aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/extent-tree.c
AgeCommit message (Collapse)Author
2015-11-10btrfs: Use fs_info directly in btrfs_delete_unused_bgsZhao Lei
No need to use root->fs_info in btrfs_delete_unused_bgs(), use fs_info directly instead. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-10btrfs: Fix lost-data-profile caused by auto removing bgZhao Lei
Reproduce: (In integration-4.3 branch) TEST_DEV=(/dev/vdg /dev/vdh) TEST_DIR=/mnt/tmp umount "$TEST_DEV" >/dev/null mkfs.btrfs -f -d raid1 "${TEST_DEV[@]}" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" umount "$TEST_DEV" mount -o nospace_cache "$TEST_DEV" "$TEST_DIR" btrfs filesystem usage $TEST_DIR We can see the data chunk changed from raid1 to single: # btrfs filesystem usage $TEST_DIR Data,single: Size:8.00MiB, Used:0.00B /dev/vdg 8.00MiB # Reason: When a empty filesystem mount with -o nospace_cache, the last data blockgroup will be auto-removed in umount. Then if we mount it again, there is no data chunk in the filesystem, so the only available data profile is 0x0, result is all new chunks are created as single type. Fix: Don't auto-delete last blockgroup for a raid type. Test: Test by above script, and confirmed the logic by debug output. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-11-03Btrfs: find_free_extent: Do not erroneously skip LOOP_CACHING_WAIT statechandan
When executing generic/001 in a loop on a ppc64 machine (with both sectorsize and nodesize set to 64k), the following call trace is observed, WARNING: at /root/repos/linux/fs/btrfs/locking.c:253 Modules linked in: CPU: 2 PID: 8353 Comm: umount Not tainted 4.3.0-rc5-13676-ga5e681d #54 task: c0000000f2b1f560 ti: c0000000f6008000 task.ti: c0000000f6008000 NIP: c000000000520c88 LR: c0000000004a3b34 CTR: 0000000000000000 REGS: c0000000f600a820 TRAP: 0700 Not tainted (4.3.0-rc5-13676-ga5e681d) MSR: 8000000102029032 <SF,VEC,EE,ME,IR,DR,RI> CR: 24444884 XER: 00000000 CFAR: c0000000004a3b30 SOFTE: 1 GPR00: c0000000004a3b34 c0000000f600aaa0 c00000000108ac00 c0000000f5a808c0 GPR04: 0000000000000000 c0000000f600ae60 0000000000000000 0000000000000005 GPR08: 00000000000020a1 0000000000000001 c0000000f2b1f560 0000000000000030 GPR12: 0000000084842882 c00000000fdc0900 c0000000f600ae60 c0000000f070b800 GPR16: 0000000000000000 c0000000f3c8a000 0000000000000000 0000000000000049 GPR20: 0000000000000001 0000000000000001 c0000000f5aa01f8 0000000000000000 GPR24: 0f83e0f83e0f83e1 c0000000f5a808c0 c0000000f3c8d000 c000000000000000 GPR28: c0000000f600ae74 0000000000000001 c0000000f3c8d000 c0000000f5a808c0 NIP [c000000000520c88] .btrfs_tree_lock+0x48/0x2a0 LR [c0000000004a3b34] .btrfs_lock_root_node+0x44/0x80 Call Trace: [c0000000f600aaa0] [c0000000f600ab80] 0xc0000000f600ab80 (unreliable) [c0000000f600ab80] [c0000000004a3b34] .btrfs_lock_root_node+0x44/0x80 [c0000000f600ac00] [c0000000004a99dc] .btrfs_search_slot+0xa8c/0xc00 [c0000000f600ad40] [c0000000004ab878] .btrfs_insert_empty_items+0x98/0x120 [c0000000f600adf0] [c00000000050da44] .btrfs_finish_chunk_alloc+0x1d4/0x620 [c0000000f600af20] [c0000000004be854] .btrfs_create_pending_block_groups+0x1d4/0x2c0 [c0000000f600b020] [c0000000004bf188] .do_chunk_alloc+0x3c8/0x420 [c0000000f600b100] [c0000000004c27cc] .find_free_extent+0xbfc/0x1030 [c0000000f600b260] [c0000000004c2ce8] .btrfs_reserve_extent+0xe8/0x250 [c0000000f600b330] [c0000000004c2f90] .btrfs_alloc_tree_block+0x140/0x590 [c0000000f600b440] [c0000000004a47b4] .__btrfs_cow_block+0x124/0x780 [c0000000f600b530] [c0000000004a4fc0] .btrfs_cow_block+0xf0/0x250 [c0000000f600b5e0] [c0000000004a917c] .btrfs_search_slot+0x22c/0xc00 [c0000000f600b720] [c00000000050aa40] .btrfs_remove_chunk+0x1b0/0x9f0 [c0000000f600b850] [c0000000004c4e04] .btrfs_delete_unused_bgs+0x434/0x570 [c0000000f600b950] [c0000000004d3cb8] .close_ctree+0x2e8/0x3b0 [c0000000f600ba20] [c00000000049d178] .btrfs_put_super+0x18/0x30 [c0000000f600ba90] [c000000000243cd4] .generic_shutdown_super+0xa4/0x1a0 [c0000000f600bb10] [c0000000002441d8] .kill_anon_super+0x18/0x30 [c0000000f600bb90] [c00000000049c898] .btrfs_kill_super+0x18/0xc0 [c0000000f600bc10] [c0000000002444f8] .deactivate_locked_super+0x98/0xe0 [c0000000f600bc90] [c000000000269f94] .cleanup_mnt+0x54/0xa0 [c0000000f600bd10] [c0000000000bd744] .task_work_run+0xc4/0x100 [c0000000f600bdb0] [c000000000016334] .do_notify_resume+0x74/0x80 [c0000000f600be30] [c0000000000098b8] .ret_from_except_lite+0x64/0x68 Instruction dump: fba1ffe8 fbc1fff0 fbe1fff8 7c791b78 f8010010 f821ff21 e94d0290 81030040 812a04e8 7d094a78 7d290034 5529d97e <0b090000> 3b400000 3be30050 3bc3004c The above call trace is seen even on x86_64; albeit very rarely and that too with nodesize set to 64k and with nospace_cache mount option being used. The reason for the above call trace is, btrfs_remove_chunk check_system_chunk Allocate chunk if required For each physical stripe on underlying device, btrfs_free_dev_extent ... Take lock on Device tree's root node btrfs_cow_block("dev tree's root node"); btrfs_reserve_extent find_free_extent index = BTRFS_RAID_DUP; have_caching_bg = false; When in LOOP_CACHING_NOWAIT state, Assume we find a block group which is being cached; Hence have_caching_bg is set to true When repeating the search for the next RAID index, we set have_caching_bg to false. Hence right after completing the LOOP_CACHING_NOWAIT state, we incorrectly skip LOOP_CACHING_WAIT state and move to LOOP_ALLOC_CHUNK state where we allocate a chunk and try to add entries corresponding to the chunk's physical stripe into the device tree. When doing so the task deadlocks itself waiting for the blocking lock on the root node of the device tree. This commit fixes the issue by introducing a new local variable to help indicate as to whether a block group of any RAID type is being cached. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-26btrfs: qgroup: Fix a race in delayed_ref which leads to abort transQu Wenruo
Between btrfs_allocerved_file_extent() and btrfs_add_delayed_qgroup_reserve(), there is a window that delayed_refs are run and delayed ref head maybe freed before btrfs_add_delayed_qgroup_reserve(). This will cause btrfs_dad_delayed_qgroup_reserve() to return -ENOENT, and cause transaction to be aborted. This patch will record qgroup reserve space info into delayed_ref_head at btrfs_add_delayed_ref(), to eliminate the race window. Reported-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-25Btrfs: fix regression running delayed references when using qgroupsFilipe Manana
In the kernel 4.2 merge window we had a big changes to the implementation of delayed references and qgroups which made the no_quota field of delayed references not used anymore. More specifically the no_quota field is not used anymore as of: commit 0ed4792af0e8 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.") Leaving the no_quota field actually prevents delayed references from getting merged, which in turn cause the following BUG_ON(), at fs/btrfs/extent-tree.c, to be hit when qgroups are enabled: static int run_delayed_tree_ref(...) { (...) BUG_ON(node->ref_mod != 1); (...) } This happens on a scenario like the following: 1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added. 2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added. It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota. 3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added. It's not merged with the reference at the tail of the list of refs for bytenr X because the reference at the tail, Ref2 is incompatible due to Ref2->no_quota != Ref3->no_quota. 4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added. It's not merged with the reference at the tail of the list of refs for bytenr X because the reference at the tail, Ref3 is incompatible due to Ref3->no_quota != Ref4->no_quota. 5) We run delayed references, trigger merging of delayed references, through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs(). 6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and all other conditions are satisfied too. So Ref1 gets a ref_mod value of 2. 7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and all other conditions are satisfied too. So Ref2 gets a ref_mod value of 2. 8) Ref1 and Ref2 aren't merged, because they have different values for their no_quota field. 9) Delayed reference Ref1 is picked for running (select_delayed_ref() always prefers references with an action == BTRFS_ADD_DELAYED_REF). So run_delayed_tree_ref() is called for Ref1 which triggers the BUG_ON because Ref1->red_mod != 1 (equals 2). So fix this by removing the no_quota field, as it's not used anymore as of commit 0ed4792af0e8 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism."). The use of no_quota was also buggy in at least two places: 1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting no_quota to 0 instead of 1 when the following condition was true: is_fstree(ref_root) || !fs_info->quota_enabled 2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to reset a node's no_quota when the condition "!is_fstree(root_objectid) || !root->fs_info->quota_enabled" was true but we did it only in an unused local stack variable, that is, we never reset the no_quota value in the node itself. This fixes the remainder of problems several people have been having when running delayed references, mostly while a balance is running in parallel, on a 4.2+ kernel. Very special thanks to Stéphane Lesimple for helping debugging this issue and testing this fix on his multi terabyte filesystem (which took more than one day to balance alone, plus fsck, etc). Also, this fixes deadlock issue when using the clone ioctl with qgroups enabled, as reported by Elias Probst in the mailing list. The deadlock happens because after calling btrfs_insert_empty_item we have our path holding a write lock on a leaf of the fs/subvol tree and then before releasing the path we called check_ref() which did backref walking, when qgroups are enabled, and tried to read lock the same leaf. The trace for this case is the following: INFO: task systemd-nspawn:6095 blocked for more than 120 seconds. (...) Call Trace: [<ffffffff86999201>] schedule+0x74/0x83 [<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea [<ffffffff86137ed7>] ? wait_woken+0x74/0x74 [<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810 [<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce [<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127 [<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667 [<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe [<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6 [<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0 [<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65 [<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88 [<ffffffff863e852e>] check_ref+0x64/0xc4 [<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d [<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb [<ffffffff86048a68>] ? native_sched_clock+0x28/0x77 [<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb (...) The problem goes away by eleminating check_ref(), which no longer is needed as its purpose was to get a value for the no_quota field of a delayed reference (this patch removes the no_quota field as mentioned earlier). Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr> Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr> Reported-by: Elias Probst <mail@eliasprobst.eu> Reported-by: Peter Becker <floyd.net@gmail.com> Reported-by: Malte Schröder <malte@tnxip.de> Reported-by: Derek Dongray <derek@valedon.co.uk> Reported-by: Erkki Seppala <flux-btrfs@inside.org> Cc: stable@vger.kernel.org # 4.2+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
2015-10-25Btrfs: fix regression when running delayed referencesFilipe Manana
In the kernel 4.2 merge window we had a refactoring/rework of the delayed references implementation in order to fix certain problems with qgroups. However that rework introduced one more regression that leads to the following trace when running delayed references for metadata: [35908.064664] kernel BUG at fs/btrfs/extent-tree.c:1832! [35908.065201] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [35908.065201] Modules linked in: dm_flakey dm_mod btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc psmouse i2 [35908.065201] CPU: 14 PID: 15014 Comm: kworker/u32:9 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [35908.065201] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [35908.065201] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [35908.065201] task: ffff880114b7d780 ti: ffff88010c4c8000 task.ti: ffff88010c4c8000 [35908.065201] RIP: 0010:[<ffffffffa04928b5>] [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs] [35908.065201] RSP: 0018:ffff88010c4cbb08 EFLAGS: 00010293 [35908.065201] RAX: 0000000000000000 RBX: ffff88008a661000 RCX: 0000000000000000 [35908.065201] RDX: ffffffffa04dd58f RSI: 0000000000000001 RDI: 0000000000000000 [35908.065201] RBP: ffff88010c4cbb40 R08: 0000000000001000 R09: ffff88010c4cb9f8 [35908.065201] R10: 0000000000000000 R11: 000000000000002c R12: 0000000000000000 [35908.065201] R13: ffff88020a74c578 R14: 0000000000000000 R15: 0000000000000000 [35908.065201] FS: 0000000000000000(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000 [35908.065201] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [35908.065201] CR2: 00000000015e8708 CR3: 0000000102185000 CR4: 00000000000006e0 [35908.065201] Stack: [35908.065201] ffff88010c4cbb18 0000000000000f37 ffff88020a74c578 ffff88015a408000 [35908.065201] ffff880154a44000 0000000000000000 0000000000000005 ffff88010c4cbbd8 [35908.065201] ffffffffa0492b9a 0000000000000005 0000000000000000 0000000000000000 [35908.065201] Call Trace: [35908.065201] [<ffffffffa0492b9a>] __btrfs_inc_extent_ref+0x8b/0x208 [btrfs] [35908.065201] [<ffffffffa0497117>] ? __btrfs_run_delayed_refs+0x4d4/0xd33 [btrfs] [35908.065201] [<ffffffffa049773d>] __btrfs_run_delayed_refs+0xafa/0xd33 [btrfs] [35908.065201] [<ffffffffa04a976a>] ? join_transaction.isra.10+0x25/0x41f [btrfs] [35908.065201] [<ffffffffa04a97ed>] ? join_transaction.isra.10+0xa8/0x41f [btrfs] [35908.065201] [<ffffffffa049914d>] btrfs_run_delayed_refs+0x75/0x1dd [btrfs] [35908.065201] [<ffffffffa04992f1>] delayed_ref_async_start+0x3c/0x7b [btrfs] [35908.065201] [<ffffffffa04d4b4f>] normal_work_helper+0x14c/0x32a [btrfs] [35908.065201] [<ffffffffa04d4e93>] btrfs_extent_refs_helper+0x12/0x14 [btrfs] [35908.065201] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac [35908.065201] [<ffffffff81064285>] worker_thread+0x206/0x2c2 [35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb [35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb [35908.065201] [<ffffffff8106904d>] kthread+0xef/0xf7 [35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24 [35908.065201] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70 [35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24 [35908.065201] Code: 6a 01 41 56 41 54 ff 75 10 41 51 4d 89 c1 49 89 c8 48 8d 4d d0 e8 f6 f1 ff ff 48 83 c4 28 85 c0 75 2c 49 81 fc ff 00 00 00 77 02 <0f> 0b 4c 8b 45 30 8b 4d 28 45 31 [35908.065201] RIP [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs] [35908.065201] RSP <ffff88010c4cbb08> [35908.310885] ---[ end trace fe4299baf0666457 ]--- This happens because the new delayed references code no longer merges delayed references that have different sequence values. The following steps are an example sequence leading to this issue: 1) Transaction N starts, fs_info->tree_mod_seq has value 0; 2) Extent buffer (btree node) A is allocated, delayed reference Ref1 for bytenr A is created, with a value of 1 and a seq value of 0; 3) fs_info->tree_mod_seq is incremented to 1; 4) Extent buffer A is deleted through btrfs_del_items(), which calls btrfs_del_leaf(), which in turn calls btrfs_free_tree_block(). The later returns the metadata extent associated to extent buffer A to the free space cache (the range is not pinned), because the extent buffer was created in the current transaction (N) and writeback never happened for the extent buffer (flag BTRFS_HEADER_FLAG_WRITTEN not set in the extent buffer). This creates the delayed reference Ref2 for bytenr A, with a value of -1 and a seq value of 1; 5) Delayed reference Ref2 is not merged with Ref1 when we create it, because they have different sequence numbers (decided at add_delayed_ref_tail_merge()); 6) fs_info->tree_mod_seq is incremented to 2; 7) Some task attempts to allocate a new extent buffer (done at extent-tree.c:find_free_extent()), but due to heavy fragmentation and running low on metadata space the clustered allocation fails and we fall back to unclustered allocation, which finds the extent at offset A, so a new extent buffer at offset A is allocated. This creates delayed reference Ref3 for bytenr A, with a value of 1 and a seq value of 2; 8) Ref3 is not merged neither with Ref2 nor Ref1, again because they all have different seq values; 9) We start running the delayed references (__btrfs_run_delayed_refs()); 10) The delayed Ref1 is the first one being applied, which ends up creating an inline extent backref in the extent tree; 10) Next the delayed reference Ref3 is selected for execution, and not Ref2, because select_delayed_ref() always gives a preference for positive references (that have an action of BTRFS_ADD_DELAYED_REF); 11) When running Ref3 we encounter alreay the inline extent backref in the extent tree at insert_inline_extent_backref(), which makes us hit the following BUG_ON: BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); This is always true because owner corresponds to the level of the extent buffer/btree node in the btree. For the scenario described above we hit the BUG_ON because we never merge references that have different seq values. We used to do the merging before the 4.2 kernel, more specifically, before the commmits: c6fc24549960 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") c43d160fcd5e ("btrfs: delayed-ref: Cleanup the unneeded functions.") This issue became more exposed after the following change that was added to 4.2 as well: cffc3374e567 ("Btrfs: fix order by which delayed references are run") Which in turn fixed another regression by the two commits previously mentioned. So fix this by bringing back the delayed reference merge code, with the proper adaptations so that it operates against the new data structure (linked list vs old red black tree implementation). This issue was hit running fstest btrfs/063 in a loop. Several people have reported this issue in the mailing list when running on kernels 4.2+. Very special thanks to Stéphane Lesimple for helping debugging this issue and testing this fix on his multi terabyte filesystem (which took more than one day to balance alone, plus fsck, etc). Fixes: c6fc24549960 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") Reported-by: Peter Becker <floyd.net@gmail.com> Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr> Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr> Reported-by: Malte Schröder <malte@tnxip.de> Reported-by: Derek Dongray <derek@valedon.co.uk> Reported-by: Erkki Seppala <flux-btrfs@inside.org> Cc: stable@vger.kernel.org # 4.2+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2015-10-21Merge branch 'allocator-fixes' into for-linus-4.4Chris Mason
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: don't keep trying to build clusters if we are fragmentedJosef Bacik
If we are extremely fragmented then we won't be able to create a free_cluster. So if this happens set last_ptr->fragmented so that all future allcations will give up trying to create a cluster. When we unpin extents we will unset ->fragmented if we free up a sufficient amount of space in a block group. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: cut down on loops through the allocatorJosef Bacik
We try really really hard to make allocations, but sometimes it is just not going to happen, especially when free space is extremely fragmented. So add a few short cuts through the looping states. For example if we couldn't allocate a chunk, just go straight to the NO_EMPTY_SIZE loop. If there are no uncached block groups and we've done a full search, go straight to the ALLOC_CHUNK stage. And finally if we already have empty_size and empty_cluster set to 0 go ahead and return -ENOSPC. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: don't continue setting up space cache when enospcJosef Bacik
If we hit ENOSPC when setting up a space cache don't bother setting up any of the other space cache's in this transaction, it'll just induce unnecessary latency. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: keep track of max_extent_size per space_infoJosef Bacik
When we are heavily fragmented we can induce a lot of latency trying to make an allocation happen that is simply not going to happen. Thankfully we keep track of our max_extent_size when going through the allocator, so if we get to the point where we are exiting find_free_extent with ENOSPC then set our space_info->max_extent_size so we can keep future allocations from having to pay this cost. We reset the max_extent_size whenever we release pinned bytes back into this space info so we can redo all the work. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: don't loop in allocator for space cacheJosef Bacik
The space cache needs to have contiguous allocations, and the allocator tries to make allocations by reducing the amount of bytes requested and re-searching. But this just makes us waste time when we are very fragmented, so if we can't find our space just exit, don't bother trying to search again. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: add a flags field to btrfs_transactionJosef Bacik
I want to set some per transaction flags, so instead of adding yet another int lets just convert the current two int indicators to flags and add a flags field for future use. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Btrfs: add fragment=* debug mount optionJosef Bacik
In tracking down these weird bitmap problems it was helpful to artificially create an extremely fragmented file system. These mount options let us either fragment data or metadata or both. With these options I could reproduce all sorts of weird latencies and hangs that occur under extreme fragmentation and get them fixed. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: qgroup: Avoid calling btrfs_free_reserved_data_space in clear_bit_hookQu Wenruo
In clear_bit_hook, qgroup reserved data is already handled quite well, either released by finish_ordered_io or invalidatepage. So calling btrfs_qgroup_free_data() here is completely meaningless, and since btrfs_qgroup_free_data() will lock io_tree, so it can't be called with io_tree lock hold. This patch will add a new function btrfs_free_reserved_data_space_noquota() for clear_bit_hook() to cease the lockdep warning. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: qgroup: Add handler for NOCOW and inlineQu Wenruo
For NOCOW and inline case, there will be no delayed_ref created for them, so we should free their reserved data space at proper time(finish_ordered_io for NOCOW and cow_file_inline for inline). Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: qgroup: Cleanup old inaccurate facilitiesQu Wenruo
Cleanup the old facilities which use old btrfs_qgroup_reserve() function call, replace them with the newer version, and remove the "__" prefix in them. Also, make btrfs_qgroup_reserve/free() functions private, as they are now only used inside qgroup codes. Now, the whole btrfs qgroup is swithed to use the new reserve facilities. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: extent-tree: Add new version of btrfs_delalloc_reserve/release_spaceQu Wenruo
Add new version of btrfs_delalloc_reserve_space() and btrfs_delalloc_release_space() functions, which supports accurate qgroup reserve. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: extent-tree: Switch to new check_data_free_space and ↵Qu Wenruo
free_reserved_data_space Use new reserve/free for buffered write and inode cache. For buffered write case, as nodatacow write won't increase quota account, so unlike old behavior which does reserve before check nocow, now we check nocow first and then only reserve data if we can't do nocow write. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: extent-tree: Add new version of btrfs_check_data_free_space and ↵Qu Wenruo
btrfs_free_reserved_data_space. Add new functions __btrfs_check_data_free_space() and __btrfs_free_reserved_data_space() to work with new accurate qgroup reserved space framework. The new function will replace old btrfs_check_data_free_space() and btrfs_free_reserved_data_space() respectively, but until all the change is done, let's just use the new name. Also, export internal use function btrfs_alloc_data_chunk_ondemand(), as now qgroup reserve requires precious bytes, some operation can't get the accurate number in advance(like fallocate). But data space info check and data chunk allocate doesn't need to be that accurate, and can be called at the beginning. So export it for later operations. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: qgroup: Use new metadata reservation.Qu Wenruo
As we have the new metadata reservation functions, use them to replace the old btrfs_qgroup_reserve() call for metadata. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21btrfs: delayed_ref: release and free qgroup reserved at proper timingQu Wenruo
Qgroup reserved space needs to be released from inode dirty map and get freed at different timing: 1) Release when the metadata is written into tree After corresponding metadata is written into tree, any newer write will be COWed(don't include NOCOW case yet). So we must release its range from inode dirty range map, or we will forget to reserve needed range, causing accounting exceeding the limit. 2) Free reserved bytes when delayed ref is run When delayed refs are run, qgroup accounting will follow soon and turn the reserved bytes into rfer/excl numbers. As run_delayed_refs and qgroup accounting are all done at commit_transaction() time, we are safe to free reserved space in run_delayed_ref time(). With these timing to release/free reserved space, we should be able to resolve the long existing qgroup reserve space leak problem. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21Merge branch 'cleanups/for-4.4' of ↵Chris Mason
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4
2015-10-21btrfs: use btrfs_raid_array in btrfs_reduce_alloc_profileZhao Lei
btrfs_raid_array[] holds attributes of all raid types. Use btrfs_raid_array[].devs_min is best way for request in btrfs_reduce_alloc_profile(), instead of use complex condition of each raid types. Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-21btrfs: use a single if() statement for one outcome in get_block_rsv()Alexandru Moise
Rather than have three separate if() statements for the same outcome we should just OR them together in the same if() statement. Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-12Merge branch 'fix/waitqueue-barriers' of ↵Chris Mason
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4
2015-10-12Merge branch 'anand/sysfs-updates-v4.3-rc3' of ↵Chris Mason
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4 Signed-off-by: Chris Mason <clm@fb.com>
2015-10-12Merge branch 'cleanup/messages' of ↵Chris Mason
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux into for-linus-4.4
2015-10-10btrfs: add comments to barriers before waitqueue_activeDavid Sterba
Reduce number of undocumented barriers out there. Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-08btrfs: switch message printers to ratelimited variantsDavid Sterba
Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-05Btrfs: fix deadlock when finalizing block group creationFilipe Manana
Josef ran into a deadlock while a transaction handle was finalizing the creation of its block groups, which produced the following trace: [260445.593112] fio D ffff88022a9df468 0 8924 4518 0x00000084 [260445.593119] ffff88022a9df468 ffffffff81c134c0 ffff880429693c00 ffff88022a9df488 [260445.593126] ffff88022a9e0000 ffff8803490d7b00 ffff8803490d7b18 ffff88022a9df4b0 [260445.593132] ffff8803490d7af8 ffff88022a9df488 ffffffff8175a437 ffff8803490d7b00 [260445.593137] Call Trace: [260445.593145] [<ffffffff8175a437>] schedule+0x37/0x80 [260445.593189] [<ffffffffa0850f37>] btrfs_tree_lock+0xa7/0x1f0 [btrfs] [260445.593197] [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0 [260445.593225] [<ffffffffa07eac44>] btrfs_lock_root_node+0x34/0x50 [btrfs] [260445.593253] [<ffffffffa07eff6b>] btrfs_search_slot+0x88b/0xa00 [btrfs] [260445.593295] [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs] [260445.593324] [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs] [260445.593351] [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs] [260445.593394] [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs] [260445.593427] [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs] [260445.593459] [<ffffffffa0800964>] do_chunk_alloc+0x2a4/0x2e0 [btrfs] [260445.593491] [<ffffffffa0803815>] find_free_extent+0xa55/0xd90 [btrfs] [260445.593524] [<ffffffffa0803c22>] btrfs_reserve_extent+0xd2/0x220 [btrfs] [260445.593532] [<ffffffff8119fe5d>] ? account_page_dirtied+0xdd/0x170 [260445.593564] [<ffffffffa0803e78>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs] [260445.593597] [<ffffffffa080c9de>] ? btree_set_page_dirty+0xe/0x10 [btrfs] [260445.593626] [<ffffffffa07eb5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs] [260445.593654] [<ffffffffa07ebbff>] btrfs_cow_block+0x11f/0x1c0 [btrfs] [260445.593682] [<ffffffffa07ef8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs] [260445.593724] [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs] [260445.593752] [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs] [260445.593830] [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs] [260445.593905] [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs] [260445.593946] [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs] [260445.593990] [<ffffffffa0815798>] btrfs_commit_transaction+0xa8/0xb40 [btrfs] [260445.594042] [<ffffffffa085abcd>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs] [260445.594089] [<ffffffffa082bc84>] btrfs_sync_file+0x294/0x350 [btrfs] [260445.594115] [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0 [260445.594133] [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180 [260445.594149] [<ffffffff8123e35d>] do_fsync+0x3d/0x70 [260445.594169] [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110 [260445.594187] [<ffffffff8123e600>] SyS_fsync+0x10/0x20 [260445.594204] [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71 This happened because the same transaction handle created a large number of block groups and while finalizing their creation (inserting new items and updating existing items in the chunk and device trees) a new metadata extent had to be allocated and no free space was found in the current metadata block groups, which made find_free_extent() attempt to allocate a new block group via do_chunk_alloc(). However at do_chunk_alloc() we ended up allocating a new system chunk too and exceeded the threshold of 2Mb of reserved chunk bytes, which makes do_chunk_alloc() enter the final part of block group creation again (at btrfs_create_pending_block_groups()) and attempt to lock again the root of the chunk tree when it's already write locked by the same task. Similarly we can deadlock on extent tree nodes/leafs if while we are running delayed references we end up creating a new metadata block group in order to allocate a new node/leaf for the extent tree (as part of a CoW operation or growing the tree), as btrfs_create_pending_block_groups inserts items into the extent tree as well. In this case we get the following trace: [14242.773581] fio D ffff880428ca3418 0 3615 3100 0x00000084 [14242.773588] ffff880428ca3418 ffff88042d66b000 ffff88042a03c800 ffff880428ca3438 [14242.773594] ffff880428ca4000 ffff8803e4b20190 ffff8803e4b201a8 ffff880428ca3460 [14242.773600] ffff8803e4b20188 ffff880428ca3438 ffffffff8175a437 ffff8803e4b20190 [14242.773606] Call Trace: [14242.773613] [<ffffffff8175a437>] schedule+0x37/0x80 [14242.773656] [<ffffffffa057ff07>] btrfs_tree_lock+0xa7/0x1f0 [btrfs] [14242.773664] [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0 [14242.773692] [<ffffffffa0519c44>] btrfs_lock_root_node+0x34/0x50 [btrfs] [14242.773720] [<ffffffffa051ef6b>] btrfs_search_slot+0x88b/0xa00 [btrfs] [14242.773750] [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs] [14242.773758] [<ffffffff811ef4a2>] ? kmem_cache_alloc+0x1d2/0x200 [14242.773786] [<ffffffffa0520ad1>] btrfs_insert_item+0x71/0xf0 [btrfs] [14242.773818] [<ffffffffa052f292>] btrfs_create_pending_block_groups+0x102/0x200 [btrfs] [14242.773850] [<ffffffffa052f96e>] do_chunk_alloc+0x2ae/0x2f0 [btrfs] [14242.773934] [<ffffffffa0532825>] find_free_extent+0xa55/0xd90 [btrfs] [14242.773998] [<ffffffffa0532c22>] btrfs_reserve_extent+0xc2/0x1d0 [btrfs] [14242.774041] [<ffffffffa0532e38>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs] [14242.774078] [<ffffffffa051a5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs] [14242.774118] [<ffffffffa051abff>] btrfs_cow_block+0x11f/0x1c0 [btrfs] [14242.774155] [<ffffffffa051e8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs] [14242.774194] [<ffffffffa0528021>] ? __btrfs_free_extent.isra.70+0x2e1/0xcb0 [btrfs] [14242.774235] [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs] [14242.774274] [<ffffffffa051994a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs] [14242.774318] [<ffffffffa052c433>] __btrfs_run_delayed_refs+0xbb3/0x1020 [btrfs] [14242.774358] [<ffffffffa052f404>] btrfs_run_delayed_refs.part.78+0x74/0x280 [btrfs] [14242.774391] [<ffffffffa052f627>] btrfs_run_delayed_refs+0x17/0x20 [btrfs] [14242.774432] [<ffffffffa05be236>] commit_cowonly_roots+0x8d/0x2bd [btrfs] [14242.774474] [<ffffffffa059d07f>] ? __btrfs_run_delayed_items+0x1cf/0x210 [btrfs] [14242.774516] [<ffffffffa05adac3>] ? btrfs_qgroup_account_extents+0x83/0x130 [btrfs] [14242.774558] [<ffffffffa0544c40>] btrfs_commit_transaction+0x590/0xb40 [btrfs] [14242.774599] [<ffffffffa0589b9d>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs] [14242.774642] [<ffffffffa055ac54>] btrfs_sync_file+0x294/0x350 [btrfs] [14242.774650] [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0 [14242.774657] [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180 [14242.774663] [<ffffffff8123e35d>] do_fsync+0x3d/0x70 [14242.774669] [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110 [14242.774675] [<ffffffff8123e600>] SyS_fsync+0x10/0x20 [14242.774681] [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71 Fix this by never recursing into the finalization phase of block group creation and making sure we never trigger the finalization of block group creation while running delayed references. Reported-by: Josef Bacik <jbacik@fb.com> Fixes: 00d80e342c0f ("Btrfs: fix quick exhaustion of the system array in the superblock") Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-09-29Btrfs: consolidate btrfs_error() to btrfs_std_error()Anand Jain
btrfs_error() and btrfs_std_error() does the same thing and calls _btrfs_std_error(), so consolidate them together. And the main motivation is that btrfs_error() is closely named with btrfs_err(), one handles error action the other is to log the error, so don't closely name them. Signed-off-by: Anand Jain <anand.jain@oracle.com> Suggested-by: David Sterba <dsterba@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-09-22Btrfs: keep dropped roots in cache until transaction commitJosef Bacik
When dropping a snapshot we need to account for the qgroup changes. If we drop the snapshot in all one go then the backref code will fail to find blocks from the snapshot we dropped since it won't be able to find the root in the fs root cache. This can lead to us failing to find refs from other roots that pointed at blocks in the now deleted root. To handle this we need to not remove the fs roots from the cache until after we process the qgroup operations. Do this by adding dropped roots to a list on the transaction, and letting the transaction remove the roots at the same time it drops the commit roots. This will keep all of the backref searching code in sync properly, and fixes a problem Mark was seeing with snapshot delete and qgroups. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Tested-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-09-08Btrfs: don't initialize a space info as full to prevent ENOSPCFilipe Manana
Commit 2e6e518335f8 ("Btrfs: fix block group ->space_info null pointer dereference") accidently marked a space info as full when initializing it with a value of 0 total bytes. This introduces an ENOSPC problem when writing file data if we mount a filesystem that has no data block groups allocated, because the data space info is initialized with 0 total bytes, marked as full, and it never gets its total bytes incremented by a (positive) value to unmark it as full (because there are no data block groups loaded when the fs is mounted). For metadata and system spaces this issue can never happen since we always have at least one metadata block group and one system block group (even for an empty filesystem). So fix this by just not initializing a space info as full, reverting the offending part of the commit mentioned above. The following test case for fstests reproduces the issue: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 # Mount our filesystem without space caches enabled so that we do not # get any space used from the initial data block group that mkfs creates # (space caches used space from data block groups). _scratch_mount "-o nospace_cache" # Need an fs with at least 2Gb to make sure mkfs.btrfs does not create # an fs using mixed block groups (used both for data and metadata). We # really need to have dedicated block groups for data to reproduce the # issue and mkfs.btrfs defaults to mixed block groups only for small # filesystems (up to 1Gb). _require_fs_space $SCRATCH_MNT $((2 * 1024 * 1024)) # Run balance with the purpose of deleting the unused data block group # that mkfs created. We could also wait for the background kthread to # automatically delete the unused block group, but we do not have a way # to make it run and wait for it to complete, so just do a balance # instead of some unreliable sleep _run_btrfs_util_prog balance start -dusage=0 $SCRATCH_MNT # Now unmount the filesystem, mount it again (either with or with space # caches enabled, it does not matter to trigger the problem) and attempt # to create a file with some data - this used to fail with ENOSPC # because there were no data block groups when the filesystem was # mounted and the data space info object was marked as full when # initialized (because it had 0 total bytes), which prevented the file # write path from attempting to allocate a data block group and fail # immediately with ENOSPC. _scratch_remount echo "hello world" > $SCRATCH_MNT/foobar echo "Silence is golden" status=0 exit Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-08-09Merge branch 'jeffm-discard-4.3' into for-linus-4.3Chris Mason
2015-08-09btrfs: Remove root argument in extent_data_ref_count()Zhaolei
Because it is never used. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09btrfs: Fix wrong comment of btrfs_alloc_tree_block()Zhaolei
These wrong comment was copyed from another function(expired) from init, this patch fixed them. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09btrfs: Use ref_cnt for set_block_group_ro()Zhaolei
More than one code call set_block_group_ro() and restore rw in fail. Old code use bool bit to save blockgroup's ro state, it can not support parallel case(it is confirmd exist in my debug log). This patch use ref count to store ro state, and rename set_block_group_ro/set_block_group_rw to inc_block_group_ro/dec_block_group_ro. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-29btrfs: add missing discards when unpinning extents with -o discardJeff Mahoney
When we clear the dirty bits in btrfs_delete_unused_bgs for extents in the empty block group, it results in btrfs_finish_extent_commit being unable to discard the freed extents. The block group removal patch added an alternate path to forget extents other than btrfs_finish_extent_commit. As a result, any extents that would be freed when the block group is removed aren't discarded. In my test run, with a large copy of mixed sized files followed by removal, it left nearly 2/3 of extents undiscarded. To clean up the block groups, we add the removed block group onto a list that will be discarded after transaction commit. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-29btrfs: iterate over unused chunk space in FITRIMJeff Mahoney
Since we now clean up block groups automatically as they become empty, iterating over block groups is no longer sufficient to discard unused space. This patch iterates over the unused chunk space and discards any regions that are unallocated, regardless of whether they were ever used. This is a change for btrfs but is consistent with other file systems. We do this in a transactionless manner since the discard process can take a substantial amount of time and a transaction would need to be started before the acquisition of the device list lock. That would mean a transaction would be held open across /all/ of the discards collectively. In order to prevent other threads from allocating or freeing chunks, we hold the chunks lock across the search and discard calls. We release it between searches to allow the file system to perform more-or-less normally. Since the running transaction can commit and disappear while we're using the transaction pointer, we take a reference to it and release it after the search. This is safe since it would happen normally at the end of the transaction commit after any locks are released anyway. We also take the commit_root_sem to protect against a transaction starting and committing while we're running. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-29btrfs: skip superblocks during discardJeff Mahoney
Btrfs doesn't track superblocks with extent records so there is nothing persistent on-disk to indicate that those blocks are in use. We track the superblocks in memory to ensure they don't get used by removing them from the free space cache when we load a block group from disk. Prior to 47ab2a6c6a (Btrfs: remove empty block groups automatically), that was fine since the block group would never be reclaimed so the superblock was always safe. Once we started removing the empty block groups, we were protected by the fact that discards weren't being properly issued for unused space either via FITRIM or -odiscard. The block groups were still being released, but the blocks remained on disk. In order to properly discard unused block groups, we need to filter out the superblocks from the discard range. Superblocks are located at fixed locations on each device, so it makes sense to filter them out in btrfs_issue_discard, which is used by both -odiscard and FITRIM. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-29btrfs: btrfs_issue_discard ensure offset/length are aligned to sector boundariesJeff Mahoney
It's possible, though unexpected, to pass unaligned offsets and lengths to btrfs_issue_discard. We then shift the offset/length values to sector units. If an unaligned offset has been passed, it will result in the entire sector being discarded, possibly losing data. An unaligned length is safe but we'll end up returning an inaccurate number of discarded bytes. This patch aligns the offset to the 512B boundary, adjusts the length, and warns, since we shouldn't be discarding on an offset that isn't aligned with our sector size. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-29btrfs: make btrfs_issue_discard return bytes discardedJeff Mahoney
Initially this will just be the length argument passed to it, but the following patches will adjust that to reflect re-alignment and skipped blocks. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Tested-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-22Btrfs: fix quick exhaustion of the system array in the superblockFilipe Manana
Omar reported that after commit 4fbcdf669454 ("Btrfs: fix -ENOSPC when finishing block group creation"), introduced in 4.2-rc1, the following test was failing due to exhaustion of the system array in the superblock: #!/bin/bash truncate -s 100T big.img mkfs.btrfs big.img mount -o loop big.img /mnt/loop num=5 sz=10T for ((i = 0; i < $num; i++)); do echo fallocate $i $sz fallocate -l $sz /mnt/loop/testfile$i done btrfs filesystem sync /mnt/loop for ((i = 0; i < $num; i++)); do echo rm $i rm /mnt/loop/testfile$i btrfs filesystem sync /mnt/loop done umount /mnt/loop This made btrfs_add_system_chunk() fail with -EFBIG due to excessive allocation of system block groups. This happened because the test creates a large number of data block groups per transaction and when committing the transaction we start the writeout of the block group caches for all the new new (dirty) block groups, which results in pre-allocating space for each block group's free space cache using the same transaction handle. That in turn often leads to creation of more block groups, and all get attached to the new_bgs list of the same transaction handle to the point of getting a list with over 1500 elements, and creation of new block groups leads to the need of reserving space in the chunk block reserve and often creating a new system block group too. So that made us quickly exhaust the chunk block reserve/system space info, because as of the commit mentioned before, we do reserve space for each new block group in the chunk block reserve, unlike before where we would not and would at most allocate one new system block group and therefore would only ensure that there was enough space in the system space info to allocate 1 new block group even if we ended up allocating thousands of new block groups using the same transaction handle. That worked most of the time because the computed required space at check_system_chunk() is very pessimistic (assumes a chunk tree height of BTRFS_MAX_LEVEL/8 and that all nodes/leafs in a path will be COWed and split) and since the updates to the chunk tree all happen at btrfs_create_pending_block_groups it is unlikely that a path needs to be COWed more than once (unless writepages() for the btree inode is called by mm in between) and that compensated for the need of creating any new nodes/leads in the chunk tree. So fix this by ensuring we don't accumulate a too large list of new block groups in a transaction's handles new_bgs list, inserting/updating the chunk tree for all accumulated new block groups and releasing the unused space from the chunk block reserve whenever the list becomes sufficiently large. This is a generic solution even though the problem currently can only happen when starting the writeout of the free space caches for all dirty block groups (btrfs_start_dirty_block_groups()). Reported-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-07-11Btrfs: fix order by which delayed references are runFilipe Manana
When we have an extent that got N references removed and N new references added in the same transaction, we must run the insertion of the references first because otherwise the last removed reference will remove the extent item from the extent tree, resulting in a failure for the insertions. This is a regression introduced in the 4.2-rc1 release and this fix just brings back the behaviour of selecting reference additions before any reference removals. The following test case for fstests reproduces the issue: seq=`basename $0` seqres=$RESULT_DIR/$seq echo "QA output created by $seq" tmp=/tmp/$$ status=1 # failure is the default! trap "_cleanup; exit \$status" 0 1 2 3 15 _cleanup() { _cleanup_flakey rm -f $tmp.* } # get standard environment, filters and checks . ./common/rc . ./common/filter . ./common/dmflakey # real QA test starts here _need_to_be_root _supported_fs btrfs _supported_os Linux _require_scratch _require_dm_flakey _require_cloner _require_metadata_journaling $SCRATCH_DEV rm -f $seqres.full _scratch_mkfs >>$seqres.full 2>&1 _init_flakey _mount_flakey # Create prealloc extent covering range [160K, 620K[ $XFS_IO_PROG -f -c "falloc 160K 460K" $SCRATCH_MNT/foo # Now write to the last 80K of the prealloc extent plus 40K to the unallocated # space that immediately follows it. This creates a new extent of 40K that spans # the range [620K, 660K[. $XFS_IO_PROG -c "pwrite -S 0xaa 540K 120K" $SCRATCH_MNT/foo | _filter_xfs_io # At this point, there are now 2 back references to the prealloc extent in our # extent tree. Both are for our file offset 160K and one relates to a file # extent item with a data offset of 0 and a length of 380K, while the other # relates to a file extent item with a data offset of 380K and a length of 80K. # Make sure everything done so far is durably persisted (all back references are # in the extent tree, etc). sync # Now clone all extents of our file that cover the offset 160K up to its eof # (660K at this point) into itself at offset 2M. This leaves a hole in the file # covering the range [660K, 2M[. The prealloc extent will now be referenced by # the file twice, once for offset 160K and once for offset 2M. The 40K extent # that follows the prealloc extent will also be referenced twice by our file, # once for offset 620K and once for offset 2M + 460K. $CLONER_PROG -s $((160 * 1024)) -d $((2 * 1024 * 1024)) -l 0 $SCRATCH_MNT/foo \ $SCRATCH_MNT/foo # Now create one new extent in our file with a size of 100Kb. It will span the # range [3M, 3M + 100K[. It also will cause creation of a hole spanning the # range [2M + 460K, 3M[. Our new file size is 3M + 100K. $XFS_IO_PROG -c "pwrite -S 0xbb 3M 100K" $SCRATCH_MNT/foo | _filter_xfs_io # At this point, there are now (in memory) 4 back references to the prealloc # extent. # # Two of them are for file offset 160K, related to file extent items # matching the file offsets 160K and 540K respectively, with data offsets of # 0 and 380K respectively, and with lengths of 380K and 80K respectively. # # The other two references are for file offset 2M, related to file extent items # matching the file offsets 2M and 2M + 380K respectively, with data offsets of # 0 and 380K respectively, and with lengths of 389K and 80K respectively. # # The 40K extent has 2 back references, one for file offset 620K and the other # for file offset 2M + 460K. # # The 100K extent has a single back reference and it relates to file offset 3M. # Now clone our 100K extent into offset 600K. That offset covers the last 20K # of the prealloc extent, the whole 40K extent and 40K of the hole starting at # offset 660K. $CLONER_PROG -s $((3 * 1024 * 1024)) -d $((600 * 1024)) -l $((100 * 1024)) \ $SCRATCH_MNT/foo $SCRATCH_MNT/foo # At this point there's only one reference to the 40K extent, at file offset # 2M + 460K, we have 4 references for the prealloc extent (2 for file offset # 160K and 2 for file offset 2M) and 2 references for the 100K extent (1 for # file offset 3M and a new one for file offset 600K). # Now fsync our file to make all its new data and metadata updates are durably # persisted and present if a power failure/crash happens after a successful # fsync and before the next transaction commit. $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo echo "File digest before power failure:" md5sum $SCRATCH_MNT/foo | _filter_scratch # Silently drop all writes and ummount to simulate a crash/power failure. _load_flakey_table $FLAKEY_DROP_WRITES _unmount_flakey # Allow writes again, mount to trigger log replay and validate file contents. # During log replay, the btrfs delayed references implementation used to run the # deletion of back references before the addition of new back references, which # made the addition fail as it didn't find the key in the extent tree that it # was looking for. The failure triggered by this test was related to the 40K # extent, which got 1 reference dropped and 1 reference added during the fsync # log replay - when running the delayed references at transaction commit time, # btrfs was applying the deletion before the insertion, resulting in a failure # of the insertion that ended up turning the fs into read-only mode. _load_flakey_table $FLAKEY_ALLOW_WRITES _mount_flakey echo "File digest after log replay:" md5sum $SCRATCH_MNT/foo | _filter_scratch _unmount_flakey status=0 exit This issue turned the filesystem into read-only mode (current transaction aborted) and produced the following traces: [ 8247.578385] ------------[ cut here ]------------ [ 8247.579947] WARNING: CPU: 0 PID: 11341 at fs/btrfs/extent-tree.c:1547 lookup_inline_extent_backref+0x17d/0x45d [btrfs]() (...) [ 8247.601697] Call Trace: [ 8247.602222] [<ffffffff8145f077>] dump_stack+0x4f/0x7b [ 8247.604320] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb [ 8247.605488] [<ffffffffa0506c8d>] ? lookup_inline_extent_backref+0x17d/0x45d [btrfs] [ 8247.608226] [<ffffffffa0506c8d>] lookup_inline_extent_backref+0x17d/0x45d [btrfs] [ 8247.617061] [<ffffffffa0507957>] insert_inline_extent_backref+0x41/0xb2 [btrfs] [ 8247.621856] [<ffffffffa0507c4f>] __btrfs_inc_extent_ref+0x8c/0x20a [btrfs] [ 8247.624366] [<ffffffffa050ee60>] __btrfs_run_delayed_refs+0xb0c/0xd49 [btrfs] [ 8247.626176] [<ffffffffa0510dcd>] btrfs_run_delayed_refs+0x6d/0x1d4 [btrfs] [ 8247.627435] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6 [ 8247.628531] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs] (...) [ 8247.648430] ---[ end trace 2461e55f92c2ac2d ]--- [ 8247.727263] WARNING: CPU: 3 PID: 11341 at fs/btrfs/extent-tree.c:2771 btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs]() [ 8247.728954] BTRFS: Transaction aborted (error -5) (...) [ 8247.760866] Call Trace: [ 8247.761534] [<ffffffff8145f077>] dump_stack+0x4f/0x7b [ 8247.764271] [<ffffffff8104b3b0>] warn_slowpath_common+0xa1/0xbb [ 8247.767582] [<ffffffffa0510e04>] ? btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs] [ 8247.769373] [<ffffffff8104b410>] warn_slowpath_fmt+0x46/0x48 [ 8247.770836] [<ffffffffa0510e04>] btrfs_run_delayed_refs+0xa4/0x1d4 [btrfs] [ 8247.772532] [<ffffffff81155c9b>] ? __cache_free+0x4a7/0x4b6 [ 8247.773664] [<ffffffffa0520482>] btrfs_commit_transaction+0x4c/0xa20 [btrfs] [ 8247.775047] [<ffffffff81087310>] ? trace_hardirqs_on+0xd/0xf [ 8247.776176] [<ffffffff81155dd5>] ? kmem_cache_free+0x12b/0x189 [ 8247.777427] [<ffffffffa055a920>] btrfs_recover_log_trees+0x2da/0x33d [btrfs] [ 8247.778575] [<ffffffffa055898e>] ? replay_one_extent+0x4fc/0x4fc [btrfs] [ 8247.779838] [<ffffffffa051e265>] open_ctree+0x1cc0/0x201a [btrfs] [ 8247.781020] [<ffffffff81120f48>] ? register_shrinker+0x56/0x81 [ 8247.782285] [<ffffffffa04fb12c>] btrfs_mount+0x5f0/0x734 [btrfs] (...) [ 8247.793394] ---[ end trace 2461e55f92c2ac2e ]--- [ 8247.794276] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2771: errno=-5 IO failure [ 8247.797335] BTRFS: error (device dm-0) in btrfs_replay_log:2375: errno=-5 IO failure (Failed to recover log tree) Fixes: c6fc24549960 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.") Signed-off-by: Filipe Manana <fdmanana@suse.com> Acked-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
2015-06-30Btrfs: fix race between balance and unused block group deletionFilipe Manana
We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10btrfs: wait for delayed iputs on no spaceZhao Lei
btrfs will report no_space when we run following write and delete file loop: # FILE_SIZE_M=[ 75% of fs space ] # DEV=[ some dev ] # MNT=[ some dir ] # # mkfs.btrfs -f "$DEV" # mount -o nodatacow "$DEV" "$MNT" # for ((i = 0; i < 100; i++)); do dd if=/dev/zero of="$MNT"/file0 bs=1M count="$FILE_SIZE_M"; rm -f "$MNT"/file0; done # Reason: iput() and evict() is run after write pages to block device, if write pages work is not finished before next write, the "rm"ed space is not freed, and caused above bug. Fix: We can add "-o flushoncommit" mount option to avoid above bug, but it have performance problem. Actually, we can to wait for on-the-fly writes only when no-space happened, it is which this patch do. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10btrfs: qgroup: Cleanup the old ref_node-oriented mechanism.Qu Wenruo
Goodbye, the old mechanisim. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.Qu Wenruo
Switch from old ref_node based qgroup to extent based qgroup mechanism for normal operations. The new mechanism should hugely reduce the overhead of btrfs quota system, and further more, the codes and logic should be more clean and easier to maintain. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10btrfs: extent-tree: Use ref_node to replace unneeded parameters in ↵Qu Wenruo
__inc_extent_ref() and __free_extent() __btrfs_inc_extent_ref() and __btrfs_free_extent() have already had too many parameters, but three of them can be extracted from btrfs_delayed_ref_node struct. So use btrfs_delayed_ref_node struct as a single parameter to replace the bytenr/num_byte/no_quota parameters. The real objective of this patch is to allow btrfs_qgroup_record_ref() get the delayed_ref_node in incoming qgroup patches. Other functions calling btrfs_qgroup_record_ref() are not affected since the rest will only add/sub exclusive extents, where node is not used. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>