aboutsummaryrefslogtreecommitdiff
path: root/libavcodec/opus.c
blob: aa827b604c53340ca84b6ab3edb5943f5329ddba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
/*
 * Copyright (c) 2012 Andrew D'Addesio
 * Copyright (c) 2013-2014 Mozilla Corporation
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Opus decoder/parser shared code
 */

#include <stdint.h>

#include "libavutil/error.h"
#include "libavutil/ffmath.h"

#include "opus_celt.h"
#include "opustab.h"
#include "vorbis.h"

static const uint16_t opus_frame_duration[32] = {
    480, 960, 1920, 2880,
    480, 960, 1920, 2880,
    480, 960, 1920, 2880,
    480, 960,
    480, 960,
    120, 240,  480,  960,
    120, 240,  480,  960,
    120, 240,  480,  960,
    120, 240,  480,  960,
};

/**
 * Read a 1- or 2-byte frame length
 */
static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
{
    int val;

    if (*ptr >= end)
        return AVERROR_INVALIDDATA;
    val = *(*ptr)++;
    if (val >= 252) {
        if (*ptr >= end)
            return AVERROR_INVALIDDATA;
        val += 4 * *(*ptr)++;
    }
    return val;
}

/**
 * Read a multi-byte length (used for code 3 packet padding size)
 */
static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
{
    int val = 0;
    int next;

    while (1) {
        if (*ptr >= end || val > INT_MAX - 254)
            return AVERROR_INVALIDDATA;
        next = *(*ptr)++;
        val += next;
        if (next < 255)
            break;
        else
            val--;
    }
    return val;
}

/**
 * Parse Opus packet info from raw packet data
 */
int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
                         int self_delimiting)
{
    const uint8_t *ptr = buf;
    const uint8_t *end = buf + buf_size;
    int padding = 0;
    int frame_bytes, i;

    if (buf_size < 1)
        goto fail;

    /* TOC byte */
    i = *ptr++;
    pkt->code   = (i     ) & 0x3;
    pkt->stereo = (i >> 2) & 0x1;
    pkt->config = (i >> 3) & 0x1F;

    /* code 2 and code 3 packets have at least 1 byte after the TOC */
    if (pkt->code >= 2 && buf_size < 2)
        goto fail;

    switch (pkt->code) {
    case 0:
        /* 1 frame */
        pkt->frame_count = 1;
        pkt->vbr         = 0;

        if (self_delimiting) {
            int len = xiph_lacing_16bit(&ptr, end);
            if (len < 0 || len > end - ptr)
                goto fail;
            end      = ptr + len;
            buf_size = end - buf;
        }

        frame_bytes = end - ptr;
        if (frame_bytes > MAX_FRAME_SIZE)
            goto fail;
        pkt->frame_offset[0] = ptr - buf;
        pkt->frame_size[0]   = frame_bytes;
        break;
    case 1:
        /* 2 frames, equal size */
        pkt->frame_count = 2;
        pkt->vbr         = 0;

        if (self_delimiting) {
            int len = xiph_lacing_16bit(&ptr, end);
            if (len < 0 || 2 * len > end - ptr)
                goto fail;
            end      = ptr + 2 * len;
            buf_size = end - buf;
        }

        frame_bytes = end - ptr;
        if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
            goto fail;
        pkt->frame_offset[0] = ptr - buf;
        pkt->frame_size[0]   = frame_bytes >> 1;
        pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
        pkt->frame_size[1]   = frame_bytes >> 1;
        break;
    case 2:
        /* 2 frames, different sizes */
        pkt->frame_count = 2;
        pkt->vbr         = 1;

        /* read 1st frame size */
        frame_bytes = xiph_lacing_16bit(&ptr, end);
        if (frame_bytes < 0)
            goto fail;

        if (self_delimiting) {
            int len = xiph_lacing_16bit(&ptr, end);
            if (len < 0 || len + frame_bytes > end - ptr)
                goto fail;
            end      = ptr + frame_bytes + len;
            buf_size = end - buf;
        }

        pkt->frame_offset[0] = ptr - buf;
        pkt->frame_size[0]   = frame_bytes;

        /* calculate 2nd frame size */
        frame_bytes = end - ptr - pkt->frame_size[0];
        if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
            goto fail;
        pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
        pkt->frame_size[1]   = frame_bytes;
        break;
    case 3:
        /* 1 to 48 frames, can be different sizes */
        i = *ptr++;
        pkt->frame_count = (i     ) & 0x3F;
        padding          = (i >> 6) & 0x01;
        pkt->vbr         = (i >> 7) & 0x01;

        if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
            goto fail;

        /* read padding size */
        if (padding) {
            padding = xiph_lacing_full(&ptr, end);
            if (padding < 0)
                goto fail;
        }

        /* read frame sizes */
        if (pkt->vbr) {
            /* for VBR, all frames except the final one have their size coded
               in the bitstream. the last frame size is implicit. */
            int total_bytes = 0;
            for (i = 0; i < pkt->frame_count - 1; i++) {
                frame_bytes = xiph_lacing_16bit(&ptr, end);
                if (frame_bytes < 0)
                    goto fail;
                pkt->frame_size[i] = frame_bytes;
                total_bytes += frame_bytes;
            }

            if (self_delimiting) {
                int len = xiph_lacing_16bit(&ptr, end);
                if (len < 0 || len + total_bytes + padding > end - ptr)
                    goto fail;
                end      = ptr + total_bytes + len + padding;
                buf_size = end - buf;
            }

            frame_bytes = end - ptr - padding;
            if (total_bytes > frame_bytes)
                goto fail;
            pkt->frame_offset[0] = ptr - buf;
            for (i = 1; i < pkt->frame_count; i++)
                pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
            pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
        } else {
            /* for CBR, the remaining packet bytes are divided evenly between
               the frames */
            if (self_delimiting) {
                frame_bytes = xiph_lacing_16bit(&ptr, end);
                if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
                    goto fail;
                end      = ptr + pkt->frame_count * frame_bytes + padding;
                buf_size = end - buf;
            } else {
                frame_bytes = end - ptr - padding;
                if (frame_bytes % pkt->frame_count ||
                    frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
                    goto fail;
                frame_bytes /= pkt->frame_count;
            }

            pkt->frame_offset[0] = ptr - buf;
            pkt->frame_size[0]   = frame_bytes;
            for (i = 1; i < pkt->frame_count; i++) {
                pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
                pkt->frame_size[i]   = frame_bytes;
            }
        }
    }

    pkt->packet_size = buf_size;
    pkt->data_size   = pkt->packet_size - padding;

    /* total packet duration cannot be larger than 120ms */
    pkt->frame_duration = opus_frame_duration[pkt->config];
    if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
        goto fail;

    /* set mode and bandwidth */
    if (pkt->config < 12) {
        pkt->mode = OPUS_MODE_SILK;
        pkt->bandwidth = pkt->config >> 2;
    } else if (pkt->config < 16) {
        pkt->mode = OPUS_MODE_HYBRID;
        pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
    } else {
        pkt->mode = OPUS_MODE_CELT;
        pkt->bandwidth = (pkt->config - 16) >> 2;
        /* skip medium band */
        if (pkt->bandwidth)
            pkt->bandwidth++;
    }

    return 0;

fail:
    memset(pkt, 0, sizeof(*pkt));
    return AVERROR_INVALIDDATA;
}

static int channel_reorder_vorbis(int nb_channels, int channel_idx)
{
    return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
}

static int channel_reorder_unknown(int nb_channels, int channel_idx)
{
    return channel_idx;
}

av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
                                    OpusContext *s)
{
    static const uint8_t default_channel_map[2] = { 0, 1 };

    int (*channel_reorder)(int, int) = channel_reorder_unknown;

    const uint8_t *extradata, *channel_map;
    int extradata_size;
    int version, channels, map_type, streams, stereo_streams, i, j;
    uint64_t layout;

    if (!avctx->extradata) {
        if (avctx->channels > 2) {
            av_log(avctx, AV_LOG_ERROR,
                   "Multichannel configuration without extradata.\n");
            return AVERROR(EINVAL);
        }
        extradata      = opus_default_extradata;
        extradata_size = sizeof(opus_default_extradata);
    } else {
        extradata = avctx->extradata;
        extradata_size = avctx->extradata_size;
    }

    if (extradata_size < 19) {
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
               extradata_size);
        return AVERROR_INVALIDDATA;
    }

    version = extradata[8];
    if (version > 15) {
        avpriv_request_sample(avctx, "Extradata version %d", version);
        return AVERROR_PATCHWELCOME;
    }

    avctx->delay = AV_RL16(extradata + 10);

    channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2;
    if (!channels) {
        av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
        return AVERROR_INVALIDDATA;
    }

    s->gain_i = AV_RL16(extradata + 16);
    if (s->gain_i)
        s->gain = ff_exp10(s->gain_i / (20.0 * 256));

    map_type = extradata[18];
    if (!map_type) {
        if (channels > 2) {
            av_log(avctx, AV_LOG_ERROR,
                   "Channel mapping 0 is only specified for up to 2 channels\n");
            return AVERROR_INVALIDDATA;
        }
        layout         = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
        streams        = 1;
        stereo_streams = channels - 1;
        channel_map    = default_channel_map;
    } else if (map_type == 1 || map_type == 2 || map_type == 255) {
        if (extradata_size < 21 + channels) {
            av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
                   extradata_size);
            return AVERROR_INVALIDDATA;
        }

        streams        = extradata[19];
        stereo_streams = extradata[20];
        if (!streams || stereo_streams > streams ||
            streams + stereo_streams > 255) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
            return AVERROR_INVALIDDATA;
        }

        if (map_type == 1) {
            if (channels > 8) {
                av_log(avctx, AV_LOG_ERROR,
                       "Channel mapping 1 is only specified for up to 8 channels\n");
                return AVERROR_INVALIDDATA;
            }
            layout = ff_vorbis_channel_layouts[channels - 1];
            channel_reorder = channel_reorder_vorbis;
        } else if (map_type == 2) {
            int ambisonic_order = ff_sqrt(channels) - 1;
            if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
                channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
                av_log(avctx, AV_LOG_ERROR,
                       "Channel mapping 2 is only specified for channel counts"
                       " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
                       " for nonnegative integer n\n");
                return AVERROR_INVALIDDATA;
            }
            if (channels > 227) {
                av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
                return AVERROR_INVALIDDATA;
            }
            layout = 0;
        } else
            layout = 0;

        channel_map = extradata + 21;
    } else {
        avpriv_request_sample(avctx, "Mapping type %d", map_type);
        return AVERROR_PATCHWELCOME;
    }

    s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
    if (!s->channel_maps)
        return AVERROR(ENOMEM);

    for (i = 0; i < channels; i++) {
        ChannelMap *map = &s->channel_maps[i];
        uint8_t     idx = channel_map[channel_reorder(channels, i)];

        if (idx == 255) {
            map->silence = 1;
            continue;
        } else if (idx >= streams + stereo_streams) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid channel map for output channel %d: %d\n", i, idx);
            av_freep(&s->channel_maps);
            return AVERROR_INVALIDDATA;
        }

        /* check that we did not see this index yet */
        map->copy = 0;
        for (j = 0; j < i; j++)
            if (channel_map[channel_reorder(channels, j)] == idx) {
                map->copy     = 1;
                map->copy_idx = j;
                break;
            }

        if (idx < 2 * stereo_streams) {
            map->stream_idx  = idx / 2;
            map->channel_idx = idx & 1;
        } else {
            map->stream_idx  = idx - stereo_streams;
            map->channel_idx = 0;
        }
    }

    avctx->channels       = channels;
    avctx->channel_layout = layout;
    s->nb_streams         = streams;
    s->nb_stereo_streams  = stereo_streams;

    return 0;
}

void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
{
    float lowband_scratch[8 * 22];
    float norm1[2 * 8 * 100];
    float *norm2 = norm1 + 8 * 100;

    int totalbits = (f->framebits << 3) - f->anticollapse_needed;

    int update_lowband = 1;
    int lowband_offset = 0;

    int i, j;

    for (i = f->start_band; i < f->end_band; i++) {
        uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
        int band_offset = ff_celt_freq_bands[i] << f->size;
        int band_size   = ff_celt_freq_range[i] << f->size;
        float *X = f->block[0].coeffs + band_offset;
        float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
        float *norm_loc1, *norm_loc2;

        int consumed = opus_rc_tell_frac(rc);
        int effective_lowband = -1;
        int b = 0;

        /* Compute how many bits we want to allocate to this band */
        if (i != f->start_band)
            f->remaining -= consumed;
        f->remaining2 = totalbits - consumed - 1;
        if (i <= f->coded_bands - 1) {
            int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
            b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
        }

        if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
            i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
            lowband_offset = i;

        if (i == f->start_band + 1) {
            /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
            the second to ensure the second band never has to use the LCG. */
            int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;

            memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));

            if (f->channels == 2)
                memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
        }

        /* Get a conservative estimate of the collapse_mask's for the bands we're
           going to be folding from. */
        if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
                                    f->blocks > 1 || f->tf_change[i] < 0)) {
            int foldstart, foldend;

            /* This ensures we never repeat spectral content within one band */
            effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
                                      ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
            foldstart = lowband_offset;
            while (ff_celt_freq_bands[--foldstart] > effective_lowband);
            foldend = lowband_offset - 1;
            while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);

            cm[0] = cm[1] = 0;
            for (j = foldstart; j < foldend; j++) {
                cm[0] |= f->block[0].collapse_masks[j];
                cm[1] |= f->block[f->channels - 1].collapse_masks[j];
            }
        }

        if (f->dual_stereo && i == f->intensity_stereo) {
            /* Switch off dual stereo to do intensity */
            f->dual_stereo = 0;
            for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
                norm1[j] = (norm1[j] + norm2[j]) / 2;
        }

        norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
        norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;

        if (f->dual_stereo) {
            cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
                                       f->blocks, norm_loc1, f->size,
                                       norm1 + band_offset, 0, 1.0f,
                                       lowband_scratch, cm[0]);

            cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
                                       f->blocks, norm_loc2, f->size,
                                       norm2 + band_offset, 0, 1.0f,
                                       lowband_scratch, cm[1]);
        } else {
            cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
                                       f->blocks, norm_loc1, f->size,
                                       norm1 + band_offset, 0, 1.0f,
                                       lowband_scratch, cm[0] | cm[1]);
            cm[1] = cm[0];
        }

        f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
        f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
        f->remaining += f->pulses[i] + consumed;

        /* Update the folding position only as long as we have 1 bit/sample depth */
        update_lowband = (b > band_size << 3);
    }
}

#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)

void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
{
    int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
    int skip_startband      = f->start_band;
    int skip_bit            = 0;
    int intensitystereo_bit = 0;
    int dualstereo_bit      = 0;
    int dynalloc            = 6;
    int extrabits           = 0;

    int boost[CELT_MAX_BANDS] = { 0 };
    int trim_offset[CELT_MAX_BANDS];
    int threshold[CELT_MAX_BANDS];
    int bits1[CELT_MAX_BANDS];
    int bits2[CELT_MAX_BANDS];

    /* Spread */
    if (opus_rc_tell(rc) + 4 <= f->framebits) {
        if (encode)
            ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
        else
            f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
    } else {
        f->spread = CELT_SPREAD_NORMAL;
    }

    /* Initialize static allocation caps */
    for (i = 0; i < CELT_MAX_BANDS; i++)
        f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);

    /* Band boosts */
    tbits_8ths = f->framebits << 3;
    for (i = f->start_band; i < f->end_band; i++) {
        int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
        int b_dynalloc = dynalloc;
        int boost_amount = f->alloc_boost[i];
        quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));

        while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
            int is_boost;
            if (encode) {
                is_boost = boost_amount--;
                ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
            } else {
                is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
            }

            if (!is_boost)
                break;

            boost[i]   += quanta;
            tbits_8ths -= quanta;

            b_dynalloc = 1;
        }

        if (boost[i])
            dynalloc = FFMAX(dynalloc - 1, 2);
    }

    /* Allocation trim */
    if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
        if (encode)
            ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
        else
            f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);

    /* Anti-collapse bit reservation */
    tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
    f->anticollapse_needed = 0;
    if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
        f->anticollapse_needed = 1 << 3;
    tbits_8ths -= f->anticollapse_needed;

    /* Band skip bit reservation */
    if (tbits_8ths >= 1 << 3)
        skip_bit = 1 << 3;
    tbits_8ths -= skip_bit;

    /* Intensity/dual stereo bit reservation */
    if (f->channels == 2) {
        intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
        if (intensitystereo_bit <= tbits_8ths) {
            tbits_8ths -= intensitystereo_bit;
            if (tbits_8ths >= 1 << 3) {
                dualstereo_bit = 1 << 3;
                tbits_8ths -= 1 << 3;
            }
        } else {
            intensitystereo_bit = 0;
        }
    }

    /* Trim offsets */
    for (i = f->start_band; i < f->end_band; i++) {
        int trim     = f->alloc_trim - 5 - f->size;
        int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
        int duration = f->size + 3;
        int scale    = duration + f->channels - 1;

        /* PVQ minimum allocation threshold, below this value the band is
         * skipped */
        threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
                             f->channels << 3);

        trim_offset[i] = trim * (band << scale) >> 6;

        if (ff_celt_freq_range[i] << f->size == 1)
            trim_offset[i] -= f->channels << 3;
    }

    /* Bisection */
    low  = 1;
    high = CELT_VECTORS - 1;
    while (low <= high) {
        int center = (low + high) >> 1;
        done = total = 0;

        for (i = f->end_band - 1; i >= f->start_band; i--) {
            bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);

            if (bandbits)
                bandbits = FFMAX(bandbits + trim_offset[i], 0);
            bandbits += boost[i];

            if (bandbits >= threshold[i] || done) {
                done = 1;
                total += FFMIN(bandbits, f->caps[i]);
            } else if (bandbits >= f->channels << 3) {
                total += f->channels << 3;
            }
        }

        if (total > tbits_8ths)
            high = center - 1;
        else
            low = center + 1;
    }
    high = low--;

    /* Bisection */
    for (i = f->start_band; i < f->end_band; i++) {
        bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
        bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
                   NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);

        if (bits1[i])
            bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
        if (bits2[i])
            bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);

        if (low)
            bits1[i] += boost[i];
        bits2[i] += boost[i];

        if (boost[i])
            skip_startband = i;
        bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
    }

    /* Bisection */
    low  = 0;
    high = 1 << CELT_ALLOC_STEPS;
    for (i = 0; i < CELT_ALLOC_STEPS; i++) {
        int center = (low + high) >> 1;
        done = total = 0;

        for (j = f->end_band - 1; j >= f->start_band; j--) {
            bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);

            if (bandbits >= threshold[j] || done) {
                done = 1;
                total += FFMIN(bandbits, f->caps[j]);
            } else if (bandbits >= f->channels << 3)
                total += f->channels << 3;
        }
        if (total > tbits_8ths)
            high = center;
        else
            low = center;
    }

    /* Bisection */
    done = total = 0;
    for (i = f->end_band - 1; i >= f->start_band; i--) {
        bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);

        if (bandbits >= threshold[i] || done)
            done = 1;
        else
            bandbits = (bandbits >= f->channels << 3) ?
            f->channels << 3 : 0;

        bandbits     = FFMIN(bandbits, f->caps[i]);
        f->pulses[i] = bandbits;
        total      += bandbits;
    }

    /* Band skipping */
    for (f->coded_bands = f->end_band; ; f->coded_bands--) {
        int allocation;
        j = f->coded_bands - 1;

        if (j == skip_startband) {
            /* all remaining bands are not skipped */
            tbits_8ths += skip_bit;
            break;
        }

        /* determine the number of bits available for coding "do not skip" markers */
        remaining   = tbits_8ths - total;
        bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
        remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
        allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
        allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);

        /* a "do not skip" marker is only coded if the allocation is
         * above the chosen threshold */
        if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
            int do_not_skip;
            if (encode) {
                do_not_skip = f->coded_bands <= f->skip_band_floor;
                ff_opus_rc_enc_log(rc, do_not_skip, 1);
            } else {
                do_not_skip = ff_opus_rc_dec_log(rc, 1);
            }

            if (do_not_skip)
                break;

            total      += 1 << 3;
            allocation -= 1 << 3;
        }

        /* the band is skipped, so reclaim its bits */
        total -= f->pulses[j];
        if (intensitystereo_bit) {
            total -= intensitystereo_bit;
            intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
            total += intensitystereo_bit;
        }

        total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
    }

    /* IS start band */
    if (encode) {
        if (intensitystereo_bit) {
            f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
            ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
        }
    } else {
        f->intensity_stereo = f->dual_stereo = 0;
        if (intensitystereo_bit)
            f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
    }

    /* DS flag */
    if (f->intensity_stereo <= f->start_band)
        tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
    else if (dualstereo_bit)
        if (encode)
            ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
        else
            f->dual_stereo = ff_opus_rc_dec_log(rc, 1);

    /* Supply the remaining bits in this frame to lower bands */
    remaining = tbits_8ths - total;
    bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
    remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
    for (i = f->start_band; i < f->coded_bands; i++) {
        const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
        f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
        remaining    -= bits;
    }

    /* Finally determine the allocation */
    for (i = f->start_band; i < f->coded_bands; i++) {
        int N = ff_celt_freq_range[i] << f->size;
        int prev_extra = extrabits;
        f->pulses[i] += extrabits;

        if (N > 1) {
            int dof;        /* degrees of freedom */
            int temp;       /* dof * channels * log(dof) */
            int fine_bits;
            int max_bits;
            int offset;     /* fine energy quantization offset, i.e.
                             * extra bits assigned over the standard
                             * totalbits/dof */

            extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
            f->pulses[i] -= extrabits;

            /* intensity stereo makes use of an extra degree of freedom */
            dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
            temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
            offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
            if (N == 2) /* dof=2 is the only case that doesn't fit the model */
                offset += dof << 1;

            /* grant an additional bias for the first and second pulses */
            if (f->pulses[i] + offset < 2 * (dof << 3))
                offset += temp >> 2;
            else if (f->pulses[i] + offset < 3 * (dof << 3))
                offset += temp >> 3;

            fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
            max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
            max_bits  = FFMAX(max_bits, 0);
            f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);

            /* If fine_bits was rounded down or capped,
             * give priority for the final fine energy pass */
            f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);

            /* the remaining bits are assigned to PVQ */
            f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
        } else {
            /* all bits go to fine energy except for the sign bit */
            extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
            f->pulses[i] -= extrabits;
            f->fine_bits[i] = 0;
            f->fine_priority[i] = 1;
        }

        /* hand back a limited number of extra fine energy bits to this band */
        if (extrabits > 0) {
            int fineextra = FFMIN(extrabits >> (f->channels + 2),
                                  CELT_MAX_FINE_BITS - f->fine_bits[i]);
            f->fine_bits[i] += fineextra;

            fineextra <<= f->channels + 2;
            f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
            extrabits -= fineextra;
        }
    }
    f->remaining = extrabits;

    /* skipped bands dedicate all of their bits for fine energy */
    for (; i < f->end_band; i++) {
        f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
        f->pulses[i]        = 0;
        f->fine_priority[i] = f->fine_bits[i] < 1;
    }
}