aboutsummaryrefslogtreecommitdiff
path: root/lib/test_kasan.c
blob: c233b1a4e9849ccbe27f0704f52ca4d3fa360546 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
// SPDX-License-Identifier: GPL-2.0-only
/*
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <a.ryabinin@samsung.com>
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/vmalloc.h>
#include <linux/set_memory.h>

#include <asm/page.h>

#include <kunit/test.h>

#include "../mm/kasan/kasan.h"

#define OOB_TAG_OFF (IS_ENABLED(CONFIG_KASAN_GENERIC) ? 0 : KASAN_GRANULE_SIZE)

/*
 * Some tests use these global variables to store return values from function
 * calls that could otherwise be eliminated by the compiler as dead code.
 */
void *kasan_ptr_result;
int kasan_int_result;

static struct kunit_resource resource;
static struct kunit_kasan_status test_status;
static bool multishot;

/*
 * Temporarily enable multi-shot mode. Otherwise, KASAN would only report the
 * first detected bug and panic the kernel if panic_on_warn is enabled. For
 * hardware tag-based KASAN also allow tag checking to be reenabled for each
 * test, see the comment for KUNIT_EXPECT_KASAN_FAIL().
 */
static int kasan_test_init(struct kunit *test)
{
	if (!kasan_enabled()) {
		kunit_err(test, "can't run KASAN tests with KASAN disabled");
		return -1;
	}

	multishot = kasan_save_enable_multi_shot();
	test_status.report_found = false;
	test_status.sync_fault = false;
	kunit_add_named_resource(test, NULL, NULL, &resource,
					"kasan_status", &test_status);
	return 0;
}

static void kasan_test_exit(struct kunit *test)
{
	kasan_restore_multi_shot(multishot);
	KUNIT_EXPECT_FALSE(test, test_status.report_found);
}

/**
 * KUNIT_EXPECT_KASAN_FAIL() - check that the executed expression produces a
 * KASAN report; causes a test failure otherwise. This relies on a KUnit
 * resource named "kasan_status". Do not use this name for KUnit resources
 * outside of KASAN tests.
 *
 * For hardware tag-based KASAN, when a synchronous tag fault happens, tag
 * checking is auto-disabled. When this happens, this test handler reenables
 * tag checking. As tag checking can be only disabled or enabled per CPU,
 * this handler disables migration (preemption).
 *
 * Since the compiler doesn't see that the expression can change the test_status
 * fields, it can reorder or optimize away the accesses to those fields.
 * Use READ/WRITE_ONCE() for the accesses and compiler barriers around the
 * expression to prevent that.
 *
 * In between KUNIT_EXPECT_KASAN_FAIL checks, test_status.report_found is kept
 * as false. This allows detecting KASAN reports that happen outside of the
 * checks by asserting !test_status.report_found at the start of
 * KUNIT_EXPECT_KASAN_FAIL and in kasan_test_exit.
 */
#define KUNIT_EXPECT_KASAN_FAIL(test, expression) do {			\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
	    kasan_sync_fault_possible())				\
		migrate_disable();					\
	KUNIT_EXPECT_FALSE(test, READ_ONCE(test_status.report_found));	\
	barrier();							\
	expression;							\
	barrier();							\
	if (kasan_async_fault_possible())				\
		kasan_force_async_fault();				\
	if (!READ_ONCE(test_status.report_found)) {			\
		KUNIT_FAIL(test, KUNIT_SUBTEST_INDENT "KASAN failure "	\
				"expected in \"" #expression		\
				 "\", but none occurred");		\
	}								\
	if (IS_ENABLED(CONFIG_KASAN_HW_TAGS) &&				\
	    kasan_sync_fault_possible()) {				\
		if (READ_ONCE(test_status.report_found) &&		\
		    READ_ONCE(test_status.sync_fault))			\
			kasan_enable_tagging();				\
		migrate_enable();					\
	}								\
	WRITE_ONCE(test_status.report_found, false);			\
} while (0)

#define KASAN_TEST_NEEDS_CONFIG_ON(test, config) do {			\
	if (!IS_ENABLED(config))					\
		kunit_skip((test), "Test requires " #config "=y");	\
} while (0)

#define KASAN_TEST_NEEDS_CONFIG_OFF(test, config) do {			\
	if (IS_ENABLED(config))						\
		kunit_skip((test), "Test requires " #config "=n");	\
} while (0)

static void kmalloc_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE - 5;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/*
	 * An unaligned access past the requested kmalloc size.
	 * Only generic KASAN can precisely detect these.
	 */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 'x');

	/*
	 * An aligned access into the first out-of-bounds granule that falls
	 * within the aligned kmalloc object.
	 */
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + 5] = 'y');

	/* Out-of-bounds access past the aligned kmalloc object. */
	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] =
					ptr[size + KASAN_GRANULE_SIZE + 5]);

	kfree(ptr);
}

static void kmalloc_oob_left(struct kunit *test)
{
	char *ptr;
	size_t size = 15;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, *ptr = *(ptr - 1));
	kfree(ptr);
}

static void kmalloc_node_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = 4096;

	ptr = kmalloc_node(size, GFP_KERNEL, 0);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
	kfree(ptr);
}

/*
 * These kmalloc_pagealloc_* tests try allocating a memory chunk that doesn't
 * fit into a slab cache and therefore is allocated via the page allocator
 * fallback. Since this kind of fallback is only implemented for SLUB, these
 * tests are limited to that allocator.
 */
static void kmalloc_pagealloc_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size + OOB_TAG_OFF] = 0);

	kfree(ptr);
}

static void kmalloc_pagealloc_uaf(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	kfree(ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void kmalloc_pagealloc_invalid_free(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE + 10;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, kfree(ptr + 1));
}

static void pagealloc_oob_right(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	size_t order = 4;
	size_t size = (1UL << (PAGE_SHIFT + order));

	/*
	 * With generic KASAN page allocations have no redzones, thus
	 * out-of-bounds detection is not guaranteed.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=210503.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	pages = alloc_pages(GFP_KERNEL, order);
	ptr = page_address(pages);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr[0] = ptr[size]);
	free_pages((unsigned long)ptr, order);
}

static void pagealloc_uaf(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	size_t order = 4;

	pages = alloc_pages(GFP_KERNEL, order);
	ptr = page_address(pages);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	free_pages((unsigned long)ptr, order);

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
}

static void kmalloc_large_oob_right(struct kunit *test)
{
	char *ptr;
	size_t size = KMALLOC_MAX_CACHE_SIZE - 256;

	/*
	 * Allocate a chunk that is large enough, but still fits into a slab
	 * and does not trigger the page allocator fallback in SLUB.
	 */
	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr[size] = 0);
	kfree(ptr);
}

static void krealloc_more_oob_helper(struct kunit *test,
					size_t size1, size_t size2)
{
	char *ptr1, *ptr2;
	size_t middle;

	KUNIT_ASSERT_LT(test, size1, size2);
	middle = size1 + (size2 - size1) / 2;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/* All offsets up to size2 must be accessible. */
	ptr2[size1 - 1] = 'x';
	ptr2[size1] = 'x';
	ptr2[middle] = 'x';
	ptr2[size2 - 1] = 'x';

	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');

	/* For all modes first aligned offset after size2 must be inaccessible. */
	KUNIT_EXPECT_KASAN_FAIL(test,
		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');

	kfree(ptr2);
}

static void krealloc_less_oob_helper(struct kunit *test,
					size_t size1, size_t size2)
{
	char *ptr1, *ptr2;
	size_t middle;

	KUNIT_ASSERT_LT(test, size2, size1);
	middle = size2 + (size1 - size2) / 2;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = krealloc(ptr1, size2, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/* Must be accessible for all modes. */
	ptr2[size2 - 1] = 'x';

	/* Generic mode is precise, so unaligned size2 must be inaccessible. */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size2] = 'x');

	/* For all modes first aligned offset after size2 must be inaccessible. */
	KUNIT_EXPECT_KASAN_FAIL(test,
		ptr2[round_up(size2, KASAN_GRANULE_SIZE)] = 'x');

	/*
	 * For all modes all size2, middle, and size1 should land in separate
	 * granules and thus the latter two offsets should be inaccessible.
	 */
	KUNIT_EXPECT_LE(test, round_up(size2, KASAN_GRANULE_SIZE),
				round_down(middle, KASAN_GRANULE_SIZE));
	KUNIT_EXPECT_LE(test, round_up(middle, KASAN_GRANULE_SIZE),
				round_down(size1, KASAN_GRANULE_SIZE));
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[middle] = 'x');
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1 - 1] = 'x');
	KUNIT_EXPECT_KASAN_FAIL(test, ptr2[size1] = 'x');

	kfree(ptr2);
}

static void krealloc_more_oob(struct kunit *test)
{
	krealloc_more_oob_helper(test, 201, 235);
}

static void krealloc_less_oob(struct kunit *test)
{
	krealloc_less_oob_helper(test, 235, 201);
}

static void krealloc_pagealloc_more_oob(struct kunit *test)
{
	/* page_alloc fallback in only implemented for SLUB. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);

	krealloc_more_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 201,
					KMALLOC_MAX_CACHE_SIZE + 235);
}

static void krealloc_pagealloc_less_oob(struct kunit *test)
{
	/* page_alloc fallback in only implemented for SLUB. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_SLUB);

	krealloc_less_oob_helper(test, KMALLOC_MAX_CACHE_SIZE + 235,
					KMALLOC_MAX_CACHE_SIZE + 201);
}

/*
 * Check that krealloc() detects a use-after-free, returns NULL,
 * and doesn't unpoison the freed object.
 */
static void krealloc_uaf(struct kunit *test)
{
	char *ptr1, *ptr2;
	int size1 = 201;
	int size2 = 235;

	ptr1 = kmalloc(size1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);
	kfree(ptr1);

	KUNIT_EXPECT_KASAN_FAIL(test, ptr2 = krealloc(ptr1, size2, GFP_KERNEL));
	KUNIT_ASSERT_NULL(test, ptr2);
	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)ptr1);
}

static void kmalloc_oob_16(struct kunit *test)
{
	struct {
		u64 words[2];
	} *ptr1, *ptr2;

	/* This test is specifically crafted for the generic mode. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	ptr1 = kmalloc(sizeof(*ptr1) - 3, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
	kfree(ptr1);
	kfree(ptr2);
}

static void kmalloc_uaf_16(struct kunit *test)
{
	struct {
		u64 words[2];
	} *ptr1, *ptr2;

	ptr1 = kmalloc(sizeof(*ptr1), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	ptr2 = kmalloc(sizeof(*ptr2), GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);
	kfree(ptr2);

	KUNIT_EXPECT_KASAN_FAIL(test, *ptr1 = *ptr2);
	kfree(ptr1);
}

/*
 * Note: in the memset tests below, the written range touches both valid and
 * invalid memory. This makes sure that the instrumentation does not only check
 * the starting address but the whole range.
 */

static void kmalloc_oob_memset_2(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 1, 0, 2));
	kfree(ptr);
}

static void kmalloc_oob_memset_4(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 3, 0, 4));
	kfree(ptr);
}

static void kmalloc_oob_memset_8(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 7, 0, 8));
	kfree(ptr);
}

static void kmalloc_oob_memset_16(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr + size - 15, 0, 16));
	kfree(ptr);
}

static void kmalloc_oob_in_memset(struct kunit *test)
{
	char *ptr;
	size_t size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
				memset(ptr, 0, size + KASAN_GRANULE_SIZE));
	kfree(ptr);
}

static void kmalloc_memmove_negative_size(struct kunit *test)
{
	char *ptr;
	size_t size = 64;
	size_t invalid_size = -2;

	/*
	 * Hardware tag-based mode doesn't check memmove for negative size.
	 * As a result, this test introduces a side-effect memory corruption,
	 * which can result in a crash.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_HW_TAGS);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	memset((char *)ptr, 0, 64);
	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(invalid_size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
	kfree(ptr);
}

static void kmalloc_memmove_invalid_size(struct kunit *test)
{
	char *ptr;
	size_t size = 64;
	volatile size_t invalid_size = size;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	memset((char *)ptr, 0, 64);
	OPTIMIZER_HIDE_VAR(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test,
		memmove((char *)ptr, (char *)ptr + 4, invalid_size));
	kfree(ptr);
}

static void kmalloc_uaf(struct kunit *test)
{
	char *ptr;
	size_t size = 10;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[8]);
}

static void kmalloc_uaf_memset(struct kunit *test)
{
	char *ptr;
	size_t size = 33;

	/*
	 * Only generic KASAN uses quarantine, which is required to avoid a
	 * kernel memory corruption this test causes.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, memset(ptr, 0, size));
}

static void kmalloc_uaf2(struct kunit *test)
{
	char *ptr1, *ptr2;
	size_t size = 43;
	int counter = 0;

again:
	ptr1 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr1);

	kfree(ptr1);

	ptr2 = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr2);

	/*
	 * For tag-based KASAN ptr1 and ptr2 tags might happen to be the same.
	 * Allow up to 16 attempts at generating different tags.
	 */
	if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && ptr1 == ptr2 && counter++ < 16) {
		kfree(ptr2);
		goto again;
	}

	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr1)[40]);
	KUNIT_EXPECT_PTR_NE(test, ptr1, ptr2);

	kfree(ptr2);
}

static void kfree_via_page(struct kunit *test)
{
	char *ptr;
	size_t size = 8;
	struct page *page;
	unsigned long offset;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	page = virt_to_page(ptr);
	offset = offset_in_page(ptr);
	kfree(page_address(page) + offset);
}

static void kfree_via_phys(struct kunit *test)
{
	char *ptr;
	size_t size = 8;
	phys_addr_t phys;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	phys = virt_to_phys(ptr);
	kfree(phys_to_virt(phys));
}

static void kmem_cache_oob(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	KUNIT_EXPECT_KASAN_FAIL(test, *p = p[size + OOB_TAG_OFF]);

	kmem_cache_free(cache, p);
	kmem_cache_destroy(cache);
}

static void kmem_cache_accounted(struct kunit *test)
{
	int i;
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, SLAB_ACCOUNT, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	/*
	 * Several allocations with a delay to allow for lazy per memcg kmem
	 * cache creation.
	 */
	for (i = 0; i < 5; i++) {
		p = kmem_cache_alloc(cache, GFP_KERNEL);
		if (!p)
			goto free_cache;

		kmem_cache_free(cache, p);
		msleep(100);
	}

free_cache:
	kmem_cache_destroy(cache);
}

static void kmem_cache_bulk(struct kunit *test)
{
	struct kmem_cache *cache;
	size_t size = 200;
	char *p[10];
	bool ret;
	int i;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	ret = kmem_cache_alloc_bulk(cache, GFP_KERNEL, ARRAY_SIZE(p), (void **)&p);
	if (!ret) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	for (i = 0; i < ARRAY_SIZE(p); i++)
		p[i][0] = p[i][size - 1] = 42;

	kmem_cache_free_bulk(cache, ARRAY_SIZE(p), (void **)&p);
	kmem_cache_destroy(cache);
}

static char global_array[10];

static void kasan_global_oob_right(struct kunit *test)
{
	/*
	 * Deliberate out-of-bounds access. To prevent CONFIG_UBSAN_LOCAL_BOUNDS
	 * from failing here and panicking the kernel, access the array via a
	 * volatile pointer, which will prevent the compiler from being able to
	 * determine the array bounds.
	 *
	 * This access uses a volatile pointer to char (char *volatile) rather
	 * than the more conventional pointer to volatile char (volatile char *)
	 * because we want to prevent the compiler from making inferences about
	 * the pointer itself (i.e. its array bounds), not the data that it
	 * refers to.
	 */
	char *volatile array = global_array;
	char *p = &array[ARRAY_SIZE(global_array) + 3];

	/* Only generic mode instruments globals. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_global_oob_left(struct kunit *test)
{
	char *volatile array = global_array;
	char *p = array - 3;

	/*
	 * GCC is known to fail this test, skip it.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=215051.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_CC_IS_CLANG);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

/* Check that ksize() makes the whole object accessible. */
static void ksize_unpoisons_memory(struct kunit *test)
{
	char *ptr;
	size_t size = 123, real_size;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	real_size = ksize(ptr);

	/* This access shouldn't trigger a KASAN report. */
	ptr[size] = 'x';

	/* This one must. */
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[real_size]);

	kfree(ptr);
}

/*
 * Check that a use-after-free is detected by ksize() and via normal accesses
 * after it.
 */
static void ksize_uaf(struct kunit *test)
{
	char *ptr;
	int size = 128 - KASAN_GRANULE_SIZE;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	kfree(ptr);

	KUNIT_EXPECT_KASAN_FAIL(test, ksize(ptr));
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[0]);
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)ptr)[size]);
}

static void kasan_stack_oob(struct kunit *test)
{
	char stack_array[10];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = stack_array;
	char *p = &array[ARRAY_SIZE(stack_array) + OOB_TAG_OFF];

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_alloca_oob_left(struct kunit *test)
{
	volatile int i = 10;
	char alloca_array[i];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = alloca_array;
	char *p = array - 1;

	/* Only generic mode instruments dynamic allocas. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kasan_alloca_oob_right(struct kunit *test)
{
	volatile int i = 10;
	char alloca_array[i];
	/* See comment in kasan_global_oob_right. */
	char *volatile array = alloca_array;
	char *p = array + i;

	/* Only generic mode instruments dynamic allocas. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_STACK);

	KUNIT_EXPECT_KASAN_FAIL(test, *(volatile char *)p);
}

static void kmem_cache_double_free(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, 0, NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	kmem_cache_free(cache, p);
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p));
	kmem_cache_destroy(cache);
}

static void kmem_cache_invalid_free(struct kunit *test)
{
	char *p;
	size_t size = 200;
	struct kmem_cache *cache;

	cache = kmem_cache_create("test_cache", size, 0, SLAB_TYPESAFE_BY_RCU,
				  NULL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);

	p = kmem_cache_alloc(cache, GFP_KERNEL);
	if (!p) {
		kunit_err(test, "Allocation failed: %s\n", __func__);
		kmem_cache_destroy(cache);
		return;
	}

	/* Trigger invalid free, the object doesn't get freed. */
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_free(cache, p + 1));

	/*
	 * Properly free the object to prevent the "Objects remaining in
	 * test_cache on __kmem_cache_shutdown" BUG failure.
	 */
	kmem_cache_free(cache, p);

	kmem_cache_destroy(cache);
}

static void empty_cache_ctor(void *object) { }

static void kmem_cache_double_destroy(struct kunit *test)
{
	struct kmem_cache *cache;

	/* Provide a constructor to prevent cache merging. */
	cache = kmem_cache_create("test_cache", 200, 0, 0, empty_cache_ctor);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, cache);
	kmem_cache_destroy(cache);
	KUNIT_EXPECT_KASAN_FAIL(test, kmem_cache_destroy(cache));
}

static void kasan_memchr(struct kunit *test)
{
	char *ptr;
	size_t size = 24;

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	if (OOB_TAG_OFF)
		size = round_up(size, OOB_TAG_OFF);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		kasan_ptr_result = memchr(ptr, '1', size + 1));

	kfree(ptr);
}

static void kasan_memcmp(struct kunit *test)
{
	char *ptr;
	size_t size = 24;
	int arr[9];

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	if (OOB_TAG_OFF)
		size = round_up(size, OOB_TAG_OFF);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	memset(arr, 0, sizeof(arr));

	OPTIMIZER_HIDE_VAR(ptr);
	OPTIMIZER_HIDE_VAR(size);
	KUNIT_EXPECT_KASAN_FAIL(test,
		kasan_int_result = memcmp(ptr, arr, size+1));
	kfree(ptr);
}

static void kasan_strings(struct kunit *test)
{
	char *ptr;
	size_t size = 24;

	/*
	 * str* functions are not instrumented with CONFIG_AMD_MEM_ENCRYPT.
	 * See https://bugzilla.kernel.org/show_bug.cgi?id=206337 for details.
	 */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_AMD_MEM_ENCRYPT);

	ptr = kmalloc(size, GFP_KERNEL | __GFP_ZERO);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree(ptr);

	/*
	 * Try to cause only 1 invalid access (less spam in dmesg).
	 * For that we need ptr to point to zeroed byte.
	 * Skip metadata that could be stored in freed object so ptr
	 * will likely point to zeroed byte.
	 */
	ptr += 16;
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strchr(ptr, '1'));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_ptr_result = strrchr(ptr, '1'));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strcmp(ptr, "2"));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strncmp(ptr, "2", 1));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strlen(ptr));

	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = strnlen(ptr, 1));
}

static void kasan_bitops_modify(struct kunit *test, int nr, void *addr)
{
	KUNIT_EXPECT_KASAN_FAIL(test, set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, clear_bit_unlock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __clear_bit_unlock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __change_bit(nr, addr));
}

static void kasan_bitops_test_and_modify(struct kunit *test, int nr, void *addr)
{
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_set_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_set_bit_lock(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_clear_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, test_and_change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, __test_and_change_bit(nr, addr));
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result = test_bit(nr, addr));

#if defined(clear_bit_unlock_is_negative_byte)
	KUNIT_EXPECT_KASAN_FAIL(test, kasan_int_result =
				clear_bit_unlock_is_negative_byte(nr, addr));
#endif
}

static void kasan_bitops_generic(struct kunit *test)
{
	long *bits;

	/* This test is specifically crafted for the generic mode. */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_GENERIC);

	/*
	 * Allocate 1 more byte, which causes kzalloc to round up to 16 bytes;
	 * this way we do not actually corrupt other memory.
	 */
	bits = kzalloc(sizeof(*bits) + 1, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);

	/*
	 * Below calls try to access bit within allocated memory; however, the
	 * below accesses are still out-of-bounds, since bitops are defined to
	 * operate on the whole long the bit is in.
	 */
	kasan_bitops_modify(test, BITS_PER_LONG, bits);

	/*
	 * Below calls try to access bit beyond allocated memory.
	 */
	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, bits);

	kfree(bits);
}

static void kasan_bitops_tags(struct kunit *test)
{
	long *bits;

	/* This test is specifically crafted for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	/* kmalloc-64 cache will be used and the last 16 bytes will be the redzone. */
	bits = kzalloc(48, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, bits);

	/* Do the accesses past the 48 allocated bytes, but within the redone. */
	kasan_bitops_modify(test, BITS_PER_LONG, (void *)bits + 48);
	kasan_bitops_test_and_modify(test, BITS_PER_LONG + BITS_PER_BYTE, (void *)bits + 48);

	kfree(bits);
}

static void kmalloc_double_kzfree(struct kunit *test)
{
	char *ptr;
	size_t size = 16;

	ptr = kmalloc(size, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	kfree_sensitive(ptr);
	KUNIT_EXPECT_KASAN_FAIL(test, kfree_sensitive(ptr));
}

static void vmalloc_helpers_tags(struct kunit *test)
{
	void *ptr;

	/* This test is intended for tag-based modes. */
	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	ptr = vmalloc(PAGE_SIZE);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/* Check that the returned pointer is tagged. */
	KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure exported vmalloc helpers handle tagged pointers. */
	KUNIT_ASSERT_TRUE(test, is_vmalloc_addr(ptr));
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, vmalloc_to_page(ptr));

#if !IS_MODULE(CONFIG_KASAN_KUNIT_TEST)
	{
		int rv;

		/* Make sure vmalloc'ed memory permissions can be changed. */
		rv = set_memory_ro((unsigned long)ptr, 1);
		KUNIT_ASSERT_GE(test, rv, 0);
		rv = set_memory_rw((unsigned long)ptr, 1);
		KUNIT_ASSERT_GE(test, rv, 0);
	}
#endif

	vfree(ptr);
}

static void vmalloc_oob(struct kunit *test)
{
	char *v_ptr, *p_ptr;
	struct page *page;
	size_t size = PAGE_SIZE / 2 - KASAN_GRANULE_SIZE - 5;

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	v_ptr = vmalloc(size);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	OPTIMIZER_HIDE_VAR(v_ptr);

	/*
	 * We have to be careful not to hit the guard page in vmalloc tests.
	 * The MMU will catch that and crash us.
	 */

	/* Make sure in-bounds accesses are valid. */
	v_ptr[0] = 0;
	v_ptr[size - 1] = 0;

	/*
	 * An unaligned access past the requested vmalloc size.
	 * Only generic KASAN can precisely detect these.
	 */
	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
		KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size]);

	/* An aligned access into the first out-of-bounds granule. */
	KUNIT_EXPECT_KASAN_FAIL(test, ((volatile char *)v_ptr)[size + 5]);

	/* Check that in-bounds accesses to the physical page are valid. */
	page = vmalloc_to_page(v_ptr);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
	p_ptr = page_address(page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);
	p_ptr[0] = 0;

	vfree(v_ptr);

	/*
	 * We can't check for use-after-unmap bugs in this nor in the following
	 * vmalloc tests, as the page might be fully unmapped and accessing it
	 * will crash the kernel.
	 */
}

static void vmap_tags(struct kunit *test)
{
	char *p_ptr, *v_ptr;
	struct page *p_page, *v_page;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons vmap mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_VMALLOC);

	p_page = alloc_pages(GFP_KERNEL, 1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_page);
	p_ptr = page_address(p_page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);

	v_ptr = vmap(&p_page, 1, VM_MAP, PAGE_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	/*
	 * We can't check for out-of-bounds bugs in this nor in the following
	 * vmalloc tests, as allocations have page granularity and accessing
	 * the guard page will crash the kernel.
	 */

	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure that in-bounds accesses through both pointers work. */
	*p_ptr = 0;
	*v_ptr = 0;

	/* Make sure vmalloc_to_page() correctly recovers the page pointer. */
	v_page = vmalloc_to_page(v_ptr);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_page);
	KUNIT_EXPECT_PTR_EQ(test, p_page, v_page);

	vunmap(v_ptr);
	free_pages((unsigned long)p_ptr, 1);
}

static void vm_map_ram_tags(struct kunit *test)
{
	char *p_ptr, *v_ptr;
	struct page *page;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons vm_map_ram mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	page = alloc_pages(GFP_KERNEL, 1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, page);
	p_ptr = page_address(page);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, p_ptr);

	v_ptr = vm_map_ram(&page, 1, -1);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, v_ptr);

	KUNIT_EXPECT_GE(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_MIN);
	KUNIT_EXPECT_LT(test, (u8)get_tag(v_ptr), (u8)KASAN_TAG_KERNEL);

	/* Make sure that in-bounds accesses through both pointers work. */
	*p_ptr = 0;
	*v_ptr = 0;

	vm_unmap_ram(v_ptr, 1);
	free_pages((unsigned long)p_ptr, 1);
}

static void vmalloc_percpu(struct kunit *test)
{
	char __percpu *ptr;
	int cpu;

	/*
	 * This test is specifically crafted for the software tag-based mode,
	 * the only tag-based mode that poisons percpu mappings.
	 */
	KASAN_TEST_NEEDS_CONFIG_ON(test, CONFIG_KASAN_SW_TAGS);

	ptr = __alloc_percpu(PAGE_SIZE, PAGE_SIZE);

	for_each_possible_cpu(cpu) {
		char *c_ptr = per_cpu_ptr(ptr, cpu);

		KUNIT_EXPECT_GE(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(c_ptr), (u8)KASAN_TAG_KERNEL);

		/* Make sure that in-bounds accesses don't crash the kernel. */
		*c_ptr = 0;
	}

	free_percpu(ptr);
}

/*
 * Check that the assigned pointer tag falls within the [KASAN_TAG_MIN,
 * KASAN_TAG_KERNEL) range (note: excluding the match-all tag) for tag-based
 * modes.
 */
static void match_all_not_assigned(struct kunit *test)
{
	char *ptr;
	struct page *pages;
	int i, size, order;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	for (i = 0; i < 256; i++) {
		size = (get_random_int() % 1024) + 1;
		ptr = kmalloc(size, GFP_KERNEL);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		kfree(ptr);
	}

	for (i = 0; i < 256; i++) {
		order = (get_random_int() % 4) + 1;
		pages = alloc_pages(GFP_KERNEL, order);
		ptr = page_address(pages);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		free_pages((unsigned long)ptr, order);
	}

	if (!IS_ENABLED(CONFIG_KASAN_VMALLOC))
		return;

	for (i = 0; i < 256; i++) {
		size = (get_random_int() % 1024) + 1;
		ptr = vmalloc(size);
		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
		KUNIT_EXPECT_GE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_MIN);
		KUNIT_EXPECT_LT(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);
		vfree(ptr);
	}
}

/* Check that 0xff works as a match-all pointer tag for tag-based modes. */
static void match_all_ptr_tag(struct kunit *test)
{
	char *ptr;
	u8 tag;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(128, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);

	/* Backup the assigned tag. */
	tag = get_tag(ptr);
	KUNIT_EXPECT_NE(test, tag, (u8)KASAN_TAG_KERNEL);

	/* Reset the tag to 0xff.*/
	ptr = set_tag(ptr, KASAN_TAG_KERNEL);

	/* This access shouldn't trigger a KASAN report. */
	*ptr = 0;

	/* Recover the pointer tag and free. */
	ptr = set_tag(ptr, tag);
	kfree(ptr);
}

/* Check that there are no match-all memory tags for tag-based modes. */
static void match_all_mem_tag(struct kunit *test)
{
	char *ptr;
	int tag;

	KASAN_TEST_NEEDS_CONFIG_OFF(test, CONFIG_KASAN_GENERIC);

	ptr = kmalloc(128, GFP_KERNEL);
	KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ptr);
	KUNIT_EXPECT_NE(test, (u8)get_tag(ptr), (u8)KASAN_TAG_KERNEL);

	/* For each possible tag value not matching the pointer tag. */
	for (tag = KASAN_TAG_MIN; tag <= KASAN_TAG_KERNEL; tag++) {
		if (tag == get_tag(ptr))
			continue;

		/* Mark the first memory granule with the chosen memory tag. */
		kasan_poison(ptr, KASAN_GRANULE_SIZE, (u8)tag, false);

		/* This access must cause a KASAN report. */
		KUNIT_EXPECT_KASAN_FAIL(test, *ptr = 0);
	}

	/* Recover the memory tag and free. */
	kasan_poison(ptr, KASAN_GRANULE_SIZE, get_tag(ptr), false);
	kfree(ptr);
}

static struct kunit_case kasan_kunit_test_cases[] = {
	KUNIT_CASE(kmalloc_oob_right),
	KUNIT_CASE(kmalloc_oob_left),
	KUNIT_CASE(kmalloc_node_oob_right),
	KUNIT_CASE(kmalloc_pagealloc_oob_right),
	KUNIT_CASE(kmalloc_pagealloc_uaf),
	KUNIT_CASE(kmalloc_pagealloc_invalid_free),
	KUNIT_CASE(pagealloc_oob_right),
	KUNIT_CASE(pagealloc_uaf),
	KUNIT_CASE(kmalloc_large_oob_right),
	KUNIT_CASE(krealloc_more_oob),
	KUNIT_CASE(krealloc_less_oob),
	KUNIT_CASE(krealloc_pagealloc_more_oob),
	KUNIT_CASE(krealloc_pagealloc_less_oob),
	KUNIT_CASE(krealloc_uaf),
	KUNIT_CASE(kmalloc_oob_16),
	KUNIT_CASE(kmalloc_uaf_16),
	KUNIT_CASE(kmalloc_oob_in_memset),
	KUNIT_CASE(kmalloc_oob_memset_2),
	KUNIT_CASE(kmalloc_oob_memset_4),
	KUNIT_CASE(kmalloc_oob_memset_8),
	KUNIT_CASE(kmalloc_oob_memset_16),
	KUNIT_CASE(kmalloc_memmove_negative_size),
	KUNIT_CASE(kmalloc_memmove_invalid_size),
	KUNIT_CASE(kmalloc_uaf),
	KUNIT_CASE(kmalloc_uaf_memset),
	KUNIT_CASE(kmalloc_uaf2),
	KUNIT_CASE(kfree_via_page),
	KUNIT_CASE(kfree_via_phys),
	KUNIT_CASE(kmem_cache_oob),
	KUNIT_CASE(kmem_cache_accounted),
	KUNIT_CASE(kmem_cache_bulk),
	KUNIT_CASE(kasan_global_oob_right),
	KUNIT_CASE(kasan_global_oob_left),
	KUNIT_CASE(kasan_stack_oob),
	KUNIT_CASE(kasan_alloca_oob_left),
	KUNIT_CASE(kasan_alloca_oob_right),
	KUNIT_CASE(ksize_unpoisons_memory),
	KUNIT_CASE(ksize_uaf),
	KUNIT_CASE(kmem_cache_double_free),
	KUNIT_CASE(kmem_cache_invalid_free),
	KUNIT_CASE(kmem_cache_double_destroy),
	KUNIT_CASE(kasan_memchr),
	KUNIT_CASE(kasan_memcmp),
	KUNIT_CASE(kasan_strings),
	KUNIT_CASE(kasan_bitops_generic),
	KUNIT_CASE(kasan_bitops_tags),
	KUNIT_CASE(kmalloc_double_kzfree),
	KUNIT_CASE(vmalloc_helpers_tags),
	KUNIT_CASE(vmalloc_oob),
	KUNIT_CASE(vmap_tags),
	KUNIT_CASE(vm_map_ram_tags),
	KUNIT_CASE(vmalloc_percpu),
	KUNIT_CASE(match_all_not_assigned),
	KUNIT_CASE(match_all_ptr_tag),
	KUNIT_CASE(match_all_mem_tag),
	{}
};

static struct kunit_suite kasan_kunit_test_suite = {
	.name = "kasan",
	.init = kasan_test_init,
	.test_cases = kasan_kunit_test_cases,
	.exit = kasan_test_exit,
};

kunit_test_suite(kasan_kunit_test_suite);

MODULE_LICENSE("GPL");