aboutsummaryrefslogtreecommitdiff
path: root/kernel/memremap.c
blob: 7a1b5c3ef14e9301966f724c873b1edee864f910 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * Copyright(c) 2015 Intel Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 */
#include <linux/radix-tree.h>
#include <linux/memremap.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/pfn_t.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/memory_hotplug.h>

#ifndef ioremap_cache
/* temporary while we convert existing ioremap_cache users to memremap */
__weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size)
{
	return ioremap(offset, size);
}
#endif

static void *try_ram_remap(resource_size_t offset, size_t size)
{
	struct page *page = pfn_to_page(offset >> PAGE_SHIFT);

	/* In the simple case just return the existing linear address */
	if (!PageHighMem(page))
		return __va(offset);
	return NULL; /* fallback to ioremap_cache */
}

/**
 * memremap() - remap an iomem_resource as cacheable memory
 * @offset: iomem resource start address
 * @size: size of remap
 * @flags: either MEMREMAP_WB or MEMREMAP_WT
 *
 * memremap() is "ioremap" for cases where it is known that the resource
 * being mapped does not have i/o side effects and the __iomem
 * annotation is not applicable.
 *
 * MEMREMAP_WB - matches the default mapping for "System RAM" on
 * the architecture.  This is usually a read-allocate write-back cache.
 * Morever, if MEMREMAP_WB is specified and the requested remap region is RAM
 * memremap() will bypass establishing a new mapping and instead return
 * a pointer into the direct map.
 *
 * MEMREMAP_WT - establish a mapping whereby writes either bypass the
 * cache or are written through to memory and never exist in a
 * cache-dirty state with respect to program visibility.  Attempts to
 * map "System RAM" with this mapping type will fail.
 */
void *memremap(resource_size_t offset, size_t size, unsigned long flags)
{
	int is_ram = region_intersects(offset, size, "System RAM");
	void *addr = NULL;

	if (is_ram == REGION_MIXED) {
		WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n",
				&offset, (unsigned long) size);
		return NULL;
	}

	/* Try all mapping types requested until one returns non-NULL */
	if (flags & MEMREMAP_WB) {
		flags &= ~MEMREMAP_WB;
		/*
		 * MEMREMAP_WB is special in that it can be satisifed
		 * from the direct map.  Some archs depend on the
		 * capability of memremap() to autodetect cases where
		 * the requested range is potentially in "System RAM"
		 */
		if (is_ram == REGION_INTERSECTS)
			addr = try_ram_remap(offset, size);
		if (!addr)
			addr = ioremap_cache(offset, size);
	}

	/*
	 * If we don't have a mapping yet and more request flags are
	 * pending then we will be attempting to establish a new virtual
	 * address mapping.  Enforce that this mapping is not aliasing
	 * "System RAM"
	 */
	if (!addr && is_ram == REGION_INTERSECTS && flags) {
		WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n",
				&offset, (unsigned long) size);
		return NULL;
	}

	if (!addr && (flags & MEMREMAP_WT)) {
		flags &= ~MEMREMAP_WT;
		addr = ioremap_wt(offset, size);
	}

	return addr;
}
EXPORT_SYMBOL(memremap);

void memunmap(void *addr)
{
	if (is_vmalloc_addr(addr))
		iounmap((void __iomem *) addr);
}
EXPORT_SYMBOL(memunmap);

static void devm_memremap_release(struct device *dev, void *res)
{
	memunmap(*(void **)res);
}

static int devm_memremap_match(struct device *dev, void *res, void *match_data)
{
	return *(void **)res == match_data;
}

void *devm_memremap(struct device *dev, resource_size_t offset,
		size_t size, unsigned long flags)
{
	void **ptr, *addr;

	ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL,
			dev_to_node(dev));
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	addr = memremap(offset, size, flags);
	if (addr) {
		*ptr = addr;
		devres_add(dev, ptr);
	} else
		devres_free(ptr);

	return addr;
}
EXPORT_SYMBOL(devm_memremap);

void devm_memunmap(struct device *dev, void *addr)
{
	WARN_ON(devres_release(dev, devm_memremap_release,
				devm_memremap_match, addr));
}
EXPORT_SYMBOL(devm_memunmap);

pfn_t phys_to_pfn_t(phys_addr_t addr, u64 flags)
{
	return __pfn_to_pfn_t(addr >> PAGE_SHIFT, flags);
}
EXPORT_SYMBOL(phys_to_pfn_t);

#ifdef CONFIG_ZONE_DEVICE
static DEFINE_MUTEX(pgmap_lock);
static RADIX_TREE(pgmap_radix, GFP_KERNEL);
#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)

struct page_map {
	struct resource res;
	struct percpu_ref *ref;
	struct dev_pagemap pgmap;
	struct vmem_altmap altmap;
};

void get_zone_device_page(struct page *page)
{
	percpu_ref_get(page->pgmap->ref);
}
EXPORT_SYMBOL(get_zone_device_page);

void put_zone_device_page(struct page *page)
{
	put_dev_pagemap(page->pgmap);
}
EXPORT_SYMBOL(put_zone_device_page);

static void pgmap_radix_release(struct resource *res)
{
	resource_size_t key, align_start, align_size, align_end;

	align_start = res->start & ~(SECTION_SIZE - 1);
	align_size = ALIGN(resource_size(res), SECTION_SIZE);
	align_end = align_start + align_size - 1;

	mutex_lock(&pgmap_lock);
	for (key = res->start; key <= res->end; key += SECTION_SIZE)
		radix_tree_delete(&pgmap_radix, key >> PA_SECTION_SHIFT);
	mutex_unlock(&pgmap_lock);
}

static unsigned long pfn_first(struct page_map *page_map)
{
	struct dev_pagemap *pgmap = &page_map->pgmap;
	const struct resource *res = &page_map->res;
	struct vmem_altmap *altmap = pgmap->altmap;
	unsigned long pfn;

	pfn = res->start >> PAGE_SHIFT;
	if (altmap)
		pfn += vmem_altmap_offset(altmap);
	return pfn;
}

static unsigned long pfn_end(struct page_map *page_map)
{
	const struct resource *res = &page_map->res;

	return (res->start + resource_size(res)) >> PAGE_SHIFT;
}

#define for_each_device_pfn(pfn, map) \
	for (pfn = pfn_first(map); pfn < pfn_end(map); pfn++)

static void devm_memremap_pages_release(struct device *dev, void *data)
{
	struct page_map *page_map = data;
	struct resource *res = &page_map->res;
	resource_size_t align_start, align_size;
	struct dev_pagemap *pgmap = &page_map->pgmap;

	if (percpu_ref_tryget_live(pgmap->ref)) {
		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
		percpu_ref_put(pgmap->ref);
	}

	/* pages are dead and unused, undo the arch mapping */
	align_start = res->start & ~(SECTION_SIZE - 1);
	align_size = ALIGN(resource_size(res), SECTION_SIZE);
	arch_remove_memory(align_start, align_size);
	pgmap_radix_release(res);
	dev_WARN_ONCE(dev, pgmap->altmap && pgmap->altmap->alloc,
			"%s: failed to free all reserved pages\n", __func__);
}

/* assumes rcu_read_lock() held at entry */
struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
{
	struct page_map *page_map;

	WARN_ON_ONCE(!rcu_read_lock_held());

	page_map = radix_tree_lookup(&pgmap_radix, phys >> PA_SECTION_SHIFT);
	return page_map ? &page_map->pgmap : NULL;
}

/**
 * devm_memremap_pages - remap and provide memmap backing for the given resource
 * @dev: hosting device for @res
 * @res: "host memory" address range
 * @ref: a live per-cpu reference count
 * @altmap: optional descriptor for allocating the memmap from @res
 *
 * Notes:
 * 1/ @ref must be 'live' on entry and 'dead' before devm_memunmap_pages() time
 *    (or devm release event).
 *
 * 2/ @res is expected to be a host memory range that could feasibly be
 *    treated as a "System RAM" range, i.e. not a device mmio range, but
 *    this is not enforced.
 */
void *devm_memremap_pages(struct device *dev, struct resource *res,
		struct percpu_ref *ref, struct vmem_altmap *altmap)
{
	int is_ram = region_intersects(res->start, resource_size(res),
			"System RAM");
	resource_size_t key, align_start, align_size, align_end;
	struct dev_pagemap *pgmap;
	struct page_map *page_map;
	unsigned long pfn;
	int error, nid;

	if (is_ram == REGION_MIXED) {
		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
				__func__, res);
		return ERR_PTR(-ENXIO);
	}

	if (is_ram == REGION_INTERSECTS)
		return __va(res->start);

	if (altmap && !IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) {
		dev_err(dev, "%s: altmap requires CONFIG_SPARSEMEM_VMEMMAP=y\n",
				__func__);
		return ERR_PTR(-ENXIO);
	}

	if (!ref)
		return ERR_PTR(-EINVAL);

	page_map = devres_alloc_node(devm_memremap_pages_release,
			sizeof(*page_map), GFP_KERNEL, dev_to_node(dev));
	if (!page_map)
		return ERR_PTR(-ENOMEM);
	pgmap = &page_map->pgmap;

	memcpy(&page_map->res, res, sizeof(*res));

	pgmap->dev = dev;
	if (altmap) {
		memcpy(&page_map->altmap, altmap, sizeof(*altmap));
		pgmap->altmap = &page_map->altmap;
	}
	pgmap->ref = ref;
	pgmap->res = &page_map->res;

	mutex_lock(&pgmap_lock);
	error = 0;
	align_start = res->start & ~(SECTION_SIZE - 1);
	align_size = ALIGN(resource_size(res), SECTION_SIZE);
	align_end = align_start + align_size - 1;
	for (key = align_start; key <= align_end; key += SECTION_SIZE) {
		struct dev_pagemap *dup;

		rcu_read_lock();
		dup = find_dev_pagemap(key);
		rcu_read_unlock();
		if (dup) {
			dev_err(dev, "%s: %pr collides with mapping for %s\n",
					__func__, res, dev_name(dup->dev));
			error = -EBUSY;
			break;
		}
		error = radix_tree_insert(&pgmap_radix, key >> PA_SECTION_SHIFT,
				page_map);
		if (error) {
			dev_err(dev, "%s: failed: %d\n", __func__, error);
			break;
		}
	}
	mutex_unlock(&pgmap_lock);
	if (error)
		goto err_radix;

	nid = dev_to_node(dev);
	if (nid < 0)
		nid = numa_mem_id();

	error = arch_add_memory(nid, align_start, align_size, true);
	if (error)
		goto err_add_memory;

	for_each_device_pfn(pfn, page_map) {
		struct page *page = pfn_to_page(pfn);

		/* ZONE_DEVICE pages must never appear on a slab lru */
		list_force_poison(&page->lru);
		page->pgmap = pgmap;
	}
	devres_add(dev, page_map);
	return __va(res->start);

 err_add_memory:
 err_radix:
	pgmap_radix_release(res);
	devres_free(page_map);
	return ERR_PTR(error);
}
EXPORT_SYMBOL(devm_memremap_pages);

unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
{
	/* number of pfns from base where pfn_to_page() is valid */
	return altmap->reserve + altmap->free;
}

void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
{
	altmap->alloc -= nr_pfns;
}

#ifdef CONFIG_SPARSEMEM_VMEMMAP
struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
{
	/*
	 * 'memmap_start' is the virtual address for the first "struct
	 * page" in this range of the vmemmap array.  In the case of
	 * CONFIG_SPARSE_VMEMMAP a page_to_pfn conversion is simple
	 * pointer arithmetic, so we can perform this to_vmem_altmap()
	 * conversion without concern for the initialization state of
	 * the struct page fields.
	 */
	struct page *page = (struct page *) memmap_start;
	struct dev_pagemap *pgmap;

	/*
	 * Uncoditionally retrieve a dev_pagemap associated with the
	 * given physical address, this is only for use in the
	 * arch_{add|remove}_memory() for setting up and tearing down
	 * the memmap.
	 */
	rcu_read_lock();
	pgmap = find_dev_pagemap(__pfn_to_phys(page_to_pfn(page)));
	rcu_read_unlock();

	return pgmap ? pgmap->altmap : NULL;
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
#endif /* CONFIG_ZONE_DEVICE */