1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _FUTEX_H
#define _FUTEX_H
#include <linux/futex.h>
#include <linux/sched/wake_q.h>
#ifdef CONFIG_PREEMPT_RT
#include <linux/rcuwait.h>
#endif
#include <asm/futex.h>
/*
* Futex flags used to encode options to functions and preserve them across
* restarts.
*/
#ifdef CONFIG_MMU
# define FLAGS_SHARED 0x01
#else
/*
* NOMMU does not have per process address space. Let the compiler optimize
* code away.
*/
# define FLAGS_SHARED 0x00
#endif
#define FLAGS_CLOCKRT 0x02
#define FLAGS_HAS_TIMEOUT 0x04
#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
#define futex_cmpxchg_enabled 1
#else
extern int __read_mostly futex_cmpxchg_enabled;
#endif
#ifdef CONFIG_FAIL_FUTEX
extern bool should_fail_futex(bool fshared);
#else
static inline bool should_fail_futex(bool fshared)
{
return false;
}
#endif
/*
* Hash buckets are shared by all the futex_keys that hash to the same
* location. Each key may have multiple futex_q structures, one for each task
* waiting on a futex.
*/
struct futex_hash_bucket {
atomic_t waiters;
spinlock_t lock;
struct plist_head chain;
} ____cacheline_aligned_in_smp;
/*
* Priority Inheritance state:
*/
struct futex_pi_state {
/*
* list of 'owned' pi_state instances - these have to be
* cleaned up in do_exit() if the task exits prematurely:
*/
struct list_head list;
/*
* The PI object:
*/
struct rt_mutex_base pi_mutex;
struct task_struct *owner;
refcount_t refcount;
union futex_key key;
} __randomize_layout;
/**
* struct futex_q - The hashed futex queue entry, one per waiting task
* @list: priority-sorted list of tasks waiting on this futex
* @task: the task waiting on the futex
* @lock_ptr: the hash bucket lock
* @key: the key the futex is hashed on
* @pi_state: optional priority inheritance state
* @rt_waiter: rt_waiter storage for use with requeue_pi
* @requeue_pi_key: the requeue_pi target futex key
* @bitset: bitset for the optional bitmasked wakeup
* @requeue_state: State field for futex_requeue_pi()
* @requeue_wait: RCU wait for futex_requeue_pi() (RT only)
*
* We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
* we can wake only the relevant ones (hashed queues may be shared).
*
* A futex_q has a woken state, just like tasks have TASK_RUNNING.
* It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
* The order of wakeup is always to make the first condition true, then
* the second.
*
* PI futexes are typically woken before they are removed from the hash list via
* the rt_mutex code. See futex_unqueue_pi().
*/
struct futex_q {
struct plist_node list;
struct task_struct *task;
spinlock_t *lock_ptr;
union futex_key key;
struct futex_pi_state *pi_state;
struct rt_mutex_waiter *rt_waiter;
union futex_key *requeue_pi_key;
u32 bitset;
atomic_t requeue_state;
#ifdef CONFIG_PREEMPT_RT
struct rcuwait requeue_wait;
#endif
} __randomize_layout;
extern const struct futex_q futex_q_init;
enum futex_access {
FUTEX_READ,
FUTEX_WRITE
};
extern int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
enum futex_access rw);
extern struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
int flags, u64 range_ns);
extern struct futex_hash_bucket *futex_hash(union futex_key *key);
/**
* futex_match - Check whether two futex keys are equal
* @key1: Pointer to key1
* @key2: Pointer to key2
*
* Return 1 if two futex_keys are equal, 0 otherwise.
*/
static inline int futex_match(union futex_key *key1, union futex_key *key2)
{
return (key1 && key2
&& key1->both.word == key2->both.word
&& key1->both.ptr == key2->both.ptr
&& key1->both.offset == key2->both.offset);
}
extern int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
struct futex_q *q, struct futex_hash_bucket **hb);
extern void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
struct hrtimer_sleeper *timeout);
extern void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q);
extern int fault_in_user_writeable(u32 __user *uaddr);
extern int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval);
extern int futex_get_value_locked(u32 *dest, u32 __user *from);
extern struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key);
extern void __futex_unqueue(struct futex_q *q);
extern void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb);
extern int futex_unqueue(struct futex_q *q);
/**
* futex_queue() - Enqueue the futex_q on the futex_hash_bucket
* @q: The futex_q to enqueue
* @hb: The destination hash bucket
*
* The hb->lock must be held by the caller, and is released here. A call to
* futex_queue() is typically paired with exactly one call to futex_unqueue(). The
* exceptions involve the PI related operations, which may use futex_unqueue_pi()
* or nothing if the unqueue is done as part of the wake process and the unqueue
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
* an example).
*/
static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
__releases(&hb->lock)
{
__futex_queue(q, hb);
spin_unlock(&hb->lock);
}
extern void futex_unqueue_pi(struct futex_q *q);
extern void wait_for_owner_exiting(int ret, struct task_struct *exiting);
/*
* Reflects a new waiter being added to the waitqueue.
*/
static inline void futex_hb_waiters_inc(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
atomic_inc(&hb->waiters);
/*
* Full barrier (A), see the ordering comment above.
*/
smp_mb__after_atomic();
#endif
}
/*
* Reflects a waiter being removed from the waitqueue by wakeup
* paths.
*/
static inline void futex_hb_waiters_dec(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
atomic_dec(&hb->waiters);
#endif
}
static inline int futex_hb_waiters_pending(struct futex_hash_bucket *hb)
{
#ifdef CONFIG_SMP
/*
* Full barrier (B), see the ordering comment above.
*/
smp_mb();
return atomic_read(&hb->waiters);
#else
return 1;
#endif
}
extern struct futex_hash_bucket *futex_q_lock(struct futex_q *q);
extern void futex_q_unlock(struct futex_hash_bucket *hb);
extern int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
union futex_key *key,
struct futex_pi_state **ps,
struct task_struct *task,
struct task_struct **exiting,
int set_waiters);
extern int refill_pi_state_cache(void);
extern void get_pi_state(struct futex_pi_state *pi_state);
extern void put_pi_state(struct futex_pi_state *pi_state);
extern int fixup_pi_owner(u32 __user *uaddr, struct futex_q *q, int locked);
/*
* Express the locking dependencies for lockdep:
*/
static inline void
double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
if (hb1 > hb2)
swap(hb1, hb2);
spin_lock(&hb1->lock);
if (hb1 != hb2)
spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
}
static inline void
double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
{
spin_unlock(&hb1->lock);
if (hb1 != hb2)
spin_unlock(&hb2->lock);
}
/* syscalls */
extern int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, u32
val, ktime_t *abs_time, u32 bitset, u32 __user
*uaddr2);
extern int futex_requeue(u32 __user *uaddr1, unsigned int flags,
u32 __user *uaddr2, int nr_wake, int nr_requeue,
u32 *cmpval, int requeue_pi);
extern int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
ktime_t *abs_time, u32 bitset);
/**
* struct futex_vector - Auxiliary struct for futex_waitv()
* @w: Userspace provided data
* @q: Kernel side data
*
* Struct used to build an array with all data need for futex_waitv()
*/
struct futex_vector {
struct futex_waitv w;
struct futex_q q;
};
extern int futex_wait_multiple(struct futex_vector *vs, unsigned int count,
struct hrtimer_sleeper *to);
extern int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset);
extern int futex_wake_op(u32 __user *uaddr1, unsigned int flags,
u32 __user *uaddr2, int nr_wake, int nr_wake2, int op);
extern int futex_unlock_pi(u32 __user *uaddr, unsigned int flags);
extern int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int trylock);
#endif /* _FUTEX_H */
|