aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs
diff options
context:
space:
mode:
authorFilipe Manana2019-09-30 10:20:25 +0100
committerDavid Sterba2019-10-01 18:40:58 +0200
commitc67d970f0ea8dcc423e112137d34334fa0abb8ec (patch)
treeb3998a63112ee2cdd705147a6ae2a25b0fa8c441 /fs/btrfs
parentd4e204948fe3e0dc8e1fbf3f8f3290c9c2823be3 (diff)
Btrfs: fix memory leak due to concurrent append writes with fiemap
When we have a buffered write that starts at an offset greater than or equals to the file's size happening concurrently with a full ranged fiemap, we can end up leaking an extent state structure. Suppose we have a file with a size of 1Mb, and before the buffered write and fiemap are performed, it has a single extent state in its io tree representing the range from 0 to 1Mb, with the EXTENT_DELALLOC bit set. The following sequence diagram shows how the memory leak happens if a fiemap a buffered write, starting at offset 1Mb and with a length of 4Kb, are performed concurrently. CPU 1 CPU 2 extent_fiemap() --> it's a full ranged fiemap range from 0 to LLONG_MAX - 1 (9223372036854775807) --> locks range in the inode's io tree --> after this we have 2 extent states in the io tree: --> 1 for range [0, 1Mb[ with the bits EXTENT_LOCKED and EXTENT_DELALLOC_BITS set --> 1 for the range [1Mb, LLONG_MAX[ with the EXTENT_LOCKED bit set --> start buffered write at offset 1Mb with a length of 4Kb btrfs_file_write_iter() btrfs_buffered_write() --> cached_state is NULL lock_and_cleanup_extent_if_need() --> returns 0 and does not lock range because it starts at current i_size / eof --> cached_state remains NULL btrfs_dirty_pages() btrfs_set_extent_delalloc() (...) __set_extent_bit() --> splits extent state for range [1Mb, LLONG_MAX[ and now we have 2 extent states: --> one for the range [1Mb, 1Mb + 4Kb[ with EXTENT_LOCKED set --> another one for the range [1Mb + 4Kb, LLONG_MAX[ with EXTENT_LOCKED set as well --> sets EXTENT_DELALLOC on the extent state for the range [1Mb, 1Mb + 4Kb[ --> caches extent state [1Mb, 1Mb + 4Kb[ into @cached_state because it has the bit EXTENT_LOCKED set --> btrfs_buffered_write() ends up with a non-NULL cached_state and never calls anything to release its reference on it, resulting in a memory leak Fix this by calling free_extent_state() on cached_state if the range was not locked by lock_and_cleanup_extent_if_need(). The same issue can happen if anything else other than fiemap locks a range that covers eof and beyond. This could be triggered, sporadically, by test case generic/561 from the fstests suite, which makes duperemove run concurrently with fsstress, and duperemove does plenty of calls to fiemap. When CONFIG_BTRFS_DEBUG is set the leak is reported in dmesg/syslog when removing the btrfs module with a message like the following: [77100.039461] BTRFS: state leak: start 6574080 end 6582271 state 16402 in tree 0 refs 1 Otherwise (CONFIG_BTRFS_DEBUG not set) detectable with kmemleak. CC: stable@vger.kernel.org # 4.16+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
Diffstat (limited to 'fs/btrfs')
-rw-r--r--fs/btrfs/file.c13
1 files changed, 12 insertions, 1 deletions
diff --git a/fs/btrfs/file.c b/fs/btrfs/file.c
index 8fe4eb7e5045..27e5b269e729 100644
--- a/fs/btrfs/file.c
+++ b/fs/btrfs/file.c
@@ -1591,7 +1591,6 @@ static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
struct btrfs_root *root = BTRFS_I(inode)->root;
struct page **pages = NULL;
- struct extent_state *cached_state = NULL;
struct extent_changeset *data_reserved = NULL;
u64 release_bytes = 0;
u64 lockstart;
@@ -1611,6 +1610,7 @@ static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
return -ENOMEM;
while (iov_iter_count(i) > 0) {
+ struct extent_state *cached_state = NULL;
size_t offset = offset_in_page(pos);
size_t sector_offset;
size_t write_bytes = min(iov_iter_count(i),
@@ -1758,9 +1758,20 @@ again:
if (copied > 0)
ret = btrfs_dirty_pages(inode, pages, dirty_pages,
pos, copied, &cached_state);
+
+ /*
+ * If we have not locked the extent range, because the range's
+ * start offset is >= i_size, we might still have a non-NULL
+ * cached extent state, acquired while marking the extent range
+ * as delalloc through btrfs_dirty_pages(). Therefore free any
+ * possible cached extent state to avoid a memory leak.
+ */
if (extents_locked)
unlock_extent_cached(&BTRFS_I(inode)->io_tree,
lockstart, lockend, &cached_state);
+ else
+ free_extent_state(cached_state);
+
btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
true);
if (ret) {