Age | Commit message (Collapse) | Author |
|
Commit 3ba442d5331f ("fs: move binfmt_misc sysctl to its own file") did
not go unnoticed, binfmt-support stopped to work on my Debian system
since v5.17-rc2 (did not check with -rc1).
The existance of the /proc/sys/fs/binfmt_misc is a precondition for
attempting to mount the binfmt_misc fs, which in turn triggers the
autoload of the binfmt_misc module. Without it, no module is loaded and
no binfmt is available at boot.
Building as built-in or manually loading the module and mounting the fs
works fine, it's therefore only a matter of interaction with user-space.
I could try to improve the Debian systemd configuration but I can't say
anything about the other distributions.
This patch restores a working system right after boot.
Fixes: 3ba442d5331f ("fs: move binfmt_misc sysctl to its own file")
Signed-off-by: Domenico Andreoli <domenico.andreoli@linux.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Tong Zhang <ztong0001@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We should unregister the table upon module unload otherwise something
horrible will happen when we load binfmt_misc module again. Also note
that we should keep value returned by register_sysctl_mount_point() and
release it later, otherwise it will leak.
Also, per Christian's comment, to fully restore the old behavior that
won't break userspace the check(binfmt_misc_header) should be
eliminated.
To reproduce:
modprobe binfmt_misc
modprobe -r binfmt_misc
modprobe binfmt_misc
modprobe -r binfmt_misc
modprobe binfmt_misc
resulting in
modprobe: can't load module binfmt_misc (kernel/fs/binfmt_misc.ko): Cannot allocate memory
and an unhappy kernel:
binfmt_misc: Failed to create fs/binfmt_misc sysctl mount point
binfmt_misc: Failed to create fs/binfmt_misc sysctl mount point
BUG: unable to handle page fault for address: fffffbfff8004802
Call Trace:
init_misc_binfmt+0x2d/0x1000 [binfmt_misc]
Link: https://lkml.kernel.org/r/20220124181812.1869535-2-ztong0001@gmail.com
Fixes: 3ba442d5331f ("fs: move binfmt_misc sysctl to its own file")
Signed-off-by: Tong Zhang <ztong0001@gmail.com>
Co-developed-by: Christian Brauner<brauner@kernel.org>
Acked-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kernel/sysctl.c is a kitchen sink where everyone leaves their dirty
dishes, this makes it very difficult to maintain.
To help with this maintenance let's start by moving sysctls to places
where they actually belong. The proc sysctl maintainers do not want to
know what sysctl knobs you wish to add for your own piece of code, we
just care about the core logic.
This moves the binfmt_misc sysctl to its own file to help remove clutter
from kernel/sysctl.c.
Link: https://lkml.kernel.org/r/20211124231435.1445213-5-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Douglas Gilbert <dgilbert@interlog.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: James E.J. Bottomley <jejb@linux.ibm.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Julia Lawall <julia.lawall@inria.fr>
Cc: Kees Cook <keescook@chromium.org>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Phillip Potter <phil@philpotter.co.uk>
Cc: Qing Wang <wangqing@vivo.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Stephen Kitt <steve@sk2.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is a deadlock in bm_register_write:
First, in the begining of the function, a lock is taken on the binfmt_misc
root inode with inode_lock(d_inode(root)).
Then, if the user used the MISC_FMT_OPEN_FILE flag, the function will call
open_exec on the user-provided interpreter.
open_exec will call a path lookup, and if the path lookup process includes
the root of binfmt_misc, it will try to take a shared lock on its inode
again, but it is already locked, and the code will get stuck in a deadlock
To reproduce the bug:
$ echo ":iiiii:E::ii::/proc/sys/fs/binfmt_misc/bla:F" > /proc/sys/fs/binfmt_misc/register
backtrace of where the lock occurs (#5):
0 schedule () at ./arch/x86/include/asm/current.h:15
1 0xffffffff81b51237 in rwsem_down_read_slowpath (sem=0xffff888003b202e0, count=<optimized out>, state=state@entry=2) at kernel/locking/rwsem.c:992
2 0xffffffff81b5150a in __down_read_common (state=2, sem=<optimized out>) at kernel/locking/rwsem.c:1213
3 __down_read (sem=<optimized out>) at kernel/locking/rwsem.c:1222
4 down_read (sem=<optimized out>) at kernel/locking/rwsem.c:1355
5 0xffffffff811ee22a in inode_lock_shared (inode=<optimized out>) at ./include/linux/fs.h:783
6 open_last_lookups (op=0xffffc9000022fe34, file=0xffff888004098600, nd=0xffffc9000022fd10) at fs/namei.c:3177
7 path_openat (nd=nd@entry=0xffffc9000022fd10, op=op@entry=0xffffc9000022fe34, flags=flags@entry=65) at fs/namei.c:3366
8 0xffffffff811efe1c in do_filp_open (dfd=<optimized out>, pathname=pathname@entry=0xffff8880031b9000, op=op@entry=0xffffc9000022fe34) at fs/namei.c:3396
9 0xffffffff811e493f in do_open_execat (fd=fd@entry=-100, name=name@entry=0xffff8880031b9000, flags=<optimized out>, flags@entry=0) at fs/exec.c:913
10 0xffffffff811e4a92 in open_exec (name=<optimized out>) at fs/exec.c:948
11 0xffffffff8124aa84 in bm_register_write (file=<optimized out>, buffer=<optimized out>, count=19, ppos=<optimized out>) at fs/binfmt_misc.c:682
12 0xffffffff811decd2 in vfs_write (file=file@entry=0xffff888004098500, buf=buf@entry=0xa758d0 ":iiiii:E::ii::i:CF
", count=count@entry=19, pos=pos@entry=0xffffc9000022ff10) at fs/read_write.c:603
13 0xffffffff811defda in ksys_write (fd=<optimized out>, buf=0xa758d0 ":iiiii:E::ii::i:CF
", count=19) at fs/read_write.c:658
14 0xffffffff81b49813 in do_syscall_64 (nr=<optimized out>, regs=0xffffc9000022ff58) at arch/x86/entry/common.c:46
15 0xffffffff81c0007c in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:120
To solve the issue, the open_exec call is moved to before the write
lock is taken by bm_register_write
Link: https://lkml.kernel.org/r/20210228224414.95962-1-liorribak@gmail.com
Fixes: 948b701a607f1 ("binfmt_misc: add persistent opened binary handler for containers")
Signed-off-by: Lior Ribak <liorribak@gmail.com>
Acked-by: Helge Deller <deller@gmx.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It can be useful to the interpreter to know which flags are in use.
For instance, knowing if the preserve-argv[0] is in use would
allow to skip the pathname argument.
This patch uses an unused auxiliary vector, AT_FLAGS, to add a
flag to inform interpreter if the preserve-argv[0] is enabled.
Note by Helge Deller:
The real-world user of this patch is qemu-user, which needs to know
if it has to preserve the argv[0]. See Debian bug #970460.
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: YunQiang Su <ysu@wavecomp.com>
URL: http://bugs.debian.org/970460
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
Merge yet more updates from Andrew Morton:
- More MM work. 100ish more to go. Mike Rapoport's "mm: remove
__ARCH_HAS_5LEVEL_HACK" series should fix the current ppc issue
- Various other little subsystems
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (127 commits)
lib/ubsan.c: fix gcc-10 warnings
tools/testing/selftests/vm: remove duplicate headers
selftests: vm: pkeys: fix multilib builds for x86
selftests: vm: pkeys: use the correct page size on powerpc
selftests/vm/pkeys: override access right definitions on powerpc
selftests/vm/pkeys: test correct behaviour of pkey-0
selftests/vm/pkeys: introduce a sub-page allocator
selftests/vm/pkeys: detect write violation on a mapped access-denied-key page
selftests/vm/pkeys: associate key on a mapped page and detect write violation
selftests/vm/pkeys: associate key on a mapped page and detect access violation
selftests/vm/pkeys: improve checks to determine pkey support
selftests/vm/pkeys: fix assertion in test_pkey_alloc_exhaust()
selftests/vm/pkeys: fix number of reserved powerpc pkeys
selftests/vm/pkeys: introduce powerpc support
selftests/vm/pkeys: introduce generic pkey abstractions
selftests: vm: pkeys: use the correct huge page size
selftests/vm/pkeys: fix alloc_random_pkey() to make it really random
selftests/vm/pkeys: fix assertion in pkey_disable_set/clear()
selftests/vm/pkeys: fix pkey_disable_clear()
selftests: vm: pkeys: add helpers for pkey bits
...
|
|
copy_strings_kernel is always used with a single argument,
adjust the calling convention to that.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Link: http://lkml.kernel.org/r/20200501104105.2621149-2-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move the computation of creds from prepare_binfmt into begin_new_exec
so that the creds need only be computed once. This is just code
reorganization no semantic changes of any kind are made.
Moving the computation is safe. I have looked through the kernel and
verified none of the binfmts look at bprm->cred directly, and that
there are no helpers that look at bprm->cred indirectly. Which means
that it is not a problem to compute the bprm->cred later in the
execution flow as it is not used until it becomes current->cred.
A new function bprm_creds_from_file is added to contain the work that
needs to be done. bprm_creds_from_file first computes which file
bprm->executable or most likely bprm->file that the bprm->creds
will be computed from.
The funciton bprm_fill_uid is updated to receive the file instead of
accessing bprm->file. The now unnecessary work needed to reset the
bprm->cred->euid, and bprm->cred->egid is removed from brpm_fill_uid.
A small comment to document that bprm_fill_uid now only deals with the
work to handle suid and sgid files. The default case is already
heandled by prepare_exec_creds.
The function security_bprm_repopulate_creds is renamed
security_bprm_creds_from_file and now is explicitly passed the file
from which to compute the creds. The documentation of the
bprm_creds_from_file security hook is updated to explain when the hook
is called and what it needs to do. The file is passed from
cap_bprm_creds_from_file into get_file_caps so that the caps are
computed for the appropriate file. The now unnecessary work in
cap_bprm_creds_from_file to reset the ambient capabilites has been
removed. A small comment to document that the work of
cap_bprm_creds_from_file is to read capabilities from the files
secureity attribute and derive capabilities from the fact the
user had uid 0 has been added.
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Recursion in kernel code is generally a bad idea as it can overflow
the kernel stack. Recursion in exec also hides that the code is
looping and that the loop changes bprm->file.
Instead of recursing in search_binary_handler have the methods that
would recurse set bprm->interpreter and return 0. Modify exec_binprm
to loop when bprm->interpreter is set. Consolidate all of the
reassignments of bprm->file in that loop to make it clear what is
going on.
The structure of the new loop in exec_binprm is that all errors return
immediately, while successful completion (ret == 0 &&
!bprm->interpreter) just breaks out of the loop and runs what
exec_bprm has always run upon successful completion.
Fail if the an interpreter is being call after execfd has been set.
The code has never properly handled an interpreter being called with
execfd being set and with reassignments of bprm->file and the
assignment of bprm->executable in generic code it has finally become
possible to test and fail when if this problematic condition happens.
With the reassignments of bprm->file and the assignment of
bprm->executable moved into the generic code add a test to see if
bprm->executable is being reassigned.
In search_binary_handler remove the test for !bprm->file. With all
reassignments of bprm->file moved to exec_binprm bprm->file can never
be NULL in search_binary_handler.
Link: https://lkml.kernel.org/r/87sgfwyd84.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Most of the support for passing the file descriptor of an executable
to an interpreter already lives in the generic code and in binfmt_elf.
Rework the fields in binfmt_elf that deal with executable file
descriptor passing to make executable file descriptor passing a first
class concept.
Move the fd_install from binfmt_misc into begin_new_exec after the new
creds have been installed. This means that accessing the file through
/proc/<pid>/fd/N is able to see the creds for the new executable
before allowing access to the new executables files.
Performing the install of the executables file descriptor after
the point of no return also means that nothing special needs to
be done on error. The exiting of the process will close all
of it's open files.
Move the would_dump from binfmt_misc into begin_new_exec right
after would_dump is called on the bprm->file. This makes it
obvious this case exists and that no nesting of bprm->file is
currently supported.
In binfmt_misc the movement of fd_install into generic code means
that it's special error exit path is no longer needed.
Link: https://lkml.kernel.org/r/87y2poyd91.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
The code in prepare_binary_handler needs to be run every time
search_binary_handler is called so move the call into search_binary_handler
itself to make the code simpler and easier to understand.
Link: https://lkml.kernel.org/r/87d070zrvx.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Add a flag preserve_creds that binfmt_misc can set to prevent
credentials from being updated. This allows binfmt_misc to always
call prepare_binprm. Allowing the credential computation logic to be
consolidated.
Not replacing the credentials with the interpreters credentials is
safe because because an open file descriptor to the executable is
passed to the interpreter. As the interpreter does not need to
reopen the executable it is guaranteed to see the same file that
exec sees.
Ref: c407c033de84 ("[PATCH] binfmt_misc: improve calculation of interpreter's credentials")
Link: https://lkml.kernel.org/r/87imgszrwo.fsf_-_@x220.int.ebiederm.org
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs mount updates from Al Viro:
"The first part of mount updates.
Convert filesystems to use the new mount API"
* 'work.mount0' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
mnt_init(): call shmem_init() unconditionally
constify ksys_mount() string arguments
don't bother with registering rootfs
init_rootfs(): don't bother with init_ramfs_fs()
vfs: Convert smackfs to use the new mount API
vfs: Convert selinuxfs to use the new mount API
vfs: Convert securityfs to use the new mount API
vfs: Convert apparmorfs to use the new mount API
vfs: Convert openpromfs to use the new mount API
vfs: Convert xenfs to use the new mount API
vfs: Convert gadgetfs to use the new mount API
vfs: Convert oprofilefs to use the new mount API
vfs: Convert ibmasmfs to use the new mount API
vfs: Convert qib_fs/ipathfs to use the new mount API
vfs: Convert efivarfs to use the new mount API
vfs: Convert configfs to use the new mount API
vfs: Convert binfmt_misc to use the new mount API
convenience helper: get_tree_single()
convenience helper get_tree_nodev()
vfs: Kill sget_userns()
...
|
|
Convert the binfmt_misc filesystem to the new internal mount API as the old
one will be obsoleted and removed. This allows greater flexibility in
communication of mount parameters between userspace, the VFS and the
filesystem.
See Documentation/filesystems/mount_api.txt for more information.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Alexander Viro <viro@zeniv.linux.org.uk>
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Add SPDX license identifiers to all files which:
- Have no license information of any form
- Have MODULE_LICENCE("GPL*") inside which was used in the initial
scan/conversion to ignore the file
These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:
GPL-2.0-only
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
it's exactly the same thing as
dentry_open(&file->f_path, file->f_flags, file->f_cred)
... and rename it to file_clone_open(), while we are at it.
'filp' naming convention is bogus; sure, it's "file pointer",
but we generally don't do that kind of Hungarian notation.
Some of the instances have too many callers to touch, but this
one has only two, so let's sanitize it while we can...
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
As we move stuff around, some doc references are broken. Fix some of
them via this script:
./scripts/documentation-file-ref-check --fix
Manually checked that produced results are valid.
Acked-by: Matthias Brugger <matthias.bgg@gmail.com>
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Jonathan Corbet <corbet@lwn.net>
|
|
WHen registering a new binfmt_misc handler, it is possible to overflow
the offset to get a negative value, which might crash the system, or
possibly leak kernel data.
Here is a crash log when 2500000000 was used as an offset:
BUG: unable to handle kernel paging request at ffff989cfd6edca0
IP: load_misc_binary+0x22b/0x470 [binfmt_misc]
PGD 1ef3e067 P4D 1ef3e067 PUD 0
Oops: 0000 [#1] SMP NOPTI
Modules linked in: binfmt_misc kvm_intel ppdev kvm irqbypass joydev input_leds serio_raw mac_hid parport_pc qemu_fw_cfg parpy
CPU: 0 PID: 2499 Comm: bash Not tainted 4.15.0-22-generic #24-Ubuntu
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.1-1 04/01/2014
RIP: 0010:load_misc_binary+0x22b/0x470 [binfmt_misc]
Call Trace:
search_binary_handler+0x97/0x1d0
do_execveat_common.isra.34+0x667/0x810
SyS_execve+0x31/0x40
do_syscall_64+0x73/0x130
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
Use kstrtoint instead of simple_strtoul. It will work as the code
already set the delimiter byte to '\0' and we only do it when the field
is not empty.
Tested with offsets -1, 2500000000, UINT_MAX and INT_MAX. Also tested
with examples documented at Documentation/admin-guide/binfmt-misc.rst
and other registrations from packages on Ubuntu.
Link: http://lkml.kernel.org/r/20180529135648.14254-1-cascardo@canonical.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Using the ksys_close() wrapper allows us to get rid of in-kernel calls
to the sys_close() syscall. The ksys_ prefix denotes that this function
is meant as a drop-in replacement for the syscall. In particular, it
uses the same calling convention as sys_close(), with one subtle
difference:
The few places which checked the return value did not care about the return
value re-writing in sys_close(), so simply use a wrapper around
__close_fd().
This patch is part of a series which removes in-kernel calls to syscalls.
On this basis, the syscall entry path can be streamlined. For details, see
http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
inode->i_private is assigned by a Node pointer only after registering a
new binary format, so it could be NULL if inode was created by
bm_fill_super() (or iput() was called by the error path in
bm_register_write()), and this could result in NULL pointer dereference
when evicting such an inode. e.g. mount binfmt_misc filesystem then
umount it immediately:
mount -t binfmt_misc binfmt_misc /proc/sys/fs/binfmt_misc
umount /proc/sys/fs/binfmt_misc
will result in
BUG: unable to handle kernel NULL pointer dereference at 0000000000000013
IP: bm_evict_inode+0x16/0x40 [binfmt_misc]
...
Call Trace:
evict+0xd3/0x1a0
iput+0x17d/0x1d0
dentry_unlink_inode+0xb9/0xf0
__dentry_kill+0xc7/0x170
shrink_dentry_list+0x122/0x280
shrink_dcache_parent+0x39/0x90
do_one_tree+0x12/0x40
shrink_dcache_for_umount+0x2d/0x90
generic_shutdown_super+0x1f/0x120
kill_litter_super+0x29/0x40
deactivate_locked_super+0x43/0x70
deactivate_super+0x45/0x60
cleanup_mnt+0x3f/0x70
__cleanup_mnt+0x12/0x20
task_work_run+0x86/0xa0
exit_to_usermode_loop+0x6d/0x99
syscall_return_slowpath+0xba/0xf0
entry_SYSCALL_64_fastpath+0xa3/0xa
Fix it by making sure Node (e) is not NULL.
Link: http://lkml.kernel.org/r/20171010100642.31786-1-eguan@redhat.com
Fixes: 83f918274e4b ("exec: binfmt_misc: shift filp_close(interp_file) from kill_node() to bm_evict_inode()")
Signed-off-by: Eryu Guan <eguan@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After the previous change "fmt" can't go away, we can kill
iname/iname_addr and use fmt->interpreter.
Link: http://lkml.kernel.org/r/20170922143653.GA17232@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ben Woodard <woodard@redhat.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jim Foraker <foraker1@llnl.gov>
Cc: <tdhooge@llnl.gov>
Cc: Travis Gummels <tgummels@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
load_misc_binary() makes a local copy of fmt->interpreter under
entries_lock to avoid the race with kill_node() but this is not enough;
the whole Node can be freed after we drop entries_lock, not only the
->interpreter string.
Add dget/dput(fmt->dentry) to ensure bm_evict_inode() can't destroy/free
this Node.
Link: http://lkml.kernel.org/r/20170922143650.GA17227@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ben Woodard <woodard@redhat.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jim Foraker <foraker1@llnl.gov>
Cc: Travis Gummels <tgummels@redhat.com>
Cc: <tdhooge@llnl.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If MISC_FMT_OPEN_FILE flag is set e->interp_file must be valid or we
have a bug which should not be silently ignored.
Link: http://lkml.kernel.org/r/20170922143647.GA17222@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ben Woodard <woodard@redhat.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jim Foraker <foraker1@llnl.gov>
Cc: <tdhooge@llnl.gov>
Cc: Travis Gummels <tgummels@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
bm_evict_inode()
To ensure that load_misc_binary() can't use the partially destroyed
Node, see also the next patch.
The current logic looks wrong in any case, once we close interp_file it
doesn't make any sense to delay kfree(inode->i_private), this Node is no
longer valid. Even if the MISC_FMT_OPEN_FILE/interp_file checks were
not racy (they are), load_misc_binary() should not try to reopen
->interpreter if MISC_FMT_OPEN_FILE is set but ->interp_file is NULL.
And I can't understand why do we use filp_close(), not fput().
Link: http://lkml.kernel.org/r/20170922143644.GA17216@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ben Woodard <woodard@redhat.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jim Foraker <foraker1@llnl.gov>
Cc: <tdhooge@llnl.gov>
Cc: Travis Gummels <tgummels@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kill_node() nullifies/checks Node->dentry to avoid double free. This
complicates the next changes and this is very confusing:
- we do not need to check dentry != NULL under entries_lock,
kill_node() is always called under inode_lock(d_inode(root)) and we
rely on this inode_lock() anyway, without this lock the
MISC_FMT_OPEN_FILE cleanup could race with itself.
- if kill_inode() was already called and ->dentry == NULL we should not
even try to close e->interp_file.
We can change bm_entry_write() to simply check !list_empty(list) before
kill_node. Again, we rely on inode_lock(), in particular it saves us
from the race with bm_status_write(), another caller of kill_node().
Link: http://lkml.kernel.org/r/20170922143641.GA17210@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ben Woodard <woodard@redhat.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jim Foraker <foraker1@llnl.gov>
Cc: <tdhooge@llnl.gov>
Cc: Travis Gummels <tgummels@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use proper ssize_t and size_t types for the return value and count
argument, move the offset last and make it an in/out argument like
all other read/write helpers, and make the buf argument a void pointer
to get rid of lots of casts in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
simple_fill_super() is passed an array of tree_descr structures which
describe the files to create in the filesystem's root directory. Since
these arrays are never modified intentionally, they should be 'const' so
that they are placed in .rodata and benefit from memory protection.
This patch updates the function signature and all users, and also
constifies tree_descr.name.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
<linux/sched.h>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
current_fs_time() uses struct super_block* as an argument.
As per Linus's suggestion, this is changed to take struct
inode* as a parameter instead. This is because the function
is primarily meant for vfs inode timestamps.
Also the function was renamed as per Arnd's suggestion.
Change all calls to current_fs_time() to use the new
current_time() function instead. current_fs_time() will be
deleted.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/binfmt_misc
Pull binfmt_misc update from James Bottomley:
"This update is to allow architecture emulation containers to function
such that the emulation binary can be housed outside the container
itself. The container and fs parts both have acks from relevant
experts.
To use the new feature you have to add an F option to your binfmt_misc
configuration"
From the docs:
"The usual behaviour of binfmt_misc is to spawn the binary lazily when
the misc format file is invoked. However, this doesn't work very well
in the face of mount namespaces and changeroots, so the F mode opens
the binary as soon as the emulation is installed and uses the opened
image to spawn the emulator, meaning it is always available once
installed, regardless of how the environment changes"
* tag 'binfmt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/binfmt_misc:
binfmt_misc: add F option description to documentation
binfmt_misc: add persistent opened binary handler for containers
fs: add filp_clone_open API
|
|
... no need to dget/dput it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This patch adds a new flag 'F' to the binfmt handlers. If you pass in
'F' the binary that runs the emulation will be opened immediately and
in future, will be cloned from the open file.
The net effect is that the handler survives both changeroots and mount
namespace changes, making it easy to work with foreign architecture
containers without contaminating the container image with the
emulator.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
|
|
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
|
|
sprintf() reliably returns the number of characters printed, so we don't
need to ask strlen() where we are. Also replace calling sprintf("%02x")
in a loop with the much simpler bin2hex().
[akpm@linux-foundation.org: it's odd to include kernel.h after everything else]
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
scanarg(s, del) never returns s; the empty field results in s + 1.
Restore the correct checks, and move NUL-termination into scanarg(),
while we are at it.
Incidentally, mixing "coding style cleanups" (for small values of cleanup)
with functional changes is a Bad Idea(tm)...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This patchset adds execveat(2) for x86, and is derived from Meredydd
Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528).
The primary aim of adding an execveat syscall is to allow an
implementation of fexecve(3) that does not rely on the /proc filesystem,
at least for executables (rather than scripts). The current glibc version
of fexecve(3) is implemented via /proc, which causes problems in sandboxed
or otherwise restricted environments.
Given the desire for a /proc-free fexecve() implementation, HPA suggested
(https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be
an appropriate generalization.
Also, having a new syscall means that it can take a flags argument without
back-compatibility concerns. The current implementation just defines the
AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be
added in future -- for example, flags for new namespaces (as suggested at
https://lkml.org/lkml/2006/7/11/474).
Related history:
- https://lkml.org/lkml/2006/12/27/123 is an example of someone
realizing that fexecve() is likely to fail in a chroot environment.
- http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered
documenting the /proc requirement of fexecve(3) in its manpage, to
"prevent other people from wasting their time".
- https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a
problem where a process that did setuid() could not fexecve()
because it no longer had access to /proc/self/fd; this has since
been fixed.
This patch (of 4):
Add a new execveat(2) system call. execveat() is to execve() as openat()
is to open(): it takes a file descriptor that refers to a directory, and
resolves the filename relative to that.
In addition, if the filename is empty and AT_EMPTY_PATH is specified,
execveat() executes the file to which the file descriptor refers. This
replicates the functionality of fexecve(), which is a system call in other
UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and
so relies on /proc being mounted).
The filename fed to the executed program as argv[0] (or the name of the
script fed to a script interpreter) will be of the form "/dev/fd/<fd>"
(for an empty filename) or "/dev/fd/<fd>/<filename>", effectively
reflecting how the executable was found. This does however mean that
execution of a script in a /proc-less environment won't work; also, script
execution via an O_CLOEXEC file descriptor fails (as the file will not be
accessible after exec).
Based on patches by Meredydd Luff.
Signed-off-by: David Drysdale <drysdale@google.com>
Cc: Meredydd Luff <meredydd@senatehouse.org>
Cc: Shuah Khan <shuah.kh@samsung.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rich Felker <dalias@aerifal.cx>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
GFP_USER means "honour cpuset nodes-allowed beancounting". These are
regular old kernel objects and there seems no reason to give them this
treatment.
Acked-by: Mike Frysinger <vapier@gentoo.org>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Clean up various coding style issues that checkpatch complains about.
No functional changes here.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When trying to develop a custom format handler, the errors returned all
effectively get bucketed as EINVAL with no kernel messages. The other
errors (ENOMEM/EFAULT) are internal/obvious and basic. Thus any time a
bad handler is rejected, the developer has to walk the dense code and
try to guess where it went wrong. Needing to dive into kernel code is
itself a fairly high barrier for a lot of people.
To improve this situation, let's deploy extensive pr_debug markers at
logical parse points, and add comments to the dense parsing logic. It
let's you see exactly where the parsing aborts, the string the kernel
received (useful when dealing with shell code), how it translated the
buffers to binary data, and how it will apply the mask at runtime.
Some example output:
$ echo ':qemu-foo:M::\x7fELF\xAD\xAD\x01\x00:\xff\xff\xff\xff\xff\x00\xff\x00:/usr/bin/qemu-foo:POC' > register
$ dmesg
binfmt_misc: register: received 92 bytes
binfmt_misc: register: delim: 0x3a {:}
binfmt_misc: register: name: {qemu-foo}
binfmt_misc: register: type: M (magic)
binfmt_misc: register: offset: 0x0
binfmt_misc: register: magic[raw]: 5c 78 37 66 45 4c 46 5c 78 41 44 5c 78 41 44 5c \x7fELF\xAD\xAD\
binfmt_misc: register: magic[raw]: 78 30 31 5c 78 30 30 00 x01\x00.
binfmt_misc: register: mask[raw]: 5c 78 66 66 5c 78 66 66 5c 78 66 66 5c 78 66 66 \xff\xff\xff\xff
binfmt_misc: register: mask[raw]: 5c 78 66 66 5c 78 30 30 5c 78 66 66 5c 78 30 30 \xff\x00\xff\x00
binfmt_misc: register: mask[raw]: 00 .
binfmt_misc: register: magic/mask length: 8
binfmt_misc: register: magic[decoded]: 7f 45 4c 46 ad ad 01 00 .ELF....
binfmt_misc: register: mask[decoded]: ff ff ff ff ff 00 ff 00 ........
binfmt_misc: register: magic[masked]: 7f 45 4c 46 ad 00 01 00 .ELF....
binfmt_misc: register: interpreter: {/usr/bin/qemu-foo}
binfmt_misc: register: flag: P (preserve argv0)
binfmt_misc: register: flag: O (open binary)
binfmt_misc: register: flag: C (preserve creds)
The [raw] lines show us exactly what was received from userspace. The
lines after that show us how the kernel has decoded things.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch replaces calls to get_unused_fd() with equivalent call to
get_unused_fd_flags(0) to preserve current behavor for existing code.
In a further patch, get_unused_fd() will be removed so that new code start
using get_unused_fd_flags(), with the hope O_CLOEXEC could be used, either
by default or choosen by userspace.
Signed-off-by: Yann Droneaud <ydroneaud@opteya.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
gcc-4.9 on ARM gives us a mysterious warning about the binfmt_misc
parse_command function:
fs/binfmt_misc.c: In function 'parse_command.part.3':
fs/binfmt_misc.c:405:7: warning: array subscript is above array bounds [-Warray-bounds]
I've managed to trace this back to the ARM implementation of memset,
which is called from copy_from_user in case of a fault and which does
#define memset(p,v,n) \
({ \
void *__p = (p); size_t __n = n; \
if ((__n) != 0) { \
if (__builtin_constant_p((v)) && (v) == 0) \
__memzero((__p),(__n)); \
else \
memset((__p),(v),(__n)); \
} \
(__p); \
})
Apparently gcc gets confused by the check for "size != 0" and believes
that the size might be zero when it gets to the line that does "if
(s[count-1] == '\n')", so it would access data outside of the array.
gcc is clearly wrong here, since this condition was already checked
earlier in the function and the 'size' value can not change in the
meantime.
Fortunately, we can work around it and get rid of the warning by
rearranging the function to check for zero size after doing the
copy_from_user. It is still safe to pass a zero size into
copy_from_user, so it does not cause any side effects.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current code places a 256 byte limit on the registration format.
This ends up being fairly limited when you try to do matching against a
binary format like ELF:
- the magic & mask formats cannot have any embedded NUL chars
(string_unescape_inplace halts at the first NUL)
- each escape sequence quadruples the size: \x00 is needed for NUL
- trying to match bytes at the start of the file as well as further
on leads to a lot of \x00 sequences in the mask
- magic & mask have to be the same length (when decoded)
- still need bytes for the other fields
- impossible!
Let's look at a concrete (and common) example: using QEMU to run MIPS
ELFs. The name field uses 11 bytes "qemu-mipsel". The interp uses 20
bytes "/usr/bin/qemu-mipsel". The type & flags takes up 4 bytes. We
need 7 bytes for the delimiter (usually ":"). We can skip offset. So
already we're down to 107 bytes to use with the magic/mask instead of
the real limit of 128 (BINPRM_BUF_SIZE). If people use shell code to
register (which they do the majority of the time), they're down to ~26
possible bytes since the escape sequence must be \x##.
The ELF format looks like (both 32 & 64 bit):
e_ident: 16 bytes
e_type: 2 bytes
e_machine: 2 bytes
Those 20 bytes are enough for most architectures because they have so few
formats in the first place, thus they can be uniquely identified. That
also means for shell users, since 20 is smaller than 26, they can sanely
register a handler.
But for some targets (like MIPS), we need to poke further. The ELF fields
continue on:
e_entry: 4 or 8 bytes
e_phoff: 4 or 8 bytes
e_shoff: 4 or 8 bytes
e_flags: 4 bytes
We only care about e_flags here as that includes the bits to identify
whether the ELF is O32/N32/N64. But now we have to consume another 16
bytes (for 32 bit ELFs) or 28 bytes (for 64 bit ELFs) just to match the
flags. If every byte is escaped, we send 288 more bytes to the kernel
((20 {e_ident,e_type,e_machine} + 12 {e_entry,e_phoff,e_shoff} + 4
{e_flags}) * 2 {mask,magic} * 4 {escape}) and we've clearly blown our
budget.
Even if we try to be clever and do the decoding ourselves (rather than
relying on the kernel to process \x##), we still can't hit the mark --
string_unescape_inplace treats mask & magic as C strings so NUL cannot
be embedded. That leaves us with having to pass \x00 for the 12/24
entry/phoff/shoff bytes (as those will be completely random addresses),
and that is a minimum requirement of 48/96 bytes for the mask alone.
Add up the rest and we blow through it (this is for 64 bit ELFs):
magic: 20 {e_ident,e_type,e_machine} + 24 {e_entry,e_phoff,e_shoff} +
4 {e_flags} = 48 # ^^ See note below.
mask: 20 {e_ident,e_type,e_machine} + 96 {e_entry,e_phoff,e_shoff} +
4 {e_flags} = 120
Remember above we had 107 left over, and now we're at 168. This is of
course the *best* case scenario -- you'll also want to have NUL bytes
in the magic & mask too to match literal zeros.
Note: the reason we can use 24 in the magic is that we can work off of the
fact that for bytes the mask would clobber, we can stuff any value into
magic that we want. So when mask is \x00, we don't need the magic to also
be \x00, it can be an unescaped raw byte like '!'. This lets us handle
more formats (barely) under the current 256 limit, but that's a pretty
tall hoop to force people to jump through.
With all that said, let's bump the limit from 256 bytes to 1920. This way
we support escaping every byte of the mask & magic field (which is 1024
bytes by themselves -- 128 * 4 * 2), and we leave plenty of room for other
fields. Like long paths to the interpreter (when you have source in your
/really/long/homedir/qemu/foo). Since the current code stuffs more than
one structure into the same buffer, we leave a bit of space to easily
round up to 2k. 1920 is just as arbitrary as 256 ;).
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A missing 'break' statement in bm_status_write() results in a user program
receiving '3' when doing the following:
write(fd, "-1", 2);
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is string_unescape_inplace() function which decodes strings in generic
way. Let's use it.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Modify the request_module to prefix the file system type with "fs-"
and add aliases to all of the filesystems that can be built as modules
to match.
A common practice is to build all of the kernel code and leave code
that is not commonly needed as modules, with the result that many
users are exposed to any bug anywhere in the kernel.
Looking for filesystems with a fs- prefix limits the pool of possible
modules that can be loaded by mount to just filesystems trivially
making things safer with no real cost.
Using aliases means user space can control the policy of which
filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf
with blacklist and alias directives. Allowing simple, safe,
well understood work-arounds to known problematic software.
This also addresses a rare but unfortunate problem where the filesystem
name is not the same as it's module name and module auto-loading
would not work. While writing this patch I saw a handful of such
cases. The most significant being autofs that lives in the module
autofs4.
This is relevant to user namespaces because we can reach the request
module in get_fs_type() without having any special permissions, and
people get uncomfortable when a user specified string (in this case
the filesystem type) goes all of the way to request_module.
After having looked at this issue I don't think there is any
particular reason to perform any filtering or permission checks beyond
making it clear in the module request that we want a filesystem
module. The common pattern in the kernel is to call request_module()
without regards to the users permissions. In general all a filesystem
module does once loaded is call register_filesystem() and go to sleep.
Which means there is not much attack surface exposed by loading a
filesytem module unless the filesystem is mounted. In a user
namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT,
which most filesystems do not set today.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reported-by: Kees Cook <keescook@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
If a series of scripts are executed, each triggering module loading via
unprintable bytes in the script header, kernel stack contents can leak
into the command line.
Normally execution of binfmt_script and binfmt_misc happens recursively.
However, when modules are enabled, and unprintable bytes exist in the
bprm->buf, execution will restart after attempting to load matching
binfmt modules. Unfortunately, the logic in binfmt_script and
binfmt_misc does not expect to get restarted. They leave bprm->interp
pointing to their local stack. This means on restart bprm->interp is
left pointing into unused stack memory which can then be copied into the
userspace argv areas.
After additional study, it seems that both recursion and restart remains
the desirable way to handle exec with scripts, misc, and modules. As
such, we need to protect the changes to interp.
This changes the logic to require allocation for any changes to the
bprm->interp. To avoid adding a new kmalloc to every exec, the default
value is left as-is. Only when passing through binfmt_script or
binfmt_misc does an allocation take place.
For a proof of concept, see DoTest.sh from:
http://www.halfdog.net/Security/2012/LinuxKernelBinfmtScriptStackDataDisclosure/
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: halfdog <me@halfdog.net>
Cc: P J P <ppandit@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To avoid an explosion of request_module calls on a chain of abusive
scripts, fail maximum recursion with -ELOOP instead of -ENOEXEC. As soon
as maximum recursion depth is hit, the error will fail all the way back
up the chain, aborting immediately.
This also has the side-effect of stopping the user's shell from attempting
to reexecute the top-level file as a shell script. As seen in the
dash source:
if (cmd != path_bshell && errno == ENOEXEC) {
*argv-- = cmd;
*argv = cmd = path_bshell;
goto repeat;
}
The above logic was designed for running scripts automatically that lacked
the "#!" header, not to re-try failed recursion. On a legitimate -ENOEXEC,
things continue to behave as the shell expects.
Additionally, when tracking recursion, the binfmt handlers should not be
involved. The recursion being tracked is the depth of calls through
search_binary_handler(), so that function should be exclusively responsible
for tracking the depth.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: halfdog <me@halfdog.net>
Cc: P J P <ppandit@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|