aboutsummaryrefslogtreecommitdiff
path: root/sound/firewire/tascam/tascam-transaction.c
blob: a073cece4a7d5e3aa2a45c1d5d148eb940cf67ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
// SPDX-License-Identifier: GPL-2.0-only
/*
 * tascam-transaction.c - a part of driver for TASCAM FireWire series
 *
 * Copyright (c) 2015 Takashi Sakamoto
 */

#include "tascam.h"

/*
 * When return minus value, given argument is not MIDI status.
 * When return 0, given argument is a beginning of system exclusive.
 * When return the others, given argument is MIDI data.
 */
static inline int calculate_message_bytes(u8 status)
{
	switch (status) {
	case 0xf6:	/* Tune request. */
	case 0xf8:	/* Timing clock. */
	case 0xfa:	/* Start. */
	case 0xfb:	/* Continue. */
	case 0xfc:	/* Stop. */
	case 0xfe:	/* Active sensing. */
	case 0xff:	/* System reset. */
		return 1;
	case 0xf1:	/* MIDI time code quarter frame. */
	case 0xf3:	/* Song select. */
		return 2;
	case 0xf2:	/* Song position pointer. */
		return 3;
	case 0xf0:	/* Exclusive. */
		return 0;
	case 0xf7:	/* End of exclusive. */
		break;
	case 0xf4:	/* Undefined. */
	case 0xf5:	/* Undefined. */
	case 0xf9:	/* Undefined. */
	case 0xfd:	/* Undefined. */
		break;
	default:
		switch (status & 0xf0) {
		case 0x80:	/* Note on. */
		case 0x90:	/* Note off. */
		case 0xa0:	/* Polyphonic key pressure. */
		case 0xb0:	/* Control change and Mode change. */
		case 0xe0:	/* Pitch bend change. */
			return 3;
		case 0xc0:	/* Program change. */
		case 0xd0:	/* Channel pressure. */
			return 2;
		default:
		break;
		}
	break;
	}

	return -EINVAL;
}

static int fill_message(struct snd_fw_async_midi_port *port,
			struct snd_rawmidi_substream *substream)
{
	int i, len, consume;
	u8 *label, *msg;
	u8 status;

	/* The first byte is used for label, the rest for MIDI bytes. */
	label = port->buf;
	msg = port->buf + 1;

	consume = snd_rawmidi_transmit_peek(substream, msg, 3);
	if (consume == 0)
		return 0;

	/* On exclusive message. */
	if (port->on_sysex) {
		/* Seek the end of exclusives. */
		for (i = 0; i < consume; ++i) {
			if (msg[i] == 0xf7) {
				port->on_sysex = false;
				break;
			}
		}

		/* At the end of exclusive message, use label 0x07. */
		if (!port->on_sysex) {
			consume = i + 1;
			*label = (substream->number << 4) | 0x07;
		/* During exclusive message, use label 0x04. */
		} else if (consume == 3) {
			*label = (substream->number << 4) | 0x04;
		/* We need to fill whole 3 bytes. Go to next change. */
		} else {
			return 0;
		}

		len = consume;
	} else {
		/* The beginning of exclusives. */
		if (msg[0] == 0xf0) {
			/* Transfer it in next chance in another condition. */
			port->on_sysex = true;
			return 0;
		} else {
			/* On running-status. */
			if ((msg[0] & 0x80) != 0x80)
				status = port->running_status;
			else
				status = msg[0];

			/* Calculate consume bytes. */
			len = calculate_message_bytes(status);
			if (len <= 0)
				return 0;

			/* On running-status. */
			if ((msg[0] & 0x80) != 0x80) {
				/* Enough MIDI bytes were not retrieved. */
				if (consume < len - 1)
					return 0;
				consume = len - 1;

				msg[2] = msg[1];
				msg[1] = msg[0];
				msg[0] = port->running_status;
			} else {
				/* Enough MIDI bytes were not retrieved. */
				if (consume < len)
					return 0;
				consume = len;

				port->running_status = msg[0];
			}
		}

		*label = (substream->number << 4) | (msg[0] >> 4);
	}

	if (len > 0 && len < 3)
		memset(msg + len, 0, 3 - len);

	return consume;
}

static void async_midi_port_callback(struct fw_card *card, int rcode,
				     void *data, size_t length,
				     void *callback_data)
{
	struct snd_fw_async_midi_port *port = callback_data;
	struct snd_rawmidi_substream *substream = READ_ONCE(port->substream);

	/* This port is closed. */
	if (substream == NULL)
		return;

	if (rcode == RCODE_COMPLETE)
		snd_rawmidi_transmit_ack(substream, port->consume_bytes);
	else if (!rcode_is_permanent_error(rcode))
		/* To start next transaction immediately for recovery. */
		port->next_ktime = 0;
	else
		/* Don't continue processing. */
		port->error = true;

	port->idling = true;

	if (!snd_rawmidi_transmit_empty(substream))
		schedule_work(&port->work);
}

static void midi_port_work(struct work_struct *work)
{
	struct snd_fw_async_midi_port *port =
			container_of(work, struct snd_fw_async_midi_port, work);
	struct snd_rawmidi_substream *substream = READ_ONCE(port->substream);
	int generation;

	/* Under transacting or error state. */
	if (!port->idling || port->error)
		return;

	/* Nothing to do. */
	if (substream == NULL || snd_rawmidi_transmit_empty(substream))
		return;

	/* Do it in next chance. */
	if (ktime_after(port->next_ktime, ktime_get())) {
		schedule_work(&port->work);
		return;
	}

	/*
	 * Fill the buffer. The callee must use snd_rawmidi_transmit_peek().
	 * Later, snd_rawmidi_transmit_ack() is called.
	 */
	memset(port->buf, 0, 4);
	port->consume_bytes = fill_message(port, substream);
	if (port->consume_bytes <= 0) {
		/* Do it in next chance, immediately. */
		if (port->consume_bytes == 0) {
			port->next_ktime = 0;
			schedule_work(&port->work);
		} else {
			/* Fatal error. */
			port->error = true;
		}
		return;
	}

	/* Set interval to next transaction. */
	port->next_ktime = ktime_add_ns(ktime_get(),
			port->consume_bytes * 8 * (NSEC_PER_SEC / 31250));

	/* Start this transaction. */
	port->idling = false;

	/*
	 * In Linux FireWire core, when generation is updated with memory
	 * barrier, node id has already been updated. In this module, After
	 * this smp_rmb(), load/store instructions to memory are completed.
	 * Thus, both of generation and node id are available with recent
	 * values. This is a light-serialization solution to handle bus reset
	 * events on IEEE 1394 bus.
	 */
	generation = port->parent->generation;
	smp_rmb();

	fw_send_request(port->parent->card, &port->transaction,
			TCODE_WRITE_QUADLET_REQUEST,
			port->parent->node_id, generation,
			port->parent->max_speed,
			TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_RX_QUAD,
			port->buf, 4, async_midi_port_callback,
			port);
}

void snd_fw_async_midi_port_init(struct snd_fw_async_midi_port *port)
{
	port->idling = true;
	port->error = false;
	port->running_status = 0;
	port->on_sysex = false;
}

static void handle_midi_tx(struct fw_card *card, struct fw_request *request,
			   int tcode, int destination, int source,
			   int generation, unsigned long long offset,
			   void *data, size_t length, void *callback_data)
{
	struct snd_tscm *tscm = callback_data;
	u32 *buf = (u32 *)data;
	unsigned int messages;
	unsigned int i;
	unsigned int port;
	struct snd_rawmidi_substream *substream;
	u8 *b;
	int bytes;

	if (offset != tscm->async_handler.offset)
		goto end;

	messages = length / 8;
	for (i = 0; i < messages; i++) {
		b = (u8 *)(buf + i * 2);

		port = b[0] >> 4;
		/* TODO: support virtual MIDI ports. */
		if (port >= tscm->spec->midi_capture_ports)
			goto end;

		/* Assume the message length. */
		bytes = calculate_message_bytes(b[1]);
		/* On MIDI data or exclusives. */
		if (bytes <= 0) {
			/* Seek the end of exclusives. */
			for (bytes = 1; bytes < 4; bytes++) {
				if (b[bytes] == 0xf7)
					break;
			}
			if (bytes == 4)
				bytes = 3;
		}

		substream = READ_ONCE(tscm->tx_midi_substreams[port]);
		if (substream != NULL)
			snd_rawmidi_receive(substream, b + 1, bytes);
	}
end:
	fw_send_response(card, request, RCODE_COMPLETE);
}

int snd_tscm_transaction_register(struct snd_tscm *tscm)
{
	static const struct fw_address_region resp_register_region = {
		.start	= 0xffffe0000000ull,
		.end	= 0xffffe000ffffull,
	};
	unsigned int i;
	int err;

	/*
	 * Usually, two quadlets are transferred by one transaction. The first
	 * quadlet has MIDI messages, the rest includes timestamp.
	 * Sometimes, 8 set of the data is transferred by a block transaction.
	 */
	tscm->async_handler.length = 8 * 8;
	tscm->async_handler.address_callback = handle_midi_tx;
	tscm->async_handler.callback_data = tscm;

	err = fw_core_add_address_handler(&tscm->async_handler,
					  &resp_register_region);
	if (err < 0)
		return err;

	err = snd_tscm_transaction_reregister(tscm);
	if (err < 0)
		goto error;

	for (i = 0; i < TSCM_MIDI_OUT_PORT_MAX; i++) {
		tscm->out_ports[i].parent = fw_parent_device(tscm->unit);
		tscm->out_ports[i].next_ktime = 0;
		INIT_WORK(&tscm->out_ports[i].work, midi_port_work);
	}

	return err;
error:
	fw_core_remove_address_handler(&tscm->async_handler);
	tscm->async_handler.callback_data = NULL;
	return err;
}

/* At bus reset, these registers are cleared. */
int snd_tscm_transaction_reregister(struct snd_tscm *tscm)
{
	struct fw_device *device = fw_parent_device(tscm->unit);
	__be32 reg;
	int err;

	/* Register messaging address. Block transaction is not allowed. */
	reg = cpu_to_be32((device->card->node_id << 16) |
			  (tscm->async_handler.offset >> 32));
	err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				 TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI,
				 &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	reg = cpu_to_be32(tscm->async_handler.offset);
	err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				 TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO,
				 &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	/* Turn on messaging. */
	reg = cpu_to_be32(0x00000001);
	err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				  TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON,
				  &reg, sizeof(reg), 0);
	if (err < 0)
		return err;

	/* Turn on FireWire LED. */
	reg = cpu_to_be32(0x0001008e);
	return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
				  TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER,
				  &reg, sizeof(reg), 0);
}

void snd_tscm_transaction_unregister(struct snd_tscm *tscm)
{
	__be32 reg;

	if (tscm->async_handler.callback_data == NULL)
		return;

	/* Turn off FireWire LED. */
	reg = cpu_to_be32(0x0000008e);
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER,
			   &reg, sizeof(reg), 0);

	/* Turn off messaging. */
	reg = cpu_to_be32(0x00000000);
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON,
			   &reg, sizeof(reg), 0);

	/* Unregister the address. */
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI,
			   &reg, sizeof(reg), 0);
	snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
			   TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO,
			   &reg, sizeof(reg), 0);

	fw_core_remove_address_handler(&tscm->async_handler);
	tscm->async_handler.callback_data = NULL;
}