aboutsummaryrefslogtreecommitdiff
path: root/mm/memcontrol-v1.c
blob: 417c96f2da28e8c3984792903d5daed1786a9e2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
// SPDX-License-Identifier: GPL-2.0-or-later

#include <linux/memcontrol.h>
#include <linux/swap.h>
#include <linux/mm_inline.h>
#include <linux/pagewalk.h>
#include <linux/backing-dev.h>
#include <linux/swap_cgroup.h>
#include <linux/eventfd.h>
#include <linux/poll.h>
#include <linux/sort.h>
#include <linux/file.h>
#include <linux/seq_buf.h>

#include "internal.h"
#include "swap.h"
#include "memcontrol-v1.h"

/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_node {
	struct rb_root rb_root;
	struct rb_node *rb_rightmost;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

/*
 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2

/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved.
 */
#define MOVE_ANON	0x1ULL
#define MOVE_FILE	0x2ULL
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)

/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
	spinlock_t	  lock; /* for from, to */
	struct mm_struct  *mm;
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long flags;
	unsigned long precharge;
	unsigned long moved_charge;
	unsigned long moved_swap;
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};

/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};

/*
 * cgroup_event represents events which userspace want to receive.
 */
struct mem_cgroup_event {
	/*
	 * memcg which the event belongs to.
	 */
	struct mem_cgroup *memcg;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
	int (*register_event)(struct mem_cgroup *memcg,
			      struct eventfd_ctx *eventfd, const char *args);
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
	void (*unregister_event)(struct mem_cgroup *memcg,
				 struct eventfd_ctx *eventfd);
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_entry_t wait;
	struct work_struct remove;
};

#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)

enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};

#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

DEFINE_SPINLOCK(memcg_oom_lock);

static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
					 unsigned long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_node *mz_node;
	bool rightmost = true;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
			p = &(*p)->rb_left;
			rightmost = false;
		} else {
			p = &(*p)->rb_right;
		}
	}

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
{
	if (!mz->on_tree)
		return;

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
{
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
	__mem_cgroup_remove_exceeded(mz, mctz);
	spin_unlock_irqrestore(&mctz->lock, flags);
}

static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}

static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
{
	unsigned long excess;
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;

	if (lru_gen_enabled()) {
		if (soft_limit_excess(memcg))
			lru_gen_soft_reclaim(memcg, nid);
		return;
	}

	mctz = soft_limit_tree.rb_tree_per_node[nid];
	if (!mctz)
		return;
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = memcg->nodeinfo[nid];
		excess = soft_limit_excess(memcg);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
			spin_unlock_irqrestore(&mctz->lock, flags);
		}
	}
}

void memcg1_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;

	for_each_node(nid) {
		mz = memcg->nodeinfo[nid];
		mctz = soft_limit_tree.rb_tree_per_node[nid];
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
	}
}

static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
	struct mem_cgroup_per_node *mz;

retry:
	mz = NULL;
	if (!mctz->rb_rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz, mctz);
	if (!soft_limit_excess(mz->memcg) ||
	    !css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
{
	struct mem_cgroup_per_node *mz;

	spin_lock_irq(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock_irq(&mctz->lock);
	return mz;
}

static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   pg_data_t *pgdat,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.pgdat = pgdat,
	};

	excess = soft_limit_excess(root_memcg);

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
					pgdat, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!soft_limit_excess(root_memcg))
			break;
	}
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
}

unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_node *mctz;
	unsigned long excess;

	if (lru_gen_enabled())
		return 0;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
		return 0;

	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
						    gfp_mask, total_scanned);
		nr_reclaimed += reclaimed;
		spin_lock_irq(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

		excess = soft_limit_excess(mz->memcg);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
		spin_unlock_irq(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

/*
 * A routine for checking "mem" is under move_account() or not.
 *
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
 */
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
{
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	bool ret = false;
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;

	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
unlock:
	spin_unlock(&mc.lock);
	return ret;
}

bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(memcg)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

/**
 * folio_memcg_lock - Bind a folio to its memcg.
 * @folio: The folio.
 *
 * This function prevents unlocked LRU folios from being moved to
 * another cgroup.
 *
 * It ensures lifetime of the bound memcg.  The caller is responsible
 * for the lifetime of the folio.
 */
void folio_memcg_lock(struct folio *folio)
{
	struct mem_cgroup *memcg;
	unsigned long flags;

	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
         */
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return;
again:
	memcg = folio_memcg(folio);
	if (unlikely(!memcg))
		return;

#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

	if (atomic_read(&memcg->moving_account) <= 0)
		return;

	spin_lock_irqsave(&memcg->move_lock, flags);
	if (memcg != folio_memcg(folio)) {
		spin_unlock_irqrestore(&memcg->move_lock, flags);
		goto again;
	}

	/*
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for folio_memcg_unlock().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
}

static void __folio_memcg_unlock(struct mem_cgroup *memcg)
{
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}

	rcu_read_unlock();
}

/**
 * folio_memcg_unlock - Release the binding between a folio and its memcg.
 * @folio: The folio.
 *
 * This releases the binding created by folio_memcg_lock().  This does
 * not change the accounting of this folio to its memcg, but it does
 * permit others to change it.
 */
void folio_memcg_unlock(struct folio *folio)
{
	__folio_memcg_unlock(folio_memcg(folio));
}

#ifdef CONFIG_SWAP
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called page_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
				struct mem_cgroup *from, struct mem_cgroup *to)
{
	unsigned short old_id, new_id;

	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
				struct mem_cgroup *from, struct mem_cgroup *to)
{
	return -EINVAL;
}
#endif

static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
				struct cftype *cft)
{
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
}

#ifdef CONFIG_MMU
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
				 struct cftype *cft, u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");

	if (val & ~MOVE_MASK)
		return -EINVAL;

	/*
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
	 */
	memcg->move_charge_at_immigrate = val;
	return 0;
}
#else
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
				 struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif

#ifdef CONFIG_MMU
/* Handlers for move charge at task migration. */
static int mem_cgroup_do_precharge(unsigned long count)
{
	int ret;

	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
	if (!ret) {
		mc.precharge += count;
		return ret;
	}

	/* Try charges one by one with reclaim, but do not retry */
	while (count--) {
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
		if (ret)
			return ret;
		mc.precharge++;
		cond_resched();
	}
	return 0;
}

union mc_target {
	struct folio	*folio;
	swp_entry_t	ent;
};

enum mc_target_type {
	MC_TARGET_NONE = 0,
	MC_TARGET_PAGE,
	MC_TARGET_SWAP,
	MC_TARGET_DEVICE,
};

static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
{
	struct page *page = vm_normal_page(vma, addr, ptent);

	if (!page)
		return NULL;
	if (PageAnon(page)) {
		if (!(mc.flags & MOVE_ANON))
			return NULL;
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
	get_page(page);

	return page;
}

#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!(mc.flags & MOVE_ANON))
		return NULL;

	/*
	 * Handle device private pages that are not accessible by the CPU, but
	 * stored as special swap entries in the page table.
	 */
	if (is_device_private_entry(ent)) {
		page = pfn_swap_entry_to_page(ent);
		if (!get_page_unless_zero(page))
			return NULL;
		return page;
	}

	if (non_swap_entry(ent))
		return NULL;

	/*
	 * Because swap_cache_get_folio() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
	entry->val = ent.val;

	return page;
}
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif

static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent)
{
	unsigned long index;
	struct folio *folio;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!(mc.flags & MOVE_FILE))
		return NULL;

	/* folio is moved even if it's not RSS of this task(page-faulted). */
	/* shmem/tmpfs may report page out on swap: account for that too. */
	index = linear_page_index(vma, addr);
	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
	if (IS_ERR(folio))
		return NULL;
	return folio_file_page(folio, index);
}

/**
 * mem_cgroup_move_account - move account of the folio
 * @folio: The folio.
 * @compound: charge the page as compound or small page
 * @from: mem_cgroup which the folio is moved from.
 * @to:	mem_cgroup which the folio is moved to. @from != @to.
 *
 * The folio must be locked and not on the LRU.
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct folio *folio,
				   bool compound,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
	int nid, ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
	VM_BUG_ON(compound && !folio_test_large(folio));

	ret = -EINVAL;
	if (folio_memcg(folio) != from)
		goto out;

	pgdat = folio_pgdat(folio);
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);

	folio_memcg_lock(folio);

	if (folio_test_anon(folio)) {
		if (folio_mapped(folio)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
			if (folio_test_pmd_mappable(folio)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}
		}
	} else {
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (folio_test_swapbacked(folio)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

		if (folio_mapped(folio)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}

		if (folio_test_dirty(folio)) {
			struct address_space *mapping = folio_mapping(folio);

			if (mapping_can_writeback(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
		}
	}

#ifdef CONFIG_SWAP
	if (folio_test_swapcache(folio)) {
		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
	}
#endif
	if (folio_test_writeback(folio)) {
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
	}

	/*
	 * All state has been migrated, let's switch to the new memcg.
	 *
	 * It is safe to change page's memcg here because the page
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page's memory cgroup.
	 *
	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page's memory cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
	 */
	smp_mb();

	css_get(&to->css);
	css_put(&from->css);

	folio->memcg_data = (unsigned long)to;

	__folio_memcg_unlock(from);

	ret = 0;
	nid = folio_nid(folio);

	local_irq_disable();
	mem_cgroup_charge_statistics(to, nr_pages);
	memcg1_check_events(to, nid);
	mem_cgroup_charge_statistics(from, -nr_pages);
	memcg1_check_events(from, nid);
	local_irq_enable();
out:
	return ret;
}

/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Context: Called with pte lock held.
 * Return:
 * * MC_TARGET_NONE - If the pte is not a target for move charge.
 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
 *   move charge. If @target is not NULL, the folio is stored in target->folio
 *   with extra refcnt taken (Caller should release it).
 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
 *   target for charge migration.  If @target is not NULL, the entry is
 *   stored in target->ent.
 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
 *   thus not on the lru.  For now such page is charged like a regular page
 *   would be as it is just special memory taking the place of a regular page.
 *   See Documentations/vm/hmm.txt and include/linux/hmm.h
 */
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct folio *folio;
	enum mc_target_type ret = MC_TARGET_NONE;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (pte_none_mostly(ptent))
		/*
		 * PTE markers should be treated as a none pte here, separated
		 * from other swap handling below.
		 */
		page = mc_handle_file_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, ptent, &ent);

	if (page)
		folio = page_folio(page);
	if (target && page) {
		if (!folio_trylock(folio)) {
			folio_put(folio);
			return ret;
		}
		/*
		 * page_mapped() must be stable during the move. This
		 * pte is locked, so if it's present, the page cannot
		 * become unmapped. If it isn't, we have only partial
		 * control over the mapped state: the page lock will
		 * prevent new faults against pagecache and swapcache,
		 * so an unmapped page cannot become mapped. However,
		 * if the page is already mapped elsewhere, it can
		 * unmap, and there is nothing we can do about it.
		 * Alas, skip moving the page in this case.
		 */
		if (!pte_present(ptent) && page_mapped(page)) {
			folio_unlock(folio);
			folio_put(folio);
			return ret;
		}
	}

	if (!page && !ent.val)
		return ret;
	if (page) {
		/*
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the page is valid or
		 * not under LRU exclusion.
		 */
		if (folio_memcg(folio) == mc.from) {
			ret = MC_TARGET_PAGE;
			if (folio_is_device_private(folio) ||
			    folio_is_device_coherent(folio))
				ret = MC_TARGET_DEVICE;
			if (target)
				target->folio = folio;
		}
		if (!ret || !target) {
			if (target)
				folio_unlock(folio);
			folio_put(folio);
		}
	}
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
	}
	return ret;
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct folio *folio;
	enum mc_target_type ret = MC_TARGET_NONE;

	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
	page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
	folio = page_folio(page);
	if (!(mc.flags & MOVE_ANON))
		return ret;
	if (folio_memcg(folio) == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			folio_get(folio);
			if (!folio_trylock(folio)) {
				folio_put(folio);
				return MC_TARGET_NONE;
			}
			target->folio = folio;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->vma;
	pte_t *pte;
	spinlock_t *ptl;

	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
		 */
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(ptl);
		return 0;
	}

	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	if (!pte)
		return 0;
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	return 0;
}

static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
	.walk_lock	= PGWALK_RDLOCK,
};

static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

	mmap_read_lock(mm);
	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
	mmap_read_unlock(mm);

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
}

/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

	/* we must uncharge all the leftover precharges from mc.to */
	if (mc.precharge) {
		mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
	}
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);

		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

		/*
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
		 */
		if (!mem_cgroup_is_root(mc.to))
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

		mc.moved_swap = 0;
	}
	memcg1_oom_recover(from);
	memcg1_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mm_struct *mm = mc.mm;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
	spin_lock(&mc.lock);
	mc.from = NULL;
	mc.to = NULL;
	mc.mm = NULL;
	spin_unlock(&mc.lock);

	mmput(mm);
}

int memcg1_can_attach(struct cgroup_taskset *tset)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
	struct mem_cgroup *from;
	struct task_struct *leader, *p;
	struct mm_struct *mm;
	unsigned long move_flags;
	int ret = 0;

	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return 0;

	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
	cgroup_taskset_for_each_leader(leader, css, tset) {
		WARN_ON_ONCE(p);
		p = leader;
		memcg = mem_cgroup_from_css(css);
	}
	if (!p)
		return 0;

	/*
	 * We are now committed to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.mm = mm;
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
	} else {
		mmput(mm);
	}
	return ret;
}

void memcg1_cancel_attach(struct cgroup_taskset *tset)
{
	if (mc.to)
		mem_cgroup_clear_mc();
}

static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
{
	int ret = 0;
	struct vm_area_struct *vma = walk->vma;
	pte_t *pte;
	spinlock_t *ptl;
	enum mc_target_type target_type;
	union mc_target target;
	struct folio *folio;

	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
		if (mc.precharge < HPAGE_PMD_NR) {
			spin_unlock(ptl);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			folio = target.folio;
			if (folio_isolate_lru(folio)) {
				if (!mem_cgroup_move_account(folio, true,
							     mc.from, mc.to)) {
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				folio_putback_lru(folio);
			}
			folio_unlock(folio);
			folio_put(folio);
		} else if (target_type == MC_TARGET_DEVICE) {
			folio = target.folio;
			if (!mem_cgroup_move_account(folio, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			folio_unlock(folio);
			folio_put(folio);
		}
		spin_unlock(ptl);
		return 0;
	}

retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	if (!pte)
		return 0;
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = ptep_get(pte++);
		bool device = false;
		swp_entry_t ent;

		if (!mc.precharge)
			break;

		switch (get_mctgt_type(vma, addr, ptent, &target)) {
		case MC_TARGET_DEVICE:
			device = true;
			fallthrough;
		case MC_TARGET_PAGE:
			folio = target.folio;
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (folio_test_large(folio))
				goto put;
			if (!device && !folio_isolate_lru(folio))
				goto put;
			if (!mem_cgroup_move_account(folio, false,
						mc.from, mc.to)) {
				mc.precharge--;
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
			}
			if (!device)
				folio_putback_lru(folio);
put:			/* get_mctgt_type() gets & locks the page */
			folio_unlock(folio);
			folio_put(folio);
			break;
		case MC_TARGET_SWAP:
			ent = target.ent;
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
				mc.precharge--;
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
				mc.moved_swap++;
			}
			break;
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
		ret = mem_cgroup_do_precharge(1);
		if (!ret)
			goto retry;
	}

	return ret;
}

static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
	.walk_lock	= PGWALK_RDLOCK,
};

static void mem_cgroup_move_charge(void)
{
	lru_add_drain_all();
	/*
	 * Signal folio_memcg_lock() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
retry:
	if (unlikely(!mmap_read_trylock(mc.mm))) {
		/*
		 * Someone who are holding the mmap_lock might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
	mmap_read_unlock(mc.mm);
	atomic_dec(&mc.from->moving_account);
}

void memcg1_move_task(void)
{
	if (mc.to) {
		mem_cgroup_move_charge();
		mem_cgroup_clear_mc();
	}
}

#else	/* !CONFIG_MMU */
int memcg1_can_attach(struct cgroup_taskset *tset)
{
	return 0;
}
void memcg1_cancel_attach(struct cgroup_taskset *tset)
{
}
void memcg1_move_task(void)
{
}
#endif

static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	unsigned long usage;
	int i;

	rcu_read_lock();
	if (!swap)
		t = rcu_dereference(memcg->thresholds.primary);
	else
		t = rcu_dereference(memcg->memsw_thresholds.primary);

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below or equal to usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
	i = t->current_threshold;

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd);

	/* Update current_threshold */
	t->current_threshold = i - 1;
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_memsw_account())
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
}

/*
 * Check events in order.
 *
 */
void memcg1_check_events(struct mem_cgroup *memcg, int nid)
{
	if (IS_ENABLED(CONFIG_PREEMPT_RT))
		return;

	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
		mem_cgroup_threshold(memcg);
		if (unlikely(do_softlimit))
			memcg1_update_tree(memcg, nid);
	}
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
}

static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
{
	struct mem_cgroup_eventfd_list *ev;

	spin_lock(&memcg_oom_lock);

	list_for_each_entry(ev, &memcg->oom_notify, list)
		eventfd_signal(ev->eventfd);

	spin_unlock(&memcg_oom_lock);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, memcg)
		mem_cgroup_oom_notify_cb(iter);
}

static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
{
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
	unsigned long threshold;
	unsigned long usage;
	int i, size, ret;

	ret = page_counter_memparse(args, "-1", &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);

	if (type == _MEM) {
		thresholds = &memcg->thresholds;
		usage = mem_cgroup_usage(memcg, false);
	} else if (type == _MEMSWAP) {
		thresholds = &memcg->memsw_thresholds;
		usage = mem_cgroup_usage(memcg, true);
	} else
		BUG();

	/* Check if a threshold crossed before adding a new one */
	if (thresholds->primary)
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	size = thresholds->primary ? thresholds->primary->size + 1 : 1;

	/* Allocate memory for new array of thresholds */
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
	if (!new) {
		ret = -ENOMEM;
		goto unlock;
	}
	new->size = size;

	/* Copy thresholds (if any) to new array */
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));

	/* Add new threshold */
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;

	/* Sort thresholds. Registering of new threshold isn't time-critical */
	sort(new->entries, size, sizeof(*new->entries),
			compare_thresholds, NULL);

	/* Find current threshold */
	new->current_threshold = -1;
	for (i = 0; i < size; i++) {
		if (new->entries[i].threshold <= usage) {
			/*
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			++new->current_threshold;
		} else
			break;
	}

	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);

	/* To be sure that nobody uses thresholds */
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd, const char *args)
{
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
}

static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd, const char *args)
{
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
}

static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd, enum res_type type)
{
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
	unsigned long usage;
	int i, j, size, entries;

	mutex_lock(&memcg->thresholds_lock);

	if (type == _MEM) {
		thresholds = &memcg->thresholds;
		usage = mem_cgroup_usage(memcg, false);
	} else if (type == _MEMSWAP) {
		thresholds = &memcg->memsw_thresholds;
		usage = mem_cgroup_usage(memcg, true);
	} else
		BUG();

	if (!thresholds->primary)
		goto unlock;

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
	size = entries = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
			size++;
		else
			entries++;
	}

	new = thresholds->spare;

	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
		kfree(new);
		new = NULL;
		goto swap_buffers;
	}

	new->size = size;

	/* Copy thresholds and find current threshold */
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
			continue;

		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold <= usage) {
			/*
			 * new->current_threshold will not be used
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
			++new->current_threshold;
		}
		j++;
	}

swap_buffers:
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);

	/* To be sure that nobody uses thresholds */
	synchronize_rcu();

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
unlock:
	mutex_unlock(&memcg->thresholds_lock);
}

static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd)
{
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
}

static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd)
{
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
}

static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	spin_lock(&memcg_oom_lock);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (memcg->under_oom)
		eventfd_signal(eventfd);
	spin_unlock(&memcg_oom_lock);

	return 0;
}

static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
	struct eventfd_ctx *eventfd)
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

	spin_lock(&memcg_oom_lock);

	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	spin_unlock(&memcg_oom_lock);
}

/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void memcg_event_remove(struct work_struct *work)
{
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
	struct mem_cgroup *memcg = event->memcg;

	remove_wait_queue(event->wqh, &event->wait);

	event->unregister_event(memcg, event->eventfd);

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
	css_put(&memcg->css);
}

/*
 * Gets called on EPOLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
			    int sync, void *key)
{
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
	struct mem_cgroup *memcg = event->memcg;
	__poll_t flags = key_to_poll(key);

	if (flags & EPOLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
		spin_lock(&memcg->event_list_lock);
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
		spin_unlock(&memcg->event_list_lock);
	}

	return 0;
}

static void memcg_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * DO NOT USE IN NEW FILES.
 *
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
{
	struct cgroup_subsys_state *css = of_css(of);
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup_event *event;
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
	struct dentry *cdentry;
	const char *name;
	char *endp;
	int ret;

	if (IS_ENABLED(CONFIG_PREEMPT_RT))
		return -EOPNOTSUPP;

	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buf = endp + 1;

	cfd = simple_strtoul(buf, &endp, 10);
	if (*endp == '\0')
		buf = endp;
	else if (*endp == ' ')
		buf = endp + 1;
	else
		return -EINVAL;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	event->memcg = memcg;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = file_permission(cfile.file, MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

	/*
	 * The control file must be a regular cgroup1 file. As a regular cgroup
	 * file can't be renamed, it's safe to access its name afterwards.
	 */
	cdentry = cfile.file->f_path.dentry;
	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
		ret = -EINVAL;
		goto out_put_cfile;
	}

	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
	 *
	 * DO NOT ADD NEW FILES.
	 */
	name = cdentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

	/*
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
	 */
	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
					       &memory_cgrp_subsys);
	ret = -EINVAL;
	if (IS_ERR(cfile_css))
		goto out_put_cfile;
	if (cfile_css != css) {
		css_put(cfile_css);
		goto out_put_cfile;
	}

	ret = event->register_event(memcg, event->eventfd, buf);
	if (ret)
		goto out_put_css;

	vfs_poll(efile.file, &event->pt);

	spin_lock_irq(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock_irq(&memcg->event_list_lock);

	fdput(cfile);
	fdput(efile);

	return nbytes;

out_put_css:
	css_put(css);
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

void memcg1_memcg_init(struct mem_cgroup *memcg)
{
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
}

void memcg1_css_offline(struct mem_cgroup *memcg)
{
	struct mem_cgroup_event *event, *tmp;

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
	spin_lock_irq(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
	spin_unlock_irq(&memcg->event_list_lock);
}

/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter, *failed = NULL;

	spin_lock(&memcg_oom_lock);

	for_each_mem_cgroup_tree(iter, memcg) {
		if (iter->oom_lock) {
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
			mem_cgroup_iter_break(memcg, iter);
			break;
		} else
			iter->oom_lock = true;
	}

	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
		}
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);

	spin_unlock(&memcg_oom_lock);

	return !failed;
}

static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;

	spin_lock(&memcg_oom_lock);
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
	for_each_mem_cgroup_tree(iter, memcg)
		iter->oom_lock = false;
	spin_unlock(&memcg_oom_lock);
}

static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;

	spin_lock(&memcg_oom_lock);
	for_each_mem_cgroup_tree(iter, memcg)
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
}

static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;

	/*
	 * Be careful about under_oom underflows because a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
	 */
	spin_lock(&memcg_oom_lock);
	for_each_mem_cgroup_tree(iter, memcg)
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
}

static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

struct oom_wait_info {
	struct mem_cgroup *memcg;
	wait_queue_entry_t	wait;
};

static int memcg_oom_wake_function(wait_queue_entry_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
	oom_wait_memcg = oom_wait_info->memcg;

	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

void memcg1_oom_recover(struct mem_cgroup *memcg)
{
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
 * @handle: actually kill/wait or just clean up the OOM state
 *
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
 *
 * Memcg supports userspace OOM handling where failed allocations must
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
 * the end of the page fault to complete the OOM handling.
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
 * completed, %false otherwise.
 */
bool mem_cgroup_oom_synchronize(bool handle)
{
	struct mem_cgroup *memcg = current->memcg_in_oom;
	struct oom_wait_info owait;
	bool locked;

	/* OOM is global, do not handle */
	if (!memcg)
		return false;

	if (!handle)
		goto cleanup;

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.entry);

	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	schedule();
	mem_cgroup_unmark_under_oom(memcg);
	finish_wait(&memcg_oom_waitq, &owait.wait);

	if (locked)
		mem_cgroup_oom_unlock(memcg);
cleanup:
	current->memcg_in_oom = NULL;
	css_put(&memcg->css);
	return true;
}


bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
{
	/*
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
	 *
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
	 */
	if (READ_ONCE(memcg->oom_kill_disable)) {
		if (current->in_user_fault) {
			css_get(&memcg->css);
			current->memcg_in_oom = memcg;
		}
		return false;
	}

	mem_cgroup_mark_under_oom(memcg);

	*locked = mem_cgroup_oom_trylock(memcg);

	if (*locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);

	return true;
}

void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
{
	if (locked)
		mem_cgroup_oom_unlock(memcg);
}

static DEFINE_MUTEX(memcg_max_mutex);

static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
{
	bool enlarge = false;
	bool drained = false;
	int ret;
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;

	do {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}

		mutex_lock(&memcg_max_mutex);
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
		 * break our basic invariant rule memory.max <= memsw.max.
		 */
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
					   max <= memcg->memsw.max;
		if (!limits_invariant) {
			mutex_unlock(&memcg_max_mutex);
			ret = -EINVAL;
			break;
		}
		if (max > counter->max)
			enlarge = true;
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);

		if (!ret)
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
				memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
			ret = -EBUSY;
			break;
		}
	} while (true);

	if (!ret && enlarge)
		memcg1_oom_recover(memcg);

	return ret;
}

/*
 * Reclaims as many pages from the given memcg as possible.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MAX_RECLAIM_RETRIES;

	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();

	drain_all_stock(memcg);

	/* try to free all pages in this cgroup */
	while (nr_retries && page_counter_read(&memcg->memory)) {
		if (signal_pending(current))
			return -EINTR;

		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
						  MEMCG_RECLAIM_MAY_SWAP, NULL))
			nr_retries--;
	}

	return 0;
}

static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));

	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
	return mem_cgroup_force_empty(memcg) ?: nbytes;
}

static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
{
	return 1;
}

static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
{
	if (val == 1)
		return 0;

	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");

	return -EINVAL;
}

static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct page_counter *counter;

	switch (MEMFILE_TYPE(cft->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	case _TCP:
		counter = &memcg->tcpmem;
		break;
	default:
		BUG();
	}

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
		if (counter == &memcg->memsw)
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->max * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
	default:
		BUG();
	}
}

/*
 * This function doesn't do anything useful. Its only job is to provide a read
 * handler for a file so that cgroup_file_mode() will add read permissions.
 */
static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
				     __always_unused void *v)
{
	return -EINVAL;
}

static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
{
	int ret;

	mutex_lock(&memcg_max_mutex);

	ret = page_counter_set_max(&memcg->tcpmem, max);
	if (ret)
		goto out;

	if (!memcg->tcpmem_active) {
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in mem_cgroup_sk_alloc(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
		memcg->tcpmem_active = true;
	}
out:
	mutex_unlock(&memcg_max_mutex);
	return ret;
}

/*
 * The user of this function is...
 * RES_LIMIT.
 */
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long nr_pages;
	int ret;

	buf = strstrip(buf);
	ret = page_counter_memparse(buf, "-1", &nr_pages);
	if (ret)
		return ret;

	switch (MEMFILE_ATTR(of_cft(of)->private)) {
	case RES_LIMIT:
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
			break;
		case _MEMSWAP:
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
			break;
		case _KMEM:
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Writing any value to this file has no effect. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
			ret = 0;
			break;
		case _TCP:
			ret = memcg_update_tcp_max(memcg, nr_pages);
			break;
		}
		break;
	case RES_SOFT_LIMIT:
		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
			ret = -EOPNOTSUPP;
		} else {
			WRITE_ONCE(memcg->soft_limit, nr_pages);
			ret = 0;
		}
		break;
	}
	return ret ?: nbytes;
}

static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	struct page_counter *counter;

	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	case _TCP:
		counter = &memcg->tcpmem;
		break;
	default:
		BUG();
	}

	switch (MEMFILE_ATTR(of_cft(of)->private)) {
	case RES_MAX_USAGE:
		page_counter_reset_watermark(counter);
		break;
	case RES_FAILCNT:
		counter->failcnt = 0;
		break;
	default:
		BUG();
	}

	return nbytes;
}

#ifdef CONFIG_NUMA

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
				int nid, unsigned int lru_mask, bool tree)
{
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask,
					     bool tree)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
	}
	return nr;
}

static int memcg_numa_stat_show(struct seq_file *m, void *v)
{
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
	int nid;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	mem_cgroup_flush_stats(memcg);

	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
		seq_putc(m, '\n');
	}

	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
		seq_putc(m, '\n');
	}

	return 0;
}
#endif /* CONFIG_NUMA */

static const unsigned int memcg1_stats[] = {
	NR_FILE_PAGES,
	NR_ANON_MAPPED,
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	WORKINGSET_REFAULT_ANON,
	WORKINGSET_REFAULT_FILE,
#ifdef CONFIG_SWAP
	MEMCG_SWAP,
	NR_SWAPCACHE,
#endif
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	"rss_huge",
#endif
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"workingset_refault_anon",
	"workingset_refault_file",
#ifdef CONFIG_SWAP
	"swap",
	"swapcached",
#endif
};

/* Universal VM events cgroup1 shows, original sort order */
static const unsigned int memcg1_events[] = {
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
{
	unsigned long memory, memsw;
	struct mem_cgroup *mi;
	unsigned int i;

	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));

	mem_cgroup_flush_stats(memcg);

	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		unsigned long nr;

		nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
	}

	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
			       memcg_events_local(memcg, memcg1_events[i]));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	/* Hierarchical information */
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
	}
	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
		       (u64)memory * PAGE_SIZE);
	seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
		       (u64)memsw * PAGE_SIZE);

	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		unsigned long nr;

		nr = memcg_page_state_output(memcg, memcg1_stats[i]);
		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
			       (u64)nr);
	}

	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_buf_printf(s, "total_%s %llu\n",
			       vm_event_name(memcg1_events[i]),
			       (u64)memcg_events(memcg, memcg1_events[i]));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

#ifdef CONFIG_DEBUG_VM
	{
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;

		for_each_online_pgdat(pgdat) {
			mz = memcg->nodeinfo[pgdat->node_id];

			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
		}
		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
		seq_buf_printf(s, "file_cost %lu\n", file_cost);
	}
#endif
}

static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return mem_cgroup_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	if (val > MAX_SWAPPINESS)
		return -EINVAL;

	if (!mem_cgroup_is_root(memcg))
		WRITE_ONCE(memcg->swappiness, val);
	else
		WRITE_ONCE(vm_swappiness, val);

	return 0;
}

static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);

	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
		return -EINVAL;

	WRITE_ONCE(memcg->oom_kill_disable, val);
	if (!val)
		memcg1_oom_recover(memcg);

	return 0;
}

#ifdef CONFIG_SLUB_DEBUG
static int mem_cgroup_slab_show(struct seq_file *m, void *p)
{
	/*
	 * Deprecated.
	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
	 */
	return 0;
}
#endif

struct cftype mem_cgroup_legacy_files[] = {
	{
		.name = "usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "failcnt",
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
	{
		.name = "force_empty",
		.write = mem_cgroup_force_empty_write,
	},
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
	{
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write = memcg_write_event_control,
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
	},
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
	{
		.name = "oom_control",
		.seq_show = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
	},
	{
		.name = "pressure_level",
		.seq_show = mem_cgroup_dummy_seq_show,
	},
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memcg_numa_stat_show,
	},
#endif
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
#ifdef CONFIG_SLUB_DEBUG
	{
		.name = "kmem.slabinfo",
		.seq_show = mem_cgroup_slab_show,
	},
#endif
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

struct cftype memsw_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (nr_pages > 0)
			page_counter_charge(&memcg->kmem, nr_pages);
		else
			page_counter_uncharge(&memcg->kmem, -nr_pages);
	}
}

bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	struct page_counter *fail;

	if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
		memcg->tcpmem_pressure = 0;
		return true;
	}
	memcg->tcpmem_pressure = 1;
	if (gfp_mask & __GFP_NOFAIL) {
		page_counter_charge(&memcg->tcpmem, nr_pages);
		return true;
	}
	return false;
}

static int __init memcg1_init(void)
{
	int node;

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);

		rtpn->rb_root = RB_ROOT;
		rtpn->rb_rightmost = NULL;
		spin_lock_init(&rtpn->lock);
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

	return 0;
}
subsys_initcall(memcg1_init);