 * us, otherwise bad things happen. [10]
	 *
	 * Another speculative read; pi_state->owner == current is unstable
	 * but needs our attention.
	 */
	if (q->pi_state->owner == current)
		return fixup_pi_state_owner(uaddr, q, NULL);

	/*
	 * Paranoia check. If we did not take the lock, then we should not be
	 * the owner of the rt_mutex. Warn and establish consistent state.
	 */
	if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
		return fixup_pi_state_owner(uaddr, q, current);

	return 0;
}

/**
 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
 * @hb:		the futex hash bucket, must be locked by the caller
 * @q:		the futex_q to queue up on
 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
 */
static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
				struct hrtimer_sleeper *timeout)
{
	/*
	 * The task state is guaranteed to be set before another task can
	 * wake it. set_current_state() is implemented using smp_store_mb() and
	 * queue_me() calls spin_unlock() upon completion, both serializing
	 * access to the hash list and forcing another memory barrier.
	 */
	set_current_state(TASK_INTERRUPTIBLE);
	queue_me(q, hb);

	/* Arm the timer */
	if (timeout)
		hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);

	/*
	 * If we have been removed from the hash list, then another task
	 * has tried to wake us, and we can skip the call to schedule().
	 */
	if (likely(!plist_node_empty(&q->list))) {
		/*
		 * If the timer has already expired, current will already be
		 * flagged for rescheduling. Only call schedule if there
		 * is no timeout, or if it has yet to expire.
		 */
		if (!timeout || timeout->task)
			freezable_schedule();
	}
	__set_current_state(TASK_RUNNING);
}

/**
 * futex_wait_setup() - Prepare to wait on a futex
 * @uaddr:	the futex userspace address
 * @val:	the expected value
 * @flags:	futex flags (FLAGS_SHARED, etc.)
 * @q:		the associated futex_q
 * @hb:		storage for hash_bucket pointer to be returned to caller
 *
 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
 * compare it with the expected value.  Handle atomic faults internally.
 * Return with the hb lock held and a q.key reference on success, and unlocked
 * with no q.key reference on failure.
 *
 * Return:
 *  -  0 - uaddr contains val and hb has been locked;
 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
 */
static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
			   struct futex_q *q, struct futex_hash_bucket **hb)
{
	u32 uval;
	int ret;

	/*
	 * Access the page AFTER the hash-bucket is locked.
	 * Order is important:
	 *
	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
	 *
	 * The basic logical guarantee of a futex is that it blocks ONLY
	 * if cond(var) is known to be true at the time of blocking, for
	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
	 * would open a race condition where we could block indefinitely with
	 * cond(var) false, which would violate the guarantee.
	 *
	 * On the other hand, we insert q and release the hash-bucket only
	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
	 * absorb a wakeup if *uaddr does not match the desired values
	 * while the syscall executes.
	 */
retry:
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
	if (unlikely(ret != 0))
		return ret;

retry_private:
	*hb = queue_lock(q);

	ret = get_futex_value_locked(&uval, uaddr);

	if (ret) {
		queue_unlock(*hb);

		ret = get_user(uval, uaddr);
		if (ret)
			return ret;

		if (!(flags & FLAGS_SHARED))
			goto retry_private;

		goto retry;
	}

	if (uval != val) {
		queue_unlock(*hb);
		ret = -EWOULDBLOCK;
	}

	return ret;
}

static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
		      ktime_t *abs_time, u32 bitset)
{
	struct hrtimer_sleeper timeout, *to;
	struct restart_block *restart;
	struct futex_hash_bucket *hb;
	struct futex_q q = futex_q_init;
	int ret;

	if (!bitset)
		return -EINVAL;
	q.bitset = bitset;

	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);
retry:
	/*
	 * Prepare to wait on uaddr. On success, holds hb lock and increments
	 * q.key refs.
	 */
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
	if (ret)
		goto out;

	/* queue_me and wait for wakeup, timeout, or a signal. */
	futex_wait_queue_me(hb, &q, to);

	/* If we were woken (and unqueued), we succeeded, whatever. */
	ret = 0;
	/* unqueue_me() drops q.key ref */
	if (!unqueue_me(&q))
		goto out;
	ret = -ETIMEDOUT;
	if (to && !to->task)
		goto out;

	/*
	 * We expect signal_pending(current), but we might be the
	 * victim of a spurious wakeup as well.
	 */
	if (!signal_pending(current))
		goto retry;

	ret = -ERESTARTSYS;
	if (!abs_time)
		goto out;

	restart = &current->restart_block;
	restart->futex.uaddr = uaddr;
	restart->futex.val = val;
	restart->futex.time = *abs_time;
	restart->futex.bitset = bitset;
	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;

	ret = set_restart_fn(restart, futex_wait_restart);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}


static long futex_wait_restart(struct restart_block *restart)
{
	u32 __user *uaddr = restart->futex.uaddr;
	ktime_t t, *tp = NULL;

	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
		t = restart->futex.time;
		tp = &t;
	}
	restart->fn = do_no_restart_syscall;

	return (long)futex_wait(uaddr, restart->futex.flags,
				restart->futex.val, tp, restart->futex.bitset);
}


/*
 * Userspace tried a 0 -> TID atomic transition of the futex value
 * and failed. The kernel side here does the whole locking operation:
 * if there are waiters then it will block as a consequence of relying
 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
 * a 0 value of the futex too.).
 *
 * Also serves as futex trylock_pi()'ing, and due semantics.
 */
static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
			 ktime_t *time, int trylock)
{
	struct hrtimer_sleeper timeout, *to;
	struct task_struct *exiting = NULL;
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
	struct futex_q q = futex_q_init;
	int res, ret;

	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

	if (refill_pi_state_cache())
		return -ENOMEM;

	to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);

retry:
	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
	if (unlikely(ret != 0))
		goto out;

retry_private:
	hb = queue_lock(&q);

	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
				   &exiting, 0);
	if (unlikely(ret)) {
		/*
		 * Atomic work succeeded and we got the lock,
		 * or failed. Either way, we do _not_ block.
		 */
		switch (ret) {
		case 1:
			/* We got the lock. */
			ret = 0;
			goto out_unlock_put_key;
		case -EFAULT:
			goto uaddr_faulted;
		case -EBUSY:
		case -EAGAIN:
			/*
			 * Two reasons for this:
			 * - EBUSY: Task is exiting and we just wait for the
			 *   exit to complete.
			 * - EAGAIN: The user space value changed.
			 */
			queue_unlock(hb);
			/*
			 * Handle the case where the owner is in the middle of
			 * exiting. Wait for the exit to complete otherwise
			 * this task might loop forever, aka. live lock.
			 */
			wait_for_owner_exiting(ret, exiting);
			cond_resched();
			goto retry;
		default:
			goto out_unlock_put_key;
		}
	}

	WARN_ON(!q.pi_state);

	/*
	 * Only actually queue now that the atomic ops are done:
	 */
	__queue_me(&q, hb);

	if (trylock) {
		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
		/* Fixup the trylock return value: */
		ret = ret ? 0 : -EWOULDBLOCK;
		goto no_block;
	}

	rt_mutex_init_waiter(&rt_waiter);

	/*
	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
	 * hold it while doing rt_mutex_start_proxy(), because then it will
	 * include hb->lock in the blocking chain, even through we'll not in
	 * fact hold it while blocking. This will lead it to report -EDEADLK
	 * and BUG when futex_unlock_pi() interleaves with this.
	 *
	 * Therefore acquire wait_lock while holding hb->lock, but drop the
	 * latter before calling __rt_mutex_start_proxy_lock(). This
	 * interleaves with futex_unlock_pi() -- which does a similar lock
	 * handoff -- such that the latter can observe the futex_q::pi_state
	 * before __rt_mutex_start_proxy_lock() is done.
	 */
	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
	spin_unlock(q.lock_ptr);
	/*
	 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
	 * such that futex_unlock_pi() is guaranteed to observe the waiter when
	 * it sees the futex_q::pi_state.
	 */
	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);

	if (ret) {
		if (ret == 1)
			ret = 0;
		goto cleanup;
	}

	if (unlikely(to))
		hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);

	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);

cleanup:
	spin_lock(q.lock_ptr);
	/*
	 * If we failed to acquire the lock (deadlock/signal/timeout), we must
	 * first acquire the hb->lock before removing the lock from the
	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
	 * lists consistent.
	 *
	 * In particular; it is important that futex_unlock_pi() can not
	 * observe this inconsistency.
	 */
	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
		ret = 0;

no_block:
	/*
	 * Fixup the pi_state owner and possibly acquire the lock if we
	 * haven't already.
	 */
	res = fixup_owner(uaddr, &q, !ret);
	/*
	 * If fixup_owner() returned an error, proprogate that.  If it acquired
	 * the lock, clear our -ETIMEDOUT or -EINTR.
	 */
	if (res)
		ret = (res < 0) ? res : 0;

	unqueue_me_pi(&q);
	spin_unlock(q.lock_ptr);
	goto out;

out_unlock_put_key:
	queue_unlock(hb);

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret != -EINTR ? ret : -ERESTARTNOINTR;

uaddr_faulted:
	queue_unlock(hb);

	ret = fault_in_user_writeable(uaddr);
	if (ret)
		goto out;

	if (!(flags & FLAGS_SHARED))
		goto retry_private;

	goto retry;
}

/*
 * Userspace attempted a TID -> 0 atomic transition, and failed.
 * This is the in-kernel slowpath: we look up the PI state (if any),
 * and do the rt-mutex unlock.
 */
static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
{
	u32 curval, uval, vpid = task_pid_vnr(current);
	union futex_key key = FUTEX_KEY_INIT;
	struct futex_hash_bucket *hb;
	struct futex_q *top_waiter;
	int ret;

	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

retry:
	if (get_user(uval, uaddr))
		return -EFAULT;
	/*
	 * We release only a lock we actually own:
	 */
	if ((uval & FUTEX_TID_MASK) != vpid)
		return -EPERM;

	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
	if (ret)
		return ret;

	hb = hash_futex(&key);
	spin_lock(&hb->lock);

	/*
	 * Check waiters first. We do not trust user space values at
	 * all and we at least want to know if user space fiddled
	 * with the futex value instead of blindly unlocking.
	 */
	top_waiter = futex_top_waiter(hb, &key);
	if (top_waiter) {
		struct futex_pi_state *pi_state = top_waiter->pi_state;

		ret = -EINVAL;
		if (!pi_state)
			goto out_unlock;

		/*
		 * If current does not own the pi_state then the futex is
		 * inconsistent and user space fiddled with the futex value.
		 */
		if (pi_state->owner != current)
			goto out_unlock;

		get_pi_state(pi_state);
		/*
		 * By taking wait_lock while still holding hb->lock, we ensure
		 * there is no point where we hold neither; and therefore
		 * wake_futex_pi() must observe a state consistent with what we
		 * observed.
		 *
		 * In particular; this forces __rt_mutex_start_proxy() to
		 * complete such that we're guaranteed to observe the
		 * rt_waiter. Also see the WARN in wake_futex_pi().
		 */
		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
		spin_unlock(&hb->lock);

		/* drops pi_state->pi_mutex.wait_lock */
		ret = wake_futex_pi(uaddr, uval, pi_state);

		put_pi_state(pi_state);

		/*
		 * Success, we're done! No tricky corner cases.
		 */
		if (!ret)
			return ret;
		/*
		 * The atomic access to the futex value generated a
		 * pagefault, so retry the user-access and the wakeup:
		 */
		if (ret == -EFAULT)
			goto pi_faulted;
		/*
		 * A unconditional UNLOCK_PI op raced against a waiter
		 * setting the FUTEX_WAITERS bit. Try again.
		 */
		if (ret == -EAGAIN)
			goto pi_retry;
		/*
		 * wake_futex_pi has detected invalid state. Tell user
		 * space.
		 */
		return ret;
	}

	/*
	 * We have no kernel internal state, i.e. no waiters in the
	 * kernel. Waiters which are about to queue themselves are stuck
	 * on hb->lock. So we can safely ignore them. We do neither
	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
	 * owner.
	 */
	if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
		spin_unlock(&hb->lock);
		switch (ret) {
		case -EFAULT:
			goto pi_faulted;

		case -EAGAIN:
			goto pi_retry;

		default:
			WARN_ON_ONCE(1);
			return ret;
		}
	}

	/*
	 * If uval has changed, let user space handle it.
	 */
	ret = (curval == uval) ? 0 : -EAGAIN;

out_unlock:
	spin_unlock(&hb->lock);
	return ret;

pi_retry:
	cond_resched();
	goto retry;

pi_faulted:

	ret = fault_in_user_writeable(uaddr);
	if (!ret)
		goto retry;

	return ret;
}

/**
 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
 * @hb:		the hash_bucket futex_q was original enqueued on
 * @q:		the futex_q woken while waiting to be requeued
 * @key2:	the futex_key of the requeue target futex
 * @timeout:	the timeout associated with the wait (NULL if none)
 *
 * Detect if the task was woken on the initial futex as opposed to the requeue
 * target futex.  If so, determine if it was a timeout or a signal that caused
 * the wakeup and return the appropriate error code to the caller.  Must be
 * called with the hb lock held.
 *
 * Return:
 *  -  0 = no early wakeup detected;
 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
 */
static inline
int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
				   struct futex_q *q, union futex_key *key2,
				   struct hrtimer_sleeper *timeout)
{
	int ret = 0;

	/*
	 * With the hb lock held, we avoid races while we process the wakeup.
	 * We only need to hold hb (and not hb2) to ensure atomicity as the
	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
	 * It can't be requeued from uaddr2 to something else since we don't
	 * support a PI aware source futex for requeue.
	 */
	if (!match_futex(&q->key, key2)) {
		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
		/*
		 * We were woken prior to requeue by a timeout or a signal.
		 * Unqueue the futex_q and determine which it was.
		 */
		plist_del(&q->list, &hb->chain);
		hb_waiters_dec(hb);

		/* Handle spurious wakeups gracefully */
		ret = -EWOULDBLOCK;
		if (timeout && !timeout->task)
			ret = -ETIMEDOUT;
		else if (signal_pending(current))
			ret = -ERESTARTNOINTR;
	}
	return ret;
}

/**
 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
 * @uaddr:	the futex we initially wait on (non-pi)
 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
 *		the same type, no requeueing from private to shared, etc.
 * @val:	the expected value of uaddr
 * @abs_time:	absolute timeout
 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
 * @uaddr2:	the pi futex we will take prior to returning to user-space
 *
 * The caller will wait on uaddr and will be requeued by futex_requeue() to
 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
 * without one, the pi logic would not know which task to boost/deboost, if
 * there was a need to.
 *
 * We call schedule in futex_wait_queue_me() when we enqueue and return there
 * via the following--
 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
 * 2) wakeup on uaddr2 after a requeue
 * 3) signal
 * 4) timeout
 *
 * If 3, cleanup and return -ERESTARTNOINTR.
 *
 * If 2, we may then block on trying to take the rt_mutex and return via:
 * 5) successful lock
 * 6) signal
 * 7) timeout
 * 8) other lock acquisition failure
 *
 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
 *
 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
 *
 * Return:
 *  -  0 - On success;
 *  - <0 - On error
 */
static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
				 u32 val, ktime_t *abs_time, u32 bitset,
				 u32 __user *uaddr2)
{
	struct hrtimer_sleeper timeout, *to;
	struct rt_mutex_waiter rt_waiter;
	struct futex_hash_bucket *hb;
	union futex_key key2 = FUTEX_KEY_INIT;
	struct futex_q q = futex_q_init;
	int res, ret;

	if (!IS_ENABLED(CONFIG_FUTEX_PI))
		return -ENOSYS;

	if (uaddr == uaddr2)
		return -EINVAL;

	if (!bitset)
		return -EINVAL;

	to = futex_setup_timer(abs_time, &timeout, flags,
			       current->timer_slack_ns);

	/*
	 * The waiter is allocated on our stack, manipulated by the requeue
	 * code while we sleep on uaddr.
	 */
	rt_mutex_init_waiter(&rt_waiter);

	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
	if (unlikely(ret != 0))
		goto out;

	q.bitset = bitset;
	q.rt_waiter = &rt_waiter;
	q.requeue_pi_key = &key2;

	/*
	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
	 * count.
	 */
	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
	if (ret)
		goto out;

	/*
	 * The check above which compares uaddrs is not sufficient for
	 * shared futexes. We need to compare the keys:
	 */
	if (match_futex(&q.key, &key2)) {
		queue_unlock(hb);
		ret = -EINVAL;
		goto out;
	}

	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
	futex_wait_queue_me(hb, &q, to);

	spin_lock(&hb->lock);
	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
	spin_unlock(&hb->lock);
	if (ret)
		goto out;

	/*
	 * In order for us to be here, we know our q.key == key2, and since
	 * we took the hb->lock above, we also know that futex_requeue() has
	 * completed and we no longer have to concern ourselves with a wakeup
	 * race with the atomic proxy lock acquisition by the requeue code. The
	 * futex_requeue dropped our key1 reference and incremented our key2
	 * reference count.
	 */

	/*
	 * Check if the requeue code acquired the second futex for us and do
	 * any pertinent fixup.
	 */
	if (!q.rt_waiter) {
		if (q.pi_state && (q.pi_state->owner != current)) {
			spin_lock(q.lock_ptr);
			ret = fixup_owner(uaddr2, &q, true);
			/*
			 * Drop the reference to the pi state which
			 * the requeue_pi() code acquired for us.
			 */
			put_pi_state(q.pi_state);
			spin_unlock(q.lock_ptr);
			/*
			 * Adjust the return value. It's either -EFAULT or
			 * success (1) but the caller expects 0 for success.
			 */
			ret = ret < 0 ? ret : 0;
		}
	} else {
		struct rt_mutex *pi_mutex;

		/*
		 * We have been woken up by futex_unlock_pi(), a timeout, or a
		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
		 * the pi_state.
		 */
		WARN_ON(!q.pi_state);
		pi_mutex = &q.pi_state->pi_mutex;
		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);

		spin_lock(q.lock_ptr);
		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
			ret = 0;

		debug_rt_mutex_free_waiter(&rt_waiter);
		/*
		 * Fixup the pi_state owner and possibly acquire the lock if we
		 * haven't already.
		 */
		res = fixup_owner(uaddr2, &q, !ret);
		/*
		 * If fixup_owner() returned an error, proprogate that.  If it
		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
		 */
		if (res)
			ret = (res < 0) ? res : 0;

		unqueue_me_pi(&q);
		spin_unlock(q.lock_ptr);
	}

	if (ret == -EINTR) {
		/*
		 * We've already been requeued, but cannot restart by calling
		 * futex_lock_pi() directly. We could restart this syscall, but
		 * it would detect that the user space "val" changed and return
		 * -EWOULDBLOCK.  Save the overhead of the restart and return
		 * -EWOULDBLOCK directly.
		 */
		ret = -EWOULDBLOCK;
	}

out:
	if (to) {
		hrtimer_cancel(&to->timer);
		destroy_hrtimer_on_stack(&to->timer);
	}
	return ret;
}

/*
 * Support for robust futexes: the kernel cleans up held futexes at
 * thread exit time.
 *
 * Implementation: user-space maintains a per-thread list of locks it
 * is holding. Upon do_exit(), the kernel carefully walks this list,
 * and marks all locks that are owned by this thread with the
 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
 * always manipulated with the lock held, so the list is private and
 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
 * field, to allow the kernel to clean up if the thread dies after
 * acquiring the lock, but just before it could have added itself to
 * the list. There can only be one such pending lock.
 */

/**
 * sys_set_robust_list() - Set the robust-futex list head of a task
 * @head:	pointer to the list-head
 * @len:	length of the list-head, as userspace expects
 */
SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
		size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;
	/*
	 * The kernel knows only one size for now:
	 */
	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->robust_list = head;

	return 0;
}

/**
 * sys_get_robust_list() - Get the robust-futex list head of a task
 * @pid:	pid of the process [zero for current task]
 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
 * @len_ptr:	pointer to a length field, the kernel fills in the header size
 */
SYSCALL_DEFINE3(get_robust_list, int, pid,
		struct robust_list_head __user * __user *, head_ptr,
		size_t __user *, len_ptr)
{
	struct robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(head, head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}

/* Constants for the pending_op argument of handle_futex_death */
#define HANDLE_DEATH_PENDING	true
#define HANDLE_DEATH_LIST	false

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
			      bool pi, bool pending_op)
{
	u32 uval, nval, mval;
	int err;

	/* Futex address must be 32bit aligned */
	if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
		return -1;

retry:
	if (get_user(uval, uaddr))
		return -1;

	/*
	 * Special case for regular (non PI) futexes. The unlock path in
	 * user space has two race scenarios:
	 *
	 * 1. The unlock path releases the user space futex value and
	 *    before it can execute the futex() syscall to wake up
	 *    waiters it is killed.
	 *
	 * 2. A woken up waiter is killed before it can acquire the
	 *    futex in user space.
	 *
	 * In both cases the TID validation below prevents a wakeup of
	 * potential waiters which can cause these waiters to block
	 * forever.
	 *
	 * In both cases the following conditions are met:
	 *
	 *	1) task->robust_list->list_op_pending != NULL
	 *	   @pending_op == true
	 *	2) User space futex value == 0
	 *	3) Regular futex: @pi == false
	 *
	 * If these conditions are met, it is safe to attempt waking up a
	 * potential waiter without touching the user space futex value and
	 * trying to set the OWNER_DIED bit. The user space futex value is
	 * uncontended and the rest of the user space mutex state is
	 * consistent, so a woken waiter will just take over the
	 * uncontended futex. Setting the OWNER_DIED bit would create
	 * inconsistent state and malfunction of the user space owner died
	 * handling.
	 */
	if (pending_op && !pi && !uval) {
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
		return 0;
	}

	if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
		return 0;

	/*
	 * Ok, this dying thread is truly holding a futex
	 * of interest. Set the OWNER_DIED bit atomically
	 * via cmpxchg, and if the value had FUTEX_WAITERS
	 * set, wake up a waiter (if any). (We have to do a
	 * futex_wake() even if OWNER_DIED is already set -
	 * to handle the rare but possible case of recursive
	 * thread-death.) The rest of the cleanup is done in
	 * userspace.
	 */
	mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;

	/*
	 * We are not holding a lock here, but we want to have
	 * the pagefault_disable/enable() protection because
	 * we want to handle the fault gracefully. If the
	 * access fails we try to fault in the futex with R/W
	 * verification via get_user_pages. get_user() above
	 * does not guarantee R/W access. If that fails we
	 * give up and leave the futex locked.
	 */
	if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
		switch (err) {
		case -EFAULT:
			if (fault_in_user_writeable(uaddr))
				return -1;
			goto retry;

		case -EAGAIN:
			cond_resched();
			goto retry;

		default:
			WARN_ON_ONCE(1);
			return err;
		}
	}

	if (nval != uval)
		goto retry;

	/*
	 * Wake robust non-PI futexes here. The wakeup of
	 * PI futexes happens in exit_pi_state():
	 */
	if (!pi && (uval & FUTEX_WAITERS))
		futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);

	return 0;
}

/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
				     struct robust_list __user * __user *head,
				     unsigned int *pi)
{
	unsigned long uentry;

	if (get_user(uentry, (unsigned long __user *)head))
		return -EFAULT;

	*entry = (void __user *)(uentry & ~1UL);
	*pi = uentry & 1;

	return 0;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
static void exit_robust_list(struct task_struct *curr)
{
	struct robust_list_head __user *head = curr->robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int next_pi;
	unsigned long futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (fetch_robust_entry(&entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * don't process it twice:
		 */
		if (entry != pending) {
			if (handle_futex_death((void __user *)entry + futex_offset,
						curr, pi, HANDLE_DEATH_LIST))
				return;
		}
		if (rc)
			return;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}

	if (pending) {
		handle_futex_death((void __user *)pending + futex_offset,
				   curr, pip, HANDLE_DEATH_PENDING);
	}
}

static void futex_cleanup(struct task_struct *tsk)
{
	if (unlikely(tsk->robust_list)) {
		exit_robust_list(tsk);
		tsk->robust_list = NULL;
	}

#ifdef CONFIG_COMPAT
	if (unlikely(tsk->compat_robust_list)) {
		compat_exit_robust_list(tsk);
		tsk->compat_robust_list = NULL;
	}
#endif

	if (unlikely(!list_empty(&tsk->pi_state_list)))
		exit_pi_state_list(tsk);
}

/**
 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
 * @tsk:	task to set the state on
 *
 * Set the futex exit state of the task lockless. The futex waiter code
 * observes that state when a task is exiting and loops until the task has
 * actually finished the futex cleanup. The worst case for this is that the
 * waiter runs through the wait loop until the state becomes visible.
 *
 * This is called from the recursive fault handling path in do_exit().
 *
 * This is best effort. Either the futex exit code has run already or
 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
 * take it over. If not, the problem is pushed back to user space. If the
 * futex exit code did not run yet, then an already queued waiter might
 * block forever, but there is nothing which can be done about that.
 */
void futex_exit_recursive(struct task_struct *tsk)
{
	/* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
	if (tsk->futex_state == FUTEX_STATE_EXITING)
		mutex_unlock(&tsk->futex_exit_mutex);
	tsk->futex_state = FUTEX_STATE_DEAD;
}

static void futex_cleanup_begin(struct task_struct *tsk)
{
	/*
	 * Prevent various race issues against a concurrent incoming waiter
	 * including live locks by forcing the waiter to block on
	 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
	 * attach_to_pi_owner().
	 */
	mutex_lock(&tsk->futex_exit_mutex);

	/*
	 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
	 *
	 * This ensures that all subsequent checks of tsk->futex_state in
	 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
	 * tsk->pi_lock held.
	 *
	 * It guarantees also that a pi_state which was queued right before
	 * the state change under tsk->pi_lock by a concurrent waiter must
	 * be observed in exit_pi_state_list().
	 */
	raw_spin_lock_irq(&tsk->pi_lock);
	tsk->futex_state = FUTEX_STATE_EXITING;
	raw_spin_unlock_irq(&tsk->pi_lock);
}

static void futex_cleanup_end(struct task_struct *tsk, int state)
{
	/*
	 * Lockless store. The only side effect is that an observer might
	 * take another loop until it becomes visible.
	 */
	tsk->futex_state = state;
	/*
	 * Drop the exit protection. This unblocks waiters which observed
	 * FUTEX_STATE_EXITING to reevaluate the state.
	 */
	mutex_unlock(&tsk->futex_exit_mutex);
}

void futex_exec_release(struct task_struct *tsk)
{
	/*
	 * The state handling is done for consistency, but in the case of
	 * exec() there is no way to prevent futher damage as the PID stays
	 * the same. But for the unlikely and arguably buggy case that a
	 * futex is held on exec(), this provides at least as much state
	 * consistency protection which is possible.
	 */
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	/*
	 * Reset the state to FUTEX_STATE_OK. The task is alive and about
	 * exec a new binary.
	 */
	futex_cleanup_end(tsk, FUTEX_STATE_OK);
}

void futex_exit_release(struct task_struct *tsk)
{
	futex_cleanup_begin(tsk);
	futex_cleanup(tsk);
	futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
}

long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
		u32 __user *uaddr2, u32 val2, u32 val3)
{
	int cmd = op & FUTEX_CMD_MASK;
	unsigned int flags = 0;

	if (!(op & FUTEX_PRIVATE_FLAG))
		flags |= FLAGS_SHARED;

	if (op & FUTEX_CLOCK_REALTIME) {
		flags |= FLAGS_CLOCKRT;
		if (cmd != FUTEX_WAIT_BITSET &&	cmd != FUTEX_WAIT_REQUEUE_PI)
			return -ENOSYS;
	}

	switch (cmd) {
	case FUTEX_LOCK_PI:
	case FUTEX_UNLOCK_PI:
	case FUTEX_TRYLOCK_PI:
	case FUTEX_WAIT_REQUEUE_PI:
	case FUTEX_CMP_REQUEUE_PI:
		if (!futex_cmpxchg_enabled)
			return -ENOSYS;
	}

	switch (cmd) {
	case FUTEX_WAIT:
		val3 = FUTEX_BITSET_MATCH_ANY;
		fallthrough;
	case FUTEX_WAIT_BITSET:
		return futex_wait(uaddr, flags, val, timeout, val3);
	case FUTEX_WAKE:
		val3 = FUTEX_BITSET_MATCH_ANY;
		fallthrough;
	case FUTEX_WAKE_BITSET:
		return futex_wake(uaddr, flags, val, val3);
	case FUTEX_REQUEUE:
		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
	case FUTEX_CMP_REQUEUE:
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
	case FUTEX_WAKE_OP:
		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
	case FUTEX_LOCK_PI:
		return futex_lock_pi(uaddr, flags, timeout, 0);
	case FUTEX_UNLOCK_PI:
		return futex_unlock_pi(uaddr, flags);
	case FUTEX_TRYLOCK_PI:
		return futex_lock_pi(uaddr, flags, NULL, 1);
	case FUTEX_WAIT_REQUEUE_PI:
		val3 = FUTEX_BITSET_MATCH_ANY;
		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
					     uaddr2);
	case FUTEX_CMP_REQUEUE_PI:
		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
	}
	return -ENOSYS;
}

static __always_inline bool futex_cmd_has_timeout(u32 cmd)
{
	switch (cmd) {
	case FUTEX_WAIT:
	case FUTEX_LOCK_PI:
	case FUTEX_WAIT_BITSET:
	case FUTEX_WAIT_REQUEUE_PI:
		return true;
	}
	return false;
}

static __always_inline int
futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
{
	if (!timespec64_valid(ts))
		return -EINVAL;

	*t = timespec64_to_ktime(*ts);
	if (cmd == FUTEX_WAIT)
		*t = ktime_add_safe(ktime_get(), *t);
	else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
		*t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
	return 0;
}

SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
		const struct __kernel_timespec __user *, utime,
		u32 __user *, uaddr2, u32, val3)
{
	int ret, cmd = op & FUTEX_CMD_MASK;
	ktime_t t, *tp = NULL;
	struct timespec64 ts;

	if (utime && futex_cmd_has_timeout(cmd)) {
		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
			return -EFAULT;
		if (get_timespec64(&ts, utime))
			return -EFAULT;
		ret = futex_init_timeout(cmd, op, &ts, &t);
		if (ret)
			return ret;
		tp = &t;
	}

	return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
}

#ifdef CONFIG_COMPAT
/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{
	if (get_user(*uentry, head))
		return -EFAULT;

	*entry = compat_ptr((*uentry) & ~1);
	*pi = (unsigned int)(*uentry) & 1;

	return 0;
}

static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{
	compat_uptr_t base = ptr_to_compat(entry);
	void __user *uaddr = compat_ptr(base + futex_offset);

	return uaddr;
}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
static void compat_exit_robust_list(struct task_struct *curr)
{
	struct compat_robust_list_head __user *head = curr->compat_robust_list;
	struct robust_list __user *entry, *next_entry, *pending;
	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
	unsigned int next_pi;
	compat_uptr_t uentry, next_uentry, upending;
	compat_long_t futex_offset;
	int rc;

	if (!futex_cmpxchg_enabled)
		return;

	/*
	 * Fetch the list head (which was registered earlier, via
	 * sys_set_robust_list()):
	 */
	if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
		return;
	/*
	 * Fetch the relative futex offset:
	 */
	if (get_user(futex_offset, &head->futex_offset))
		return;
	/*
	 * Fetch any possibly pending lock-add first, and handle it
	 * if it exists:
	 */
	if (compat_fetch_robust_entry(&upending, &pending,
			       &head->list_op_pending, &pip))
		return;

	next_entry = NULL;	/* avoid warning with gcc */
	while (entry != (struct robust_list __user *) &head->list) {
		/*
		 * Fetch the next entry in the list before calling
		 * handle_futex_death:
		 */
		rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
			(compat_uptr_t __user *)&entry->next, &next_pi);
		/*
		 * A pending lock might already be on the list, so
		 * dont process it twice:
		 */
		if (entry != pending) {
			void __user *uaddr = futex_uaddr(entry, futex_offset);

			if (handle_futex_death(uaddr, curr, pi,
					       HANDLE_DEATH_LIST))
				return;
		}
		if (rc)
			return;
		uentry = next_uentry;
		entry = next_entry;
		pi = next_pi;
		/*
		 * Avoid excessively long or circular lists:
		 */
		if (!--limit)
			break;

		cond_resched();
	}
	if (pending) {
		void __user *uaddr = futex_uaddr(pending, futex_offset);

		handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
	}
}

COMPAT_SYSCALL_DEFINE2(set_robust_list,
		struct compat_robust_list_head __user *, head,
		compat_size_t, len)
{
	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	if (unlikely(len != sizeof(*head)))
		return -EINVAL;

	current->compat_robust_list = head;

	return 0;
}

COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
			compat_uptr_t __user *, head_ptr,
			compat_size_t __user *, len_ptr)
{
	struct compat_robust_list_head __user *head;
	unsigned long ret;
	struct task_struct *p;

	if (!futex_cmpxchg_enabled)
		return -ENOSYS;

	rcu_read_lock();

	ret = -ESRCH;
	if (!pid)
		p = current;
	else {
		p = find_task_by_vpid(pid);
		if (!p)
			goto err_unlock;
	}

	ret = -EPERM;
	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
		goto err_unlock;

	head = p->compat_robust_list;
	rcu_read_unlock();

	if (put_user(sizeof(*head), len_ptr))
		return -EFAULT;
	return put_user(ptr_to_compat(head), head_ptr);

err_unlock:
	rcu_read_unlock();

	return ret;
}
#endif /* CONFIG_COMPAT */

#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
		const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
		u32, val3)
{
	int ret, cmd = op & FUTEX_CMD_MASK;
	ktime_t t, *tp = NULL;
	struct timespec64 ts;

	if (utime && futex_cmd_has_timeout(cmd)) {
		if (get_old_timespec32(&ts, utime))
			return -EFAULT;
		ret = futex_init_timeout(cmd, op, &ts, &t);
		if (ret)
			return ret;
		tp = &t;
	}

	return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
}
#endif /* CONFIG_COMPAT_32BIT_TIME */

static void __init futex_detect_cmpxchg(void)
{
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
	u32 curval;

	/*
	 * This will fail and we want it. Some arch implementations do
	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
	 * functionality. We want to know that before we call in any
	 * of the complex code paths. Also we want to prevent
	 * registration of robust lists in that case. NULL is
	 * guaranteed to fault and we get -EFAULT on functional
	 * implementation, the non-functional ones will return
	 * -ENOSYS.
	 */
	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
		futex_cmpxchg_enabled = 1;
#endif
}

static int __init futex_init(void)
{
	unsigned int futex_shift;
	unsigned long i;

#if CONFIG_BASE_SMALL
	futex_hashsize = 16;
#else
	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
#endif

	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
					       futex_hashsize, 0,
					       futex_hashsize < 256 ? HASH_SMALL : 0,
					       &futex_shift, NULL,
					       futex_hashsize, futex_hashsize);
	futex_hashsize = 1UL << futex_shift;

	futex_detect_cmpxchg();

	for (i = 0; i < futex_hashsize; i++) {
		atomic_set(&futex_queues[i].waiters, 0);
		plist_head_init(&futex_queues[i].chain);
		spin_lock_init(&futex_queues[i].lock);
	}

	return 0;
}
core_initcall(futex_init);