aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs/verity.c
blob: c5ff16f9e9fa53aaa8779059a903f9bd636ceb02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
// SPDX-License-Identifier: GPL-2.0

#include <linux/init.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/rwsem.h>
#include <linux/xattr.h>
#include <linux/security.h>
#include <linux/posix_acl_xattr.h>
#include <linux/iversion.h>
#include <linux/fsverity.h>
#include <linux/sched/mm.h>
#include "messages.h"
#include "ctree.h"
#include "btrfs_inode.h"
#include "transaction.h"
#include "disk-io.h"
#include "locking.h"
#include "fs.h"
#include "accessors.h"
#include "ioctl.h"
#include "verity.h"
#include "orphan.h"

/*
 * Implementation of the interface defined in struct fsverity_operations.
 *
 * The main question is how and where to store the verity descriptor and the
 * Merkle tree. We store both in dedicated btree items in the filesystem tree,
 * together with the rest of the inode metadata. This means we'll need to do
 * extra work to encrypt them once encryption is supported in btrfs, but btrfs
 * has a lot of careful code around i_size and it seems better to make a new key
 * type than try and adjust all of our expectations for i_size.
 *
 * Note that this differs from the implementation in ext4 and f2fs, where
 * this data is stored as if it were in the file, but past EOF. However, btrfs
 * does not have a widespread mechanism for caching opaque metadata pages, so we
 * do pretend that the Merkle tree pages themselves are past EOF for the
 * purposes of caching them (as opposed to creating a virtual inode).
 *
 * fs verity items are stored under two different key types on disk.
 * The descriptor items:
 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
 *
 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the
 * size of the descriptor item and some extra data for encryption.
 * Starting at offset 1, these hold the generic fs verity descriptor.
 * The latter are opaque to btrfs, we just read and write them as a blob for
 * the higher level verity code.  The most common descriptor size is 256 bytes.
 *
 * The merkle tree items:
 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
 *
 * These also start at offset 0, and correspond to the merkle tree bytes.
 * So when fsverity asks for page 0 of the merkle tree, we pull up one page
 * starting at offset 0 for this key type.  These are also opaque to btrfs,
 * we're blindly storing whatever fsverity sends down.
 *
 * Another important consideration is the fact that the Merkle tree data scales
 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's
 * ~1/127th the size) so for large files, writing the tree can be a lengthy
 * operation. For that reason, we guard the whole enable verity operation
 * (between begin_enable_verity and end_enable_verity) with an orphan item.
 * Again, because the data can be pretty large, it's quite possible that we
 * could run out of space writing it, so we try our best to handle errors by
 * stopping and rolling back rather than aborting the victim transaction.
 */

#define MERKLE_START_ALIGN			65536

/*
 * Compute the logical file offset where we cache the Merkle tree.
 *
 * @inode:  inode of the verity file
 *
 * For the purposes of caching the Merkle tree pages, as required by
 * fs-verity, it is convenient to do size computations in terms of a file
 * offset, rather than in terms of page indices.
 *
 * Use 64K to be sure it's past the last page in the file, even with 64K pages.
 * That rounding operation itself can overflow loff_t, so we do it in u64 and
 * check.
 *
 * Returns the file offset on success, negative error code on failure.
 */
static loff_t merkle_file_pos(const struct inode *inode)
{
	u64 sz = inode->i_size;
	u64 rounded = round_up(sz, MERKLE_START_ALIGN);

	if (rounded > inode->i_sb->s_maxbytes)
		return -EFBIG;

	return rounded;
}

/*
 * Drop all the items for this inode with this key_type.
 *
 * @inode:     inode to drop items for
 * @key_type:  type of items to drop (BTRFS_VERITY_DESC_ITEM or
 *             BTRFS_VERITY_MERKLE_ITEM)
 *
 * Before doing a verity enable we cleanup any existing verity items.
 * This is also used to clean up if a verity enable failed half way through.
 *
 * Returns number of dropped items on success, negative error code on failure.
 */
static int drop_verity_items(struct btrfs_inode *inode, u8 key_type)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_root *root = inode->root;
	struct btrfs_path *path;
	struct btrfs_key key;
	int count = 0;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	while (1) {
		/* 1 for the item being dropped */
		trans = btrfs_start_transaction(root, 1);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			goto out;
		}

		/*
		 * Walk backwards through all the items until we find one that
		 * isn't from our key type or objectid
		 */
		key.objectid = btrfs_ino(inode);
		key.type = key_type;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
		if (ret > 0) {
			ret = 0;
			/* No more keys of this type, we're done */
			if (path->slots[0] == 0)
				break;
			path->slots[0]--;
		} else if (ret < 0) {
			btrfs_end_transaction(trans);
			goto out;
		}

		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);

		/* No more keys of this type, we're done */
		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
			break;

		/*
		 * This shouldn't be a performance sensitive function because
		 * it's not used as part of truncate.  If it ever becomes
		 * perf sensitive, change this to walk forward and bulk delete
		 * items
		 */
		ret = btrfs_del_items(trans, root, path, path->slots[0], 1);
		if (ret) {
			btrfs_end_transaction(trans);
			goto out;
		}
		count++;
		btrfs_release_path(path);
		btrfs_end_transaction(trans);
	}
	ret = count;
	btrfs_end_transaction(trans);
out:
	btrfs_free_path(path);
	return ret;
}

/*
 * Drop all verity items
 *
 * @inode:  inode to drop verity items for
 *
 * In most contexts where we are dropping verity items, we want to do it for all
 * the types of verity items, not a particular one.
 *
 * Returns: 0 on success, negative error code on failure.
 */
int btrfs_drop_verity_items(struct btrfs_inode *inode)
{
	int ret;

	ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY);
	if (ret < 0)
		return ret;
	ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY);
	if (ret < 0)
		return ret;

	return 0;
}

/*
 * Insert and write inode items with a given key type and offset.
 *
 * @inode:     inode to insert for
 * @key_type:  key type to insert
 * @offset:    item offset to insert at
 * @src:       source data to write
 * @len:       length of source data to write
 *
 * Write len bytes from src into items of up to 2K length.
 * The inserted items will have key (ino, key_type, offset + off) where off is
 * consecutively increasing from 0 up to the last item ending at offset + len.
 *
 * Returns 0 on success and a negative error code on failure.
 */
static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
			   const char *src, u64 len)
{
	struct btrfs_trans_handle *trans;
	struct btrfs_path *path;
	struct btrfs_root *root = inode->root;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	unsigned long copy_bytes;
	unsigned long src_offset = 0;
	void *data;
	int ret = 0;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	while (len > 0) {
		/* 1 for the new item being inserted */
		trans = btrfs_start_transaction(root, 1);
		if (IS_ERR(trans)) {
			ret = PTR_ERR(trans);
			break;
		}

		key.objectid = btrfs_ino(inode);
		key.type = key_type;
		key.offset = offset;

		/*
		 * Insert 2K at a time mostly to be friendly for smaller leaf
		 * size filesystems
		 */
		copy_bytes = min_t(u64, len, 2048);

		ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes);
		if (ret) {
			btrfs_end_transaction(trans);
			break;
		}

		leaf = path->nodes[0];

		data = btrfs_item_ptr(leaf, path->slots[0], void);
		write_extent_buffer(leaf, src + src_offset,
				    (unsigned long)data, copy_bytes);
		offset += copy_bytes;
		src_offset += copy_bytes;
		len -= copy_bytes;

		btrfs_release_path(path);
		btrfs_end_transaction(trans);
	}

	btrfs_free_path(path);
	return ret;
}

/*
 * Read inode items of the given key type and offset from the btree.
 *
 * @inode:      inode to read items of
 * @key_type:   key type to read
 * @offset:     item offset to read from
 * @dest:       Buffer to read into. This parameter has slightly tricky
 *              semantics.  If it is NULL, the function will not do any copying
 *              and will just return the size of all the items up to len bytes.
 *              If dest_page is passed, then the function will kmap_local the
 *              page and ignore dest, but it must still be non-NULL to avoid the
 *              counting-only behavior.
 * @len:        length in bytes to read
 * @dest_page:  copy into this page instead of the dest buffer
 *
 * Helper function to read items from the btree.  This returns the number of
 * bytes read or < 0 for errors.  We can return short reads if the items don't
 * exist on disk or aren't big enough to fill the desired length.  Supports
 * reading into a provided buffer (dest) or into the page cache
 *
 * Returns number of bytes read or a negative error code on failure.
 */
static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset,
			  char *dest, u64 len, struct page *dest_page)
{
	struct btrfs_path *path;
	struct btrfs_root *root = inode->root;
	struct extent_buffer *leaf;
	struct btrfs_key key;
	u64 item_end;
	u64 copy_end;
	int copied = 0;
	u32 copy_offset;
	unsigned long copy_bytes;
	unsigned long dest_offset = 0;
	void *data;
	char *kaddr = dest;
	int ret;

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

	if (dest_page)
		path->reada = READA_FORWARD;

	key.objectid = btrfs_ino(inode);
	key.type = key_type;
	key.offset = offset;

	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
	if (ret < 0) {
		goto out;
	} else if (ret > 0) {
		ret = 0;
		if (path->slots[0] == 0)
			goto out;
		path->slots[0]--;
	}

	while (len > 0) {
		leaf = path->nodes[0];
		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);

		if (key.objectid != btrfs_ino(inode) || key.type != key_type)
			break;

		item_end = btrfs_item_size(leaf, path->slots[0]) + key.offset;

		if (copied > 0) {
			/*
			 * Once we've copied something, we want all of the items
			 * to be sequential
			 */
			if (key.offset != offset)
				break;
		} else {
			/*
			 * Our initial offset might be in the middle of an
			 * item.  Make sure it all makes sense.
			 */
			if (key.offset > offset)
				break;
			if (item_end <= offset)
				break;
		}

		/* desc = NULL to just sum all the item lengths */
		if (!dest)
			copy_end = item_end;
		else
			copy_end = min(offset + len, item_end);

		/* Number of bytes in this item we want to copy */
		copy_bytes = copy_end - offset;

		/* Offset from the start of item for copying */
		copy_offset = offset - key.offset;

		if (dest) {
			if (dest_page)
				kaddr = kmap_local_page(dest_page);

			data = btrfs_item_ptr(leaf, path->slots[0], void);
			read_extent_buffer(leaf, kaddr + dest_offset,
					   (unsigned long)data + copy_offset,
					   copy_bytes);

			if (dest_page)
				kunmap_local(kaddr);
		}

		offset += copy_bytes;
		dest_offset += copy_bytes;
		len -= copy_bytes;
		copied += copy_bytes;

		path->slots[0]++;
		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
			/*
			 * We've reached the last slot in this leaf and we need
			 * to go to the next leaf.
			 */
			ret = btrfs_next_leaf(root, path);
			if (ret < 0) {
				break;
			} else if (ret > 0) {
				ret = 0;
				break;
			}
		}
	}
out:
	btrfs_free_path(path);
	if (!ret)
		ret = copied;
	return ret;
}

/*
 * Delete an fsverity orphan
 *
 * @trans:  transaction to do the delete in
 * @inode:  inode to orphan
 *
 * Capture verity orphan specific logic that is repeated in the couple places
 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes
 * with 0 links.
 *
 * Returns zero on success or a negative error code on failure.
 */
static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode)
{
	struct btrfs_root *root = inode->root;
	int ret;

	/*
	 * If the inode has no links, it is either already unlinked, or was
	 * created with O_TMPFILE. In either case, it should have an orphan from
	 * that other operation. Rather than reference count the orphans, we
	 * simply ignore them here, because we only invoke the verity path in
	 * the orphan logic when i_nlink is 1.
	 */
	if (!inode->vfs_inode.i_nlink)
		return 0;

	ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
	if (ret == -ENOENT)
		ret = 0;
	return ret;
}

/*
 * Rollback in-progress verity if we encounter an error.
 *
 * @inode:  inode verity had an error for
 *
 * We try to handle recoverable errors while enabling verity by rolling it back
 * and just failing the operation, rather than having an fs level error no
 * matter what. However, any error in rollback is unrecoverable.
 *
 * Returns 0 on success, negative error code on failure.
 */
static int rollback_verity(struct btrfs_inode *inode)
{
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_root *root = inode->root;
	int ret;

	ASSERT(inode_is_locked(&inode->vfs_inode));
	truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size);
	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
	ret = btrfs_drop_verity_items(inode);
	if (ret) {
		btrfs_handle_fs_error(root->fs_info, ret,
				"failed to drop verity items in rollback %llu",
				(u64)inode->vfs_inode.i_ino);
		goto out;
	}

	/*
	 * 1 for updating the inode flag
	 * 1 for deleting the orphan
	 */
	trans = btrfs_start_transaction(root, 2);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		trans = NULL;
		btrfs_handle_fs_error(root->fs_info, ret,
			"failed to start transaction in verity rollback %llu",
			(u64)inode->vfs_inode.i_ino);
		goto out;
	}
	inode->ro_flags &= ~BTRFS_INODE_RO_VERITY;
	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
	ret = btrfs_update_inode(trans, root, inode);
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		goto out;
	}
	ret = del_orphan(trans, inode);
	if (ret) {
		btrfs_abort_transaction(trans, ret);
		goto out;
	}
out:
	if (trans)
		btrfs_end_transaction(trans);
	return ret;
}

/*
 * Finalize making the file a valid verity file
 *
 * @inode:      inode to be marked as verity
 * @desc:       contents of the verity descriptor to write (not NULL)
 * @desc_size:  size of the verity descriptor
 *
 * Do the actual work of finalizing verity after successfully writing the Merkle
 * tree:
 *
 * - write out the descriptor items
 * - mark the inode with the verity flag
 * - delete the orphan item
 * - mark the ro compat bit
 * - clear the in progress bit
 *
 * Returns 0 on success, negative error code on failure.
 */
static int finish_verity(struct btrfs_inode *inode, const void *desc,
			 size_t desc_size)
{
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_root *root = inode->root;
	struct btrfs_verity_descriptor_item item;
	int ret;

	/* Write out the descriptor item */
	memset(&item, 0, sizeof(item));
	btrfs_set_stack_verity_descriptor_size(&item, desc_size);
	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0,
			      (const char *)&item, sizeof(item));
	if (ret)
		goto out;

	/* Write out the descriptor itself */
	ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1,
			      desc, desc_size);
	if (ret)
		goto out;

	/*
	 * 1 for updating the inode flag
	 * 1 for deleting the orphan
	 */
	trans = btrfs_start_transaction(root, 2);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto out;
	}
	inode->ro_flags |= BTRFS_INODE_RO_VERITY;
	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
	ret = btrfs_update_inode(trans, root, inode);
	if (ret)
		goto end_trans;
	ret = del_orphan(trans, inode);
	if (ret)
		goto end_trans;
	clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
	btrfs_set_fs_compat_ro(root->fs_info, VERITY);
end_trans:
	btrfs_end_transaction(trans);
out:
	return ret;

}

/*
 * fsverity op that begins enabling verity.
 *
 * @filp:  file to enable verity on
 *
 * Begin enabling fsverity for the file. We drop any existing verity items, add
 * an orphan and set the in progress bit.
 *
 * Returns 0 on success, negative error code on failure.
 */
static int btrfs_begin_enable_verity(struct file *filp)
{
	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
	struct btrfs_root *root = inode->root;
	struct btrfs_trans_handle *trans;
	int ret;

	ASSERT(inode_is_locked(file_inode(filp)));

	if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags))
		return -EBUSY;

	/*
	 * This should almost never do anything, but theoretically, it's
	 * possible that we failed to enable verity on a file, then were
	 * interrupted or failed while rolling back, failed to cleanup the
	 * orphan, and finally attempt to enable verity again.
	 */
	ret = btrfs_drop_verity_items(inode);
	if (ret)
		return ret;

	/* 1 for the orphan item */
	trans = btrfs_start_transaction(root, 1);
	if (IS_ERR(trans))
		return PTR_ERR(trans);

	ret = btrfs_orphan_add(trans, inode);
	if (!ret)
		set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags);
	btrfs_end_transaction(trans);

	return 0;
}

/*
 * fsverity op that ends enabling verity.
 *
 * @filp:              file we are finishing enabling verity on
 * @desc:              verity descriptor to write out (NULL in error conditions)
 * @desc_size:         size of the verity descriptor (variable with signatures)
 * @merkle_tree_size:  size of the merkle tree in bytes
 *
 * If desc is null, then VFS is signaling an error occurred during verity
 * enable, and we should try to rollback. Otherwise, attempt to finish verity.
 *
 * Returns 0 on success, negative error code on error.
 */
static int btrfs_end_enable_verity(struct file *filp, const void *desc,
				   size_t desc_size, u64 merkle_tree_size)
{
	struct btrfs_inode *inode = BTRFS_I(file_inode(filp));
	int ret = 0;
	int rollback_ret;

	ASSERT(inode_is_locked(file_inode(filp)));

	if (desc == NULL)
		goto rollback;

	ret = finish_verity(inode, desc, desc_size);
	if (ret)
		goto rollback;
	return ret;

rollback:
	rollback_ret = rollback_verity(inode);
	if (rollback_ret)
		btrfs_err(inode->root->fs_info,
			  "failed to rollback verity items: %d", rollback_ret);
	return ret;
}

/*
 * fsverity op that gets the struct fsverity_descriptor.
 *
 * @inode:     inode to get the descriptor of
 * @buf:       output buffer for the descriptor contents
 * @buf_size:  size of the output buffer. 0 to query the size
 *
 * fsverity does a two pass setup for reading the descriptor, in the first pass
 * it calls with buf_size = 0 to query the size of the descriptor, and then in
 * the second pass it actually reads the descriptor off disk.
 *
 * Returns the size on success or a negative error code on failure.
 */
int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size)
{
	u64 true_size;
	int ret = 0;
	struct btrfs_verity_descriptor_item item;

	memset(&item, 0, sizeof(item));
	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0,
			     (char *)&item, sizeof(item), NULL);
	if (ret < 0)
		return ret;

	if (item.reserved[0] != 0 || item.reserved[1] != 0)
		return -EUCLEAN;

	true_size = btrfs_stack_verity_descriptor_size(&item);
	if (true_size > INT_MAX)
		return -EUCLEAN;

	if (buf_size == 0)
		return true_size;
	if (buf_size < true_size)
		return -ERANGE;

	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1,
			     buf, buf_size, NULL);
	if (ret < 0)
		return ret;
	if (ret != true_size)
		return -EIO;

	return true_size;
}

/*
 * fsverity op that reads and caches a merkle tree page.
 *
 * @inode:         inode to read a merkle tree page for
 * @index:         page index relative to the start of the merkle tree
 * @num_ra_pages:  number of pages to readahead. Optional, we ignore it
 *
 * The Merkle tree is stored in the filesystem btree, but its pages are cached
 * with a logical position past EOF in the inode's mapping.
 *
 * Returns the page we read, or an ERR_PTR on error.
 */
static struct page *btrfs_read_merkle_tree_page(struct inode *inode,
						pgoff_t index,
						unsigned long num_ra_pages)
{
	struct page *page;
	u64 off = (u64)index << PAGE_SHIFT;
	loff_t merkle_pos = merkle_file_pos(inode);
	int ret;

	if (merkle_pos < 0)
		return ERR_PTR(merkle_pos);
	if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE)
		return ERR_PTR(-EFBIG);
	index += merkle_pos >> PAGE_SHIFT;
again:
	page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED);
	if (page) {
		if (PageUptodate(page))
			return page;

		lock_page(page);
		/*
		 * We only insert uptodate pages, so !Uptodate has to be
		 * an error
		 */
		if (!PageUptodate(page)) {
			unlock_page(page);
			put_page(page);
			return ERR_PTR(-EIO);
		}
		unlock_page(page);
		return page;
	}

	page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
	if (!page)
		return ERR_PTR(-ENOMEM);

	/*
	 * Merkle item keys are indexed from byte 0 in the merkle tree.
	 * They have the form:
	 *
	 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ]
	 */
	ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off,
			     page_address(page), PAGE_SIZE, page);
	if (ret < 0) {
		put_page(page);
		return ERR_PTR(ret);
	}
	if (ret < PAGE_SIZE)
		memzero_page(page, ret, PAGE_SIZE - ret);

	SetPageUptodate(page);
	ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS);

	if (!ret) {
		/* Inserted and ready for fsverity */
		unlock_page(page);
	} else {
		put_page(page);
		/* Did someone race us into inserting this page? */
		if (ret == -EEXIST)
			goto again;
		page = ERR_PTR(ret);
	}
	return page;
}

/*
 * fsverity op that writes a Merkle tree block into the btree.
 *
 * @inode:	inode to write a Merkle tree block for
 * @buf:	Merkle tree block to write
 * @pos:	the position of the block in the Merkle tree (in bytes)
 * @size:	the Merkle tree block size (in bytes)
 *
 * Returns 0 on success or negative error code on failure
 */
static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf,
					 u64 pos, unsigned int size)
{
	loff_t merkle_pos = merkle_file_pos(inode);

	if (merkle_pos < 0)
		return merkle_pos;
	if (merkle_pos > inode->i_sb->s_maxbytes - pos - size)
		return -EFBIG;

	return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY,
			       pos, buf, size);
}

const struct fsverity_operations btrfs_verityops = {
	.begin_enable_verity     = btrfs_begin_enable_verity,
	.end_enable_verity       = btrfs_end_enable_verity,
	.get_verity_descriptor   = btrfs_get_verity_descriptor,
	.read_merkle_tree_page   = btrfs_read_merkle_tree_page,
	.write_merkle_tree_block = btrfs_write_merkle_tree_block,
};