Age | Commit message (Collapse) | Author |
|
xics_ipi_dispatch() has been removed since
commit 23d72bfd8f9f ("powerpc: Consolidate ipi message mux
and demux"), so remove it.
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220913075029.682327-8-cuigaosheng1@huawei.com
|
|
Some files functions in 'arch/powerpc/sysdev' are deserving of an `__init`
macro attribute. These functions are only called by other initialization
functions and therefore should inherit the attribute.
Also, change function declarations in header files to include `__init`.
Signed-off-by: Nick Child <nick.child@ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211216220035.605465-6-nick.child@ibm.com
|
|
This moves the IRQ initialization done under the different ICS backends
in the common part of XICS. The 'map' handler becomes a simple 'check'
on the HW IRQ at the FW level.
As we don't need an ICS anymore in xics_migrate_irqs_away(), the XICS
domain does not set a chip data for the IRQ.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210701132750.1475580-18-clg@kaod.org
|
|
This is a simple native ICS backend that matches the layout of
the Microwatt implementation of ICS.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
[mpe: Add empty ics_native_init() to unbreak non-microwatt builds]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
fixup-ics
Link: https://lore.kernel.org/r/YMwW8cxrwB2W5EUN@thinks.paulus.ozlabs.org
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Change the doorbell callers to know about their msgsnd addressing,
rather than have them set a per-cpu target data tag at boot that gets
sent to the cause_ipi functions. The data is only used for doorbell IPI
functions, no other IPI types, so it makes sense to keep that detail
local to doorbell.
Have the platform code understand doorbell IPIs, rather than the
interrupt controller code understand them. Platform code can look at
capabilities it has available and decide which to use.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The IPIs come in as HVI not EE, so we need to test the appropriate
SRR1 bits. The encoding is such that it won't have false positives
on P7 and P8 so we can just test it like that. We also need to handle
the icp-opal variant of the flush.
Fixes: d74361881f0d ("powerpc/xics: Add ICP OPAL backend")
Cc: stable@vger.kernel.org # v4.8+
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This sets the type of the interrupt appropriately. We set it as follow:
- If not mapped from the device-tree, we use edge. This is the case
of the virtual interrupts and PCI MSIs for example.
- If mapped from the device-tree and #interrupt-cells is 2 (PAPR
compliant), we use the second cell to set the appropriate type
- If mapped from the device-tree and #interrupt-cells is 1 (current
OPAL on P8 does that), we assume level sensitive since those are
typically going to be the PSI LSIs which are level sensitive.
Additionally, we mark the interrupts requested via the opal_interrupts
property all level. This is a bit fishy but the best we can do until we
fix OPAL to properly expose them with a complete descriptor. It is also
correct for the current HW anyway as OPAL interrupts are currently PCI
error and PSI interrupts which are level.
Finally now that edge interrupts are properly identified, we can enable
CONFIG_HARDIRQS_SW_RESEND which will make the core re-send them if
they occur while masked, which some drivers rely upon.
This fixes issues with lost interrupts on some Mellanox adapters.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a new XICS backend that uses OPAL calls, which can be
used when we don't have native support for the platform interrupt
controller.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This was delayed a day or two by some build-breakage on old toolchains
which we've now fixed.
There's two PCI commits both acked by Bjorn.
There's one commit to mm/hugepage.c which is (co)authored by Kirill.
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul
Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_*
helpers from Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/
relaxed variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas
Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs
from Wei Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell
Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev
Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter
values, display domain indices in sysfs, eliminate domain suffix in
event names, from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit
checksum optimizations, 86xx consolidation, e5500/e6500 cpu
hotplug, more fman and other dt bits, and minor fixes/cleanup"
* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
powerpc: Fix unrecoverable SLB miss during restore_math()
powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
powerpc/rcpm: Fix build break when SMP=n
powerpc/book3e-64: Use hardcoded mttmr opcode
powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
powerpc/T104xRDB: add tdm riser card node to device tree
powerpc32: PAGE_EXEC required for inittext
powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
powerpc/86xx: Introduce and use common dtsi
powerpc/86xx: Update device tree
powerpc/86xx: Move dts files to fsl directory
powerpc/86xx: Switch to kconfig fragments approach
powerpc/86xx: Update defconfigs
powerpc/86xx: Consolidate common platform code
powerpc32: Remove one insn in mulhdu
powerpc32: small optimisation in flush_icache_range()
powerpc: Simplify test in __dma_sync()
powerpc32: move xxxxx_dcache_range() functions inline
powerpc32: Remove clear_pages() and define clear_page() inline
...
|
|
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Function to cause an IPI by directly updating the MFFR register
in the XICS. The function is meant for real-mode callers since
they cannot use the smp_ops->cause_ipi function which uses an
ioremapped address.
Normal usage is for the the KVM real mode code to set the IPI message
using smp_muxed_ipi_message_pass and then invoke icp_native_cause_ipi_rm
to cause the actual IPI.
The function requires kvm_hstate.xics_phys to have been initialized
with the physical address of XICS.
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
smp_ops->probe() is currently supposed to return the number of cpus in
the system.
The last actual usage of the value was removed in May 2007 in e147ec8f1808
"[POWERPC] Simplify smp_space_timers". We still passed the value around
until June 2010 when even that was finally removed in c1aa687d499a
"powerpc: Clean up obsolete code relating to decrementer and timebase".
So drop that requirement, probe() now returns void, and update all
implementations.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This still has not been merged and now powerpc is the only arch that does
not have this change. Sorry about missing linuxppc-dev before.
V2->V2
- Fix up to work against 3.18-rc1
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
[mpe: Fix build errors caused by set/or_softirq_pending(), and rework
assignment in __set_breakpoint() to use memcpy().]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
On PowerNV platforms, when a CPU is offline, we put it into nap mode.
It's possible that the CPU wakes up from nap mode while it is still
offline due to a stray IPI. A misdirected device interrupt could also
potentially cause it to wake up. In that circumstance, we need to clear
the interrupt so that the CPU can go back to nap mode.
In the past the clearing of the interrupt was accomplished by briefly
enabling interrupts and allowing the normal interrupt handling code
(do_IRQ() etc.) to handle the interrupt. This has the problem that
this code calls irq_enter() and irq_exit(), which call functions such
as account_system_vtime() which use RCU internally. Use of RCU is not
permitted on offline CPUs and will trigger errors if RCU checking is
enabled.
To avoid calling into any generic code which might use RCU, we adopt
a different method of clearing interrupts on offline CPUs. Since we
are on the PowerNV platform, we know that the system interrupt
controller is a XICS being driven directly (i.e. not via hcalls) by
the kernel. Hence this adds a new icp_native_flush_interrupt()
function to the native-mode XICS driver and arranges to call that
when an offline CPU is woken from nap. This new function reads the
interrupt from the XICS. If it is an IPI, it clears the IPI; if it
is a device interrupt, it prints a warning and disables the source.
Then it does the end-of-interrupt processing for the interrupt.
The other thing that briefly enabling interrupts did was to check and
clear the irq_happened flag in this CPU's PACA. Therefore, after
flushing the interrupt from the XICS, we also clear all bits except
the PACA_IRQ_HARD_DIS (interrupts are hard disabled) bit from the
irq_happened flag. The PACA_IRQ_HARD_DIS flag is set by power7_nap()
and is left set to indicate that interrupts are hard disabled. This
means we then have to ignore that flag in power7_nap(), which is
reasonable since it doesn't indicate that any interrupt event needs
servicing.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The EOI handler of MSI/MSI-X interrupts for P8 (PHB3) need additional
steps to handle the P/Q bits in IVE before EOIing the corresponding
interrupt. The patch changes the EOI handler to cover that. we have
individual IRQ chip in each PHB instance. During the MSI IRQ setup
time, the IRQ chip is copied over from the original one for that IRQ,
and the EOI handler is patched with the one that will handle the P/Q
bits (As Ben suggested).
Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This patch drops the powerpc-specific irq_host structures and uses the common
irq_domain strucutres defined in linux/irqdomain.h. It also fixes all
the users to use the new structure names.
Renaming irq_host to irq_domain has been discussed for a long time, and this
patch is a step in the process of generalizing the powerpc virq code to be
usable by all architecture.
An astute reader will notice that this patch actually removes the irq_host
structure instead of renaming it. This is because the irq_domain structure
already exists in include/linux/irqdomain.h and has the needed data members.
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Milton Miller <miltonm@bga.com>
Tested-by: Olof Johansson <olof@lixom.net>
|
|
Since commit [e58aa3d2: genirq: Run irq handlers with interrupts disabled],
We run all interrupt handlers with interrupts disabled
and we even check and yell when an interrupt handler
returns with interrupts enabled (see commit [b738a50a:
genirq: Warn when handler enables interrupts]).
So now this flag is a NOOP and can be removed.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
OPAL handles HW access to the various ICS or equivalent chips
for us (with the exception of p5ioc2 based HEA which uses a
different backend) similarily to what RTAS does on pSeries.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Consolidate the mux and demux of ipi messages into smp.c and call
a new smp_ops callback to actually trigger the ipi.
The powerpc architecture code is optimised for having 4 distinct
ipi triggers, which are mapped to 4 distinct messages (ipi many, ipi
single, scheduler ipi, and enter debugger). However, several interrupt
controllers only provide a single software triggered interrupt that
can be delivered to each cpu. To resolve this limitation, each smp_ops
implementation created a per-cpu variable that is manipulated with atomic
bitops. Since these lines will be contended they are optimialy marked as
shared_aligned and take a full cache line for each cpu. Distro kernels
may have 2 or 3 of these in their config, each taking per-cpu space
even though at most one will be in use.
This consolidation removes smp_message_recv and replaces the single call
actions cases with direct calls from the common message recognition loop.
The complicated debugger ipi case with its muxed crash handling code is
moved to debug_ipi_action which is now called from the demux code (instead
of the multi-message action calling smp_message_recv).
I put a call to reschedule_action to increase the likelyhood of correctly
merging the anticipated scheduler_ipi() hook coming from the scheduler
tree; that single required call can be inlined later.
The actual message decode is a copy of the old pseries xics code with its
memory barriers and cache line spacing, augmented with a per-cpu unsigned
long based on the book-e doorbell code. The optional data is set via a
callback from the implementation and is passed to the new cause-ipi hook
along with the logical cpu number. While currently only the doorbell
implemntation uses this data it should be almost zero cost to retrieve and
pass it -- it adds a single register load for the argument from the same
cache line to which we just completed a store and the register is dead
on return from the call. I extended the data element from unsigned int
to unsigned long in case some other code wanted to associate a pointer.
The doorbell check_self is replaced by a call to smp_muxed_ipi_resend,
conditioned on the CPU_DBELL feature. The ifdef guard could be relaxed
to CONFIG_SMP but I left it with BOOKE for now.
Also, the doorbell interrupt vector for book-e was not calling irq_enter
and irq_exit, which throws off cpu accounting and causes code to not
realize it is running in interrupt context. Add the missing calls.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Now that smp_ops->smp_message_pass is always called with an (online) cpu
number for the target remove the checks for MSG_ALL and MSG_ALL_BUT_SELF.
Signed-off-by: Milton Miller <miltonm@bga.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
An upcoming new ics backend will need to implement different matching
semantics to the current ones, which are essentially the RTAS ics
backends. So move the current match into the RTAS backend, and allow
other ics backends to override.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This is a significant rework of the XICS driver, too significant to
conveniently break it up into a series of smaller patches to be honest.
The driver is moved to a more generic location to allow new platforms
to use it, and is broken up into separate ICP and ICS "backends". For
now we have the native and "hypervisor" ICP backends and one common
RTAS ICS backend.
The driver supports one ICP backend instanciation, and many ICS ones,
in order to accomodate future platforms with multiple possibly different
interrupt "sources" mechanisms.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|