/* SPDX-License-Identifier: GPL-2.0 */ /* * Portions Copyright (C) 1992 Drew Eckhardt */ #ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct module; struct request_queue; struct elevator_queue; struct blk_trace; struct request; struct sg_io_hdr; struct blkcg_gq; struct blk_flush_queue; struct kiocb; struct pr_ops; struct rq_qos; struct blk_queue_stats; struct blk_stat_callback; struct blk_crypto_profile; extern const struct device_type disk_type; extern struct device_type part_type; extern struct class block_class; /* Must be consistent with blk_mq_poll_stats_bkt() */ #define BLK_MQ_POLL_STATS_BKTS 16 /* Doing classic polling */ #define BLK_MQ_POLL_CLASSIC -1 /* * Maximum number of blkcg policies allowed to be registered concurrently. * Defined here to simplify include dependency. */ #define BLKCG_MAX_POLS 6 #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 #define PARTITION_META_INFO_VOLNAMELTH 64 /* * Enough for the string representation of any kind of UUID plus NULL. * EFI UUID is 36 characters. MSDOS UUID is 11 characters. */ #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) struct partition_meta_info { char uuid[PARTITION_META_INFO_UUIDLTH]; u8 volname[PARTITION_META_INFO_VOLNAMELTH]; }; /** * DOC: genhd capability flags * * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to * removable media. When set, the device remains present even when media is not * inserted. Shall not be set for devices which are removed entirely when the * media is removed. * * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, * doesn't appear in sysfs, and can't be opened from userspace or using * blkdev_get*. Used for the underlying components of multipath devices. * * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not * scan for partitions from add_disk, and users can't add partitions manually. * */ enum { GENHD_FL_REMOVABLE = 1 << 0, GENHD_FL_HIDDEN = 1 << 1, GENHD_FL_NO_PART = 1 << 2, }; enum { DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ }; enum { /* Poll even if events_poll_msecs is unset */ DISK_EVENT_FLAG_POLL = 1 << 0, /* Forward events to udev */ DISK_EVENT_FLAG_UEVENT = 1 << 1, /* Block event polling when open for exclusive write */ DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, }; struct disk_events; struct badblocks; struct blk_integrity { const struct blk_integrity_profile *profile; unsigned char flags; unsigned char tuple_size; unsigned char interval_exp; unsigned char tag_size; }; struct gendisk { /* * major/first_minor/minors should not be set by any new driver, the * block core will take care of allocating them automatically. */ int major; int first_minor; int minors; char disk_name[DISK_NAME_LEN]; /* name of major driver */ unsigned short events; /* supported events */ unsigned short event_flags; /* flags related to event processing */ struct xarray part_tbl; struct block_device *part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; struct bio_set bio_split; int flags; unsigned long state; #define GD_NEED_PART_SCAN 0 #define GD_READ_ONLY 1 #define GD_DEAD 2 #define GD_NATIVE_CAPACITY 3 #define GD_ADDED 4 #define GD_SUPPRESS_PART_SCAN 5 #define GD_OWNS_QUEUE 6 struct mutex open_mutex; /* open/close mutex */ unsigned open_partitions; /* number of open partitions */ struct backing_dev_info *bdi; struct kobject *slave_dir; #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED struct list_head slave_bdevs; #endif struct timer_rand_state *random; atomic_t sync_io; /* RAID */ struct disk_events *ev; #ifdef CONFIG_BLK_DEV_INTEGRITY struct kobject integrity_kobj; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_BLK_DEV_ZONED /* * Zoned block device information for request dispatch control. * nr_zones is the total number of zones of the device. This is always * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones * bits which indicates if a zone is conventional (bit set) or * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones * bits which indicates if a zone is write locked, that is, if a write * request targeting the zone was dispatched. * * Reads of this information must be protected with blk_queue_enter() / * blk_queue_exit(). Modifying this information is only allowed while * no requests are being processed. See also blk_mq_freeze_queue() and * blk_mq_unfreeze_queue(). */ unsigned int nr_zones; unsigned int max_open_zones; unsigned int max_active_zones; unsigned long *conv_zones_bitmap; unsigned long *seq_zones_wlock; #endif /* CONFIG_BLK_DEV_ZONED */ #if IS_ENABLED(CONFIG_CDROM) struct cdrom_device_info *cdi; #endif int node_id; struct badblocks *bb; struct lockdep_map lockdep_map; u64 diskseq; /* * Independent sector access ranges. This is always NULL for * devices that do not have multiple independent access ranges. */ struct blk_independent_access_ranges *ia_ranges; }; static inline bool disk_live(struct gendisk *disk) { return !inode_unhashed(disk->part0->bd_inode); } /** * disk_openers - returns how many openers are there for a disk * @disk: disk to check * * This returns the number of openers for a disk. Note that this value is only * stable if disk->open_mutex is held. * * Note: Due to a quirk in the block layer open code, each open partition is * only counted once even if there are multiple openers. */ static inline unsigned int disk_openers(struct gendisk *disk) { return atomic_read(&disk->part0->bd_openers); } /* * The gendisk is refcounted by the part0 block_device, and the bd_device * therein is also used for device model presentation in sysfs. */ #define dev_to_disk(device) \ (dev_to_bdev(device)->bd_disk) #define disk_to_dev(disk) \ (&((disk)->part0->bd_device)) #if IS_REACHABLE(CONFIG_CDROM) #define disk_to_cdi(disk) ((disk)->cdi) #else #define disk_to_cdi(disk) NULL #endif static inline dev_t disk_devt(struct gendisk *disk) { return MKDEV(disk->major, disk->first_minor); } static inline int blk_validate_block_size(unsigned long bsize) { if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) return -EINVAL; return 0; } static inline bool blk_op_is_passthrough(blk_opf_t op) { op &= REQ_OP_MASK; return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; } /* * Zoned block device models (zoned limit). * * Note: This needs to be ordered from the least to the most severe * restrictions for the inheritance in blk_stack_limits() to work. */ enum blk_zoned_model { BLK_ZONED_NONE = 0, /* Regular block device */ BLK_ZONED_HA, /* Host-aware zoned block device */ BLK_ZONED_HM, /* Host-managed zoned block device */ }; /* * BLK_BOUNCE_NONE: never bounce (default) * BLK_BOUNCE_HIGH: bounce all highmem pages */ enum blk_bounce { BLK_BOUNCE_NONE, BLK_BOUNCE_HIGH, }; struct queue_limits { enum blk_bounce bounce; unsigned long seg_boundary_mask; unsigned long virt_boundary_mask; unsigned int max_hw_sectors; unsigned int max_dev_sectors; unsigned int chunk_sectors; unsigned int max_sectors; unsigned int max_segment_size; unsigned int physical_block_size; unsigned int logical_block_size; unsigned int alignment_offset; unsigned int io_min; unsigned int io_opt; unsigned int max_discard_sectors; unsigned int max_hw_discard_sectors; unsigned int max_secure_erase_sectors; unsigned int max_write_zeroes_sectors; unsigned int max_zone_append_sectors; unsigned int discard_granularity; unsigned int discard_alignment; unsigned int zone_write_granularity; unsigned short max_segments; unsigned short max_integrity_segments; unsigned short max_discard_segments; unsigned char misaligned; unsigned char discard_misaligned; unsigned char raid_partial_stripes_expensive; enum blk_zoned_model zoned; /* * Drivers that set dma_alignment to less than 511 must be prepared to * handle individual bvec's that are not a multiple of a SECTOR_SIZE * due to possible offsets. */ unsigned int dma_alignment; }; typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, void *data); void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); #ifdef CONFIG_BLK_DEV_ZONED #define BLK_ALL_ZONES ((unsigned int)-1) int blkdev_report_zones(struct block_device *bdev, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); unsigned int bdev_nr_zones(struct block_device *bdev); extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, sector_t sectors, sector_t nr_sectors, gfp_t gfp_mask); int blk_revalidate_disk_zones(struct gendisk *disk, void (*update_driver_data)(struct gendisk *disk)); extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg); #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int bdev_nr_zones(struct block_device *bdev) { return 0; } static inline int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return -ENOTTY; } #endif /* CONFIG_BLK_DEV_ZONED */ /* * Independent access ranges: struct blk_independent_access_range describes * a range of contiguous sectors that can be accessed using device command * execution resources that are independent from the resources used for * other access ranges. This is typically found with single-LUN multi-actuator * HDDs where each access range is served by a different set of heads. * The set of independent ranges supported by the device is defined using * struct blk_independent_access_ranges. The independent ranges must not overlap * and must include all sectors within the disk capacity (no sector holes * allowed). * For a device with multiple ranges, requests targeting sectors in different * ranges can be executed in parallel. A request can straddle an access range * boundary. */ struct blk_independent_access_range { struct kobject kobj; sector_t sector; sector_t nr_sectors; }; struct blk_independent_access_ranges { struct kobject kobj; bool sysfs_registered; unsigned int nr_ia_ranges; struct blk_independent_access_range ia_range[]; }; struct request_queue { struct request *last_merge; struct elevator_queue *elevator; struct percpu_ref q_usage_counter; struct blk_queue_stats *stats; struct rq_qos *rq_qos; const struct blk_mq_ops *mq_ops; /* sw queues */ struct blk_mq_ctx __percpu *queue_ctx; unsigned int queue_depth; /* hw dispatch queues */ struct xarray hctx_table; unsigned int nr_hw_queues; /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; /* * Number of contexts that have called blk_set_pm_only(). If this * counter is above zero then only RQF_PM requests are processed. */ atomic_t pm_only; /* * ida allocated id for this queue. Used to index queues from * ioctx. */ int id; spinlock_t queue_lock; struct gendisk *disk; /* * queue kobject */ struct kobject kobj; /* * mq queue kobject */ struct kobject *mq_kobj; #ifdef CONFIG_BLK_DEV_INTEGRITY struct blk_integrity integrity; #endif /* CONFIG_BLK_DEV_INTEGRITY */ #ifdef CONFIG_PM struct device *dev; enum rpm_status rpm_status; #endif /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ unsigned int dma_pad_mask; #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct blk_crypto_profile *crypto_profile; struct kobject *crypto_kobject; #endif unsigned int rq_timeout; int poll_nsec; struct blk_stat_callback *poll_cb; struct blk_rq_stat *poll_stat; struct timer_list timeout; struct work_struct timeout_work; atomic_t nr_active_requests_shared_tags; struct blk_mq_tags *sched_shared_tags; struct list_head icq_list; #ifdef CONFIG_BLK_CGROUP DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); struct blkcg_gq *root_blkg; struct list_head blkg_list; #endif struct queue_limits limits; unsigned int required_elevator_features; int node; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace __rcu *blk_trace; #endif /* * for flush operations */ struct blk_flush_queue *fq; struct list_head requeue_list; spinlock_t requeue_lock; struct delayed_work requeue_work; struct mutex sysfs_lock; struct mutex sysfs_dir_lock; /* * for reusing dead hctx instance in case of updating * nr_hw_queues */ struct list_head unused_hctx_list; spinlock_t unused_hctx_lock; int mq_freeze_depth; #ifdef CONFIG_BLK_DEV_THROTTLING /* Throttle data */ struct throtl_data *td; #endif struct rcu_head rcu_head; wait_queue_head_t mq_freeze_wq; /* * Protect concurrent access to q_usage_counter by * percpu_ref_kill() and percpu_ref_reinit(). */ struct mutex mq_freeze_lock; int quiesce_depth; struct blk_mq_tag_set *tag_set; struct list_head tag_set_list; struct dentry *debugfs_dir; struct dentry *sched_debugfs_dir; struct dentry *rqos_debugfs_dir; /* * Serializes all debugfs metadata operations using the above dentries. */ struct mutex debugfs_mutex; bool mq_sysfs_init_done; /** * @srcu: Sleepable RCU. Use as lock when type of the request queue * is blocking (BLK_MQ_F_BLOCKING). Must be the last member */ struct srcu_struct srcu[]; }; /* Keep blk_queue_flag_name[] in sync with the definitions below */ #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ #define QUEUE_FLAG_DYING 1 /* queue being torn down */ #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ #define QUEUE_FLAG_HW_WC 13 /* Write back caching supported */ #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ #define QUEUE_FLAG_WC 17 /* Write back caching */ #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ #define QUEUE_FLAG_DAX 19 /* device supports DAX */ #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ (1UL << QUEUE_FLAG_SAME_COMP) | \ (1UL << QUEUE_FLAG_NOWAIT)) void blk_queue_flag_set(unsigned int flag, struct request_queue *q); void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) #define blk_queue_noxmerges(q) \ test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) #define blk_queue_stable_writes(q) \ test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) #define blk_queue_zone_resetall(q) \ test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) #define blk_queue_pci_p2pdma(q) \ test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) #ifdef CONFIG_BLK_RQ_ALLOC_TIME #define blk_queue_rq_alloc_time(q) \ test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) #else #define blk_queue_rq_alloc_time(q) false #endif #define blk_noretry_request(rq) \ ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ REQ_FAILFAST_DRIVER)) #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) extern void blk_set_pm_only(struct request_queue *q); extern void blk_clear_pm_only(struct request_queue *q); #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) #define dma_map_bvec(dev, bv, dir, attrs) \ dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ (dir), (attrs)) static inline bool queue_is_mq(struct request_queue *q) { return q->mq_ops; } #ifdef CONFIG_PM static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return q->rpm_status; } #else static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return RPM_ACTIVE; } #endif static inline enum blk_zoned_model blk_queue_zoned_model(struct request_queue *q) { if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) return q->limits.zoned; return BLK_ZONED_NONE; } static inline bool blk_queue_is_zoned(struct request_queue *q) { switch (blk_queue_zoned_model(q)) { case BLK_ZONED_HA: case BLK_ZONED_HM: return true; default: return false; } } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int disk_nr_zones(struct gendisk *disk) { return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; } static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) { if (!blk_queue_is_zoned(disk->queue)) return 0; return sector >> ilog2(disk->queue->limits.chunk_sectors); } static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) { if (!blk_queue_is_zoned(disk->queue)) return false; if (!disk->conv_zones_bitmap) return true; return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); } static inline void disk_set_max_open_zones(struct gendisk *disk, unsigned int max_open_zones) { disk->max_open_zones = max_open_zones; } static inline void disk_set_max_active_zones(struct gendisk *disk, unsigned int max_active_zones) { disk->max_active_zones = max_active_zones; } static inline unsigned int bdev_max_open_zones(struct block_device *bdev) { return bdev->bd_disk->max_open_zones; } static inline unsigned int bdev_max_active_zones(struct block_device *bdev) { return bdev->bd_disk->max_active_zones; } #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int disk_nr_zones(struct gendisk *disk) { return 0; } static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) { return false; } static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) { return 0; } static inline unsigned int bdev_max_open_zones(struct block_device *bdev) { return 0; } static inline unsigned int bdev_max_active_zones(struct block_device *bdev) { return 0; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int blk_queue_depth(struct request_queue *q) { if (q->queue_depth) return q->queue_depth; return q->nr_requests; } /* * default timeout for SG_IO if none specified */ #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) #define BLK_MIN_SG_TIMEOUT (7 * HZ) /* This should not be used directly - use rq_for_each_segment */ #define for_each_bio(_bio) \ for (; _bio; _bio = _bio->bi_next) int __must_check device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups); static inline int __must_check add_disk(struct gendisk *disk) { return device_add_disk(NULL, disk, NULL); } void del_gendisk(struct gendisk *gp); void invalidate_disk(struct gendisk *disk); void set_disk_ro(struct gendisk *disk, bool read_only); void disk_uevent(struct gendisk *disk, enum kobject_action action); static inline int get_disk_ro(struct gendisk *disk) { return disk->part0->bd_read_only || test_bit(GD_READ_ONLY, &disk->state); } static inline int bdev_read_only(struct block_device *bdev) { return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); } bool set_capacity_and_notify(struct gendisk *disk, sector_t size); bool disk_force_media_change(struct gendisk *disk, unsigned int events); void add_disk_randomness(struct gendisk *disk) __latent_entropy; void rand_initialize_disk(struct gendisk *disk); static inline sector_t get_start_sect(struct block_device *bdev) { return bdev->bd_start_sect; } static inline sector_t bdev_nr_sectors(struct block_device *bdev) { return bdev->bd_nr_sectors; } static inline loff_t bdev_nr_bytes(struct block_device *bdev) { return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; } static inline sector_t get_capacity(struct gendisk *disk) { return bdev_nr_sectors(disk->part0); } static inline u64 sb_bdev_nr_blocks(struct super_block *sb) { return bdev_nr_sectors(sb->s_bdev) >> (sb->s_blocksize_bits - SECTOR_SHIFT); } int bdev_disk_changed(struct gendisk *disk, bool invalidate); void put_disk(struct gendisk *disk); struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); /** * blk_alloc_disk - allocate a gendisk structure * @node_id: numa node to allocate on * * Allocate and pre-initialize a gendisk structure for use with BIO based * drivers. * * Context: can sleep */ #define blk_alloc_disk(node_id) \ ({ \ static struct lock_class_key __key; \ \ __blk_alloc_disk(node_id, &__key); \ }) int __register_blkdev(unsigned int major, const char *name, void (*probe)(dev_t devt)); #define register_blkdev(major, name) \ __register_blkdev(major, name, NULL) void unregister_blkdev(unsigned int major, const char *name); bool bdev_check_media_change(struct block_device *bdev); int __invalidate_device(struct block_device *bdev, bool kill_dirty); void set_capacity(struct gendisk *disk, sector_t size); #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); int bd_register_pending_holders(struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } static inline int bd_register_pending_holders(struct gendisk *disk) { return 0; } #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ dev_t part_devt(struct gendisk *disk, u8 partno); void inc_diskseq(struct gendisk *disk); dev_t blk_lookup_devt(const char *name, int partno); void blk_request_module(dev_t devt); extern int blk_register_queue(struct gendisk *disk); extern void blk_unregister_queue(struct gendisk *disk); void submit_bio_noacct(struct bio *bio); struct bio *bio_split_to_limits(struct bio *bio); extern int blk_lld_busy(struct request_queue *q); extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); extern void blk_queue_exit(struct request_queue *q); extern void blk_sync_queue(struct request_queue *q); /* Helper to convert REQ_OP_XXX to its string format XXX */ extern const char *blk_op_str(enum req_op op); int blk_status_to_errno(blk_status_t status); blk_status_t errno_to_blk_status(int errno); /* only poll the hardware once, don't continue until a completion was found */ #define BLK_POLL_ONESHOT (1 << 0) /* do not sleep to wait for the expected completion time */ #define BLK_POLL_NOSLEEP (1 << 1) int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, unsigned int flags); static inline struct request_queue *bdev_get_queue(struct block_device *bdev) { return bdev->bd_queue; /* this is never NULL */ } /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); static inline unsigned int bio_zone_no(struct bio *bio) { return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); } static inline unsigned int bio_zone_is_seq(struct bio *bio) { return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); } /* * Return how much of the chunk is left to be used for I/O at a given offset. */ static inline unsigned int blk_chunk_sectors_left(sector_t offset, unsigned int chunk_sectors) { if (unlikely(!is_power_of_2(chunk_sectors))) return chunk_sectors - sector_div(offset, chunk_sectors); return chunk_sectors - (offset & (chunk_sectors - 1)); } /* * Access functions for manipulating queue properties */ void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); extern void blk_queue_max_segments(struct request_queue *, unsigned short); extern void blk_queue_max_discard_segments(struct request_queue *, unsigned short); void blk_queue_max_secure_erase_sectors(struct request_queue *q, unsigned int max_sectors); extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); extern void blk_queue_max_discard_sectors(struct request_queue *q, unsigned int max_discard_sectors); extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, unsigned int max_write_same_sectors); extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); extern void blk_queue_max_zone_append_sectors(struct request_queue *q, unsigned int max_zone_append_sectors); extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); void blk_queue_zone_write_granularity(struct request_queue *q, unsigned int size); extern void blk_queue_alignment_offset(struct request_queue *q, unsigned int alignment); void disk_update_readahead(struct gendisk *disk); extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); extern void blk_queue_io_min(struct request_queue *q, unsigned int min); extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); extern void blk_set_stacking_limits(struct queue_limits *lim); extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset); extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, sector_t offset); extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); extern void blk_queue_dma_alignment(struct request_queue *, int); extern void blk_queue_update_dma_alignment(struct request_queue *, int); extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); struct blk_independent_access_ranges * disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); void disk_set_independent_access_ranges(struct gendisk *disk, struct blk_independent_access_ranges *iars); /* * Elevator features for blk_queue_required_elevator_features: */ /* Supports zoned block devices sequential write constraint */ #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) extern void blk_queue_required_elevator_features(struct request_queue *q, unsigned int features); extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, struct device *dev); bool __must_check blk_get_queue(struct request_queue *); extern void blk_put_queue(struct request_queue *); void blk_mark_disk_dead(struct gendisk *disk); #ifdef CONFIG_BLOCK /* * blk_plug permits building a queue of related requests by holding the I/O * fragments for a short period. This allows merging of sequential requests * into single larger request. As the requests are moved from a per-task list to * the device's request_queue in a batch, this results in improved scalability * as the lock contention for request_queue lock is reduced. * * It is ok not to disable preemption when adding the request to the plug list * or when attempting a merge. For details, please see schedule() where * blk_flush_plug() is called. */ struct blk_plug { struct request *mq_list; /* blk-mq requests */ /* if ios_left is > 1, we can batch tag/rq allocations */ struct request *cached_rq; unsigned short nr_ios; unsigned short rq_count; bool multiple_queues; bool has_elevator; bool nowait; struct list_head cb_list; /* md requires an unplug callback */ }; struct blk_plug_cb; typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); struct blk_plug_cb { struct list_head list; blk_plug_cb_fn callback; void *data; }; extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, int size); extern void blk_start_plug(struct blk_plug *); extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); extern void blk_finish_plug(struct blk_plug *); void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); static inline void blk_flush_plug(struct blk_plug *plug, bool async) { if (plug) __blk_flush_plug(plug, async); } int blkdev_issue_flush(struct block_device *bdev); long nr_blockdev_pages(void); #else /* CONFIG_BLOCK */ struct blk_plug { }; static inline void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) { } static inline void blk_start_plug(struct blk_plug *plug) { } static inline void blk_finish_plug(struct blk_plug *plug) { } static inline void blk_flush_plug(struct blk_plug *plug, bool async) { } static inline int blkdev_issue_flush(struct block_device *bdev) { return 0; } static inline long nr_blockdev_pages(void) { return 0; } #endif /* CONFIG_BLOCK */ extern void blk_io_schedule(void); int blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask); int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp); #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, unsigned flags); extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned flags); static inline int sb_issue_discard(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) { return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask); } static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask) { return blkdev_issue_zeroout(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, 0); } static inline bool bdev_is_partition(struct block_device *bdev) { return bdev->bd_partno; } enum blk_default_limits { BLK_MAX_SEGMENTS = 128, BLK_SAFE_MAX_SECTORS = 255, BLK_DEF_MAX_SECTORS = 2560, BLK_MAX_SEGMENT_SIZE = 65536, BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, }; static inline unsigned long queue_segment_boundary(const struct request_queue *q) { return q->limits.seg_boundary_mask; } static inline unsigned long queue_virt_boundary(const struct request_queue *q) { return q->limits.virt_boundary_mask; } static inline unsigned int queue_max_sectors(const struct request_queue *q) { return q->limits.max_sectors; } static inline unsigned int queue_max_bytes(struct request_queue *q) { return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; } static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) { return q->limits.max_hw_sectors; } static inline unsigned short queue_max_segments(const struct request_queue *q) { return q->limits.max_segments; } static inline unsigned short queue_max_discard_segments(const struct request_queue *q) { return q->limits.max_discard_segments; } static inline unsigned int queue_max_segment_size(const struct request_queue *q) { return q->limits.max_segment_size; } static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) { const struct queue_limits *l = &q->limits; return min(l->max_zone_append_sectors, l->max_sectors); } static inline unsigned int bdev_max_zone_append_sectors(struct block_device *bdev) { return queue_max_zone_append_sectors(bdev_get_queue(bdev)); } static inline unsigned int bdev_max_segments(struct block_device *bdev) { return queue_max_segments(bdev_get_queue(bdev)); } static inline unsigned queue_logical_block_size(const struct request_queue *q) { int retval = 512; if (q && q->limits.logical_block_size) retval = q->limits.logical_block_size; return retval; } static inline unsigned int bdev_logical_block_size(struct block_device *bdev) { return queue_logical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_physical_block_size(const struct request_queue *q) { return q->limits.physical_block_size; } static inline unsigned int bdev_physical_block_size(struct block_device *bdev) { return queue_physical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_io_min(const struct request_queue *q) { return q->limits.io_min; } static inline int bdev_io_min(struct block_device *bdev) { return queue_io_min(bdev_get_queue(bdev)); } static inline unsigned int queue_io_opt(const struct request_queue *q) { return q->limits.io_opt; } static inline int bdev_io_opt(struct block_device *bdev) { return queue_io_opt(bdev_get_queue(bdev)); } static inline unsigned int queue_zone_write_granularity(const struct request_queue *q) { return q->limits.zone_write_granularity; } static inline unsigned int bdev_zone_write_granularity(struct block_device *bdev) { return queue_zone_write_granularity(bdev_get_queue(bdev)); } int bdev_alignment_offset(struct block_device *bdev); unsigned int bdev_discard_alignment(struct block_device *bdev); static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.max_discard_sectors; } static inline unsigned int bdev_discard_granularity(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.discard_granularity; } static inline unsigned int bdev_max_secure_erase_sectors(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; } static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_zeroes_sectors; return 0; } static inline bool bdev_nonrot(struct block_device *bdev) { return blk_queue_nonrot(bdev_get_queue(bdev)); } static inline bool bdev_stable_writes(struct block_device *bdev) { return test_bit(QUEUE_FLAG_STABLE_WRITES, &bdev_get_queue(bdev)->queue_flags); } static inline bool bdev_write_cache(struct block_device *bdev) { return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); } static inline bool bdev_fua(struct block_device *bdev) { return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); } static inline bool bdev_nowait(struct block_device *bdev) { return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); } static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_zoned_model(q); return BLK_ZONED_NONE; } static inline bool bdev_is_zoned(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return blk_queue_is_zoned(q); return false; } static inline bool bdev_op_is_zoned_write(struct block_device *bdev, enum req_op op) { if (!bdev_is_zoned(bdev)) return false; return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; } static inline sector_t bdev_zone_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (!blk_queue_is_zoned(q)) return 0; return q->limits.chunk_sectors; } static inline int queue_dma_alignment(const struct request_queue *q) { return q ? q->limits.dma_alignment : 511; } static inline unsigned int bdev_dma_alignment(struct block_device *bdev) { return queue_dma_alignment(bdev_get_queue(bdev)); } static inline bool bdev_iter_is_aligned(struct block_device *bdev, struct iov_iter *iter) { return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), bdev_logical_block_size(bdev) - 1); } static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, unsigned int len) { unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; return !(addr & alignment) && !(len & alignment); } /* assumes size > 256 */ static inline unsigned int blksize_bits(unsigned int size) { unsigned int bits = 8; do { bits++; size >>= 1; } while (size > 256); return bits; } static inline unsigned int block_size(struct block_device *bdev) { return 1 << bdev->bd_inode->i_blkbits; } int kblockd_schedule_work(struct work_struct *work); int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); #define MODULE_ALIAS_BLOCKDEV(major,minor) \ MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ MODULE_ALIAS("block-major-" __stringify(major) "-*") #ifdef CONFIG_BLK_INLINE_ENCRYPTION bool blk_crypto_register(struct blk_crypto_profile *profile, struct request_queue *q); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool blk_crypto_register(struct blk_crypto_profile *profile, struct request_queue *q) { return true; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ enum blk_unique_id { /* these match the Designator Types specified in SPC */ BLK_UID_T10 = 1, BLK_UID_EUI64 = 2, BLK_UID_NAA = 3, }; #define NFL4_UFLG_MASK 0x0000003F struct block_device_operations { void (*submit_bio)(struct bio *bio); int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); int (*open) (struct block_device *, fmode_t); void (*release) (struct gendisk *, fmode_t); int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op); int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); unsigned int (*check_events) (struct gendisk *disk, unsigned int clearing); void (*unlock_native_capacity) (struct gendisk *); int (*getgeo)(struct block_device *, struct hd_geometry *); int (*set_read_only)(struct block_device *bdev, bool ro); void (*free_disk)(struct gendisk *disk); /* this callback is with swap_lock and sometimes page table lock held */ void (*swap_slot_free_notify) (struct block_device *, unsigned long); int (*report_zones)(struct gendisk *, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); char *(*devnode)(struct gendisk *disk, umode_t *mode); /* returns the length of the identifier or a negative errno: */ int (*get_unique_id)(struct gendisk *disk, u8 id[16], enum blk_unique_id id_type); struct module *owner; const struct pr_ops *pr_ops; /* * Special callback for probing GPT entry at a given sector. * Needed by Android devices, used by GPT scanner and MMC blk * driver. */ int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); }; #ifdef CONFIG_COMPAT extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, unsigned int, unsigned long); #else #define blkdev_compat_ptr_ioctl NULL #endif extern int bdev_read_page(struct block_device *, sector_t, struct page *); extern int bdev_write_page(struct block_device *, sector_t, struct page *, struct writeback_control *); static inline void blk_wake_io_task(struct task_struct *waiter) { /* * If we're polling, the task itself is doing the completions. For * that case, we don't need to signal a wakeup, it's enough to just * mark us as RUNNING. */ if (waiter == current) __set_current_state(TASK_RUNNING); else wake_up_process(waiter); } unsigned long bdev_start_io_acct(struct block_device *bdev, unsigned int sectors, enum req_op op, unsigned long start_time); void bdev_end_io_acct(struct block_device *bdev, enum req_op op, unsigned long start_time); void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); unsigned long bio_start_io_acct(struct bio *bio); void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, struct block_device *orig_bdev); /** * bio_end_io_acct - end I/O accounting for bio based drivers * @bio: bio to end account for * @start_time: start time returned by bio_start_io_acct() */ static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) { return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); } int bdev_read_only(struct block_device *bdev); int set_blocksize(struct block_device *bdev, int size); int lookup_bdev(const char *pathname, dev_t *dev); void blkdev_show(struct seq_file *seqf, off_t offset); #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ #ifdef CONFIG_BLOCK #define BLKDEV_MAJOR_MAX 512 #else #define BLKDEV_MAJOR_MAX 0 #endif struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, void *holder); struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); int bd_prepare_to_claim(struct block_device *bdev, void *holder); void bd_abort_claiming(struct block_device *bdev, void *holder); void blkdev_put(struct block_device *bdev, fmode_t mode); /* just for blk-cgroup, don't use elsewhere */ struct block_device *blkdev_get_no_open(dev_t dev); void blkdev_put_no_open(struct block_device *bdev); struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); void bdev_add(struct block_device *bdev, dev_t dev); struct block_device *I_BDEV(struct inode *inode); int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, loff_t lend); #ifdef CONFIG_BLOCK void invalidate_bdev(struct block_device *bdev); int sync_blockdev(struct block_device *bdev); int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); int sync_blockdev_nowait(struct block_device *bdev); void sync_bdevs(bool wait); void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); void printk_all_partitions(void); #else static inline void invalidate_bdev(struct block_device *bdev) { } static inline int sync_blockdev(struct block_device *bdev) { return 0; } static inline int sync_blockdev_nowait(struct block_device *bdev) { return 0; } static inline void sync_bdevs(bool wait) { } static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) { } static inline void printk_all_partitions(void) { } #endif /* CONFIG_BLOCK */ int fsync_bdev(struct block_device *bdev); int freeze_bdev(struct block_device *bdev); int thaw_bdev(struct block_device *bdev); struct io_comp_batch { struct request *req_list; bool need_ts; void (*complete)(struct io_comp_batch *); }; #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } #endif /* _LINUX_BLKDEV_H */