aboutsummaryrefslogtreecommitdiff
path: root/doc/develop/uefi
diff options
context:
space:
mode:
authorTom Rini2021-03-26 12:15:26 -0400
committerTom Rini2021-03-26 12:15:26 -0400
commit9c7335e4e68355a96bd5a411b2a5f85866823c58 (patch)
treecbe17eb256a5e8078a1bd7793592ebd2de1470a5 /doc/develop/uefi
parent4be994b0e1f006c271e0791a60b6363137542090 (diff)
parentfcae6682a7929abf88d9f0b756f9d5f9725e4d14 (diff)
Merge tag 'dm-pull-26mar21-take2' of git://git.denx.de/u-boot-dm into next
dtoc support for of-platdata-inst driver model support for of-platdata-inst support of-platdata-inst on x86 / coral binman support for exapanded entries binman convert docs to reST ti-sysc fix for duplicate uclass driver patman minor improvements pylibfdt build only if needed correct obscure CI error with OF_PLATDATA_INST
Diffstat (limited to 'doc/develop/uefi')
-rw-r--r--doc/develop/uefi/index.rst15
-rw-r--r--doc/develop/uefi/iscsi.rst184
-rw-r--r--doc/develop/uefi/u-boot_on_efi.rst235
-rw-r--r--doc/develop/uefi/uefi.rst498
4 files changed, 932 insertions, 0 deletions
diff --git a/doc/develop/uefi/index.rst b/doc/develop/uefi/index.rst
new file mode 100644
index 00000000000..7e65dbc5d5e
--- /dev/null
+++ b/doc/develop/uefi/index.rst
@@ -0,0 +1,15 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+Unified Extensible Firmware (UEFI)
+==================================
+
+U-Boot provides an implementation of the UEFI API allowing to run UEFI
+compliant software like Linux, GRUB, and iPXE. Furthermore U-Boot itself
+can be run an UEFI payload.
+
+.. toctree::
+ :maxdepth: 2
+
+ uefi.rst
+ u-boot_on_efi.rst
+ iscsi.rst
diff --git a/doc/develop/uefi/iscsi.rst b/doc/develop/uefi/iscsi.rst
new file mode 100644
index 00000000000..51d38cde243
--- /dev/null
+++ b/doc/develop/uefi/iscsi.rst
@@ -0,0 +1,184 @@
+.. SPDX-License-Identifier: GPL-2.0+
+.. Copyright (c) 2018 Heinrich Schuchardt
+
+iSCSI booting with U-Boot and iPXE
+==================================
+
+Motivation
+----------
+
+U-Boot has only a reduced set of supported network protocols. The focus for
+network booting has been on UDP based protocols. A TCP stack and HTTP support
+are expected to be integrated in 2018 together with a wget command.
+
+For booting a diskless computer this leaves us with BOOTP or DHCP to get the
+address of a boot script. TFTP or NFS can be used to load the boot script, the
+operating system kernel and the initial file system (initrd).
+
+These protocols are insecure. The client cannot validate the authenticity
+of the contacted servers. And the server cannot verify the identity of the
+client.
+
+Furthermore the services providing the operating system loader or kernel are
+not the ones that the operating system typically will use. Especially in a SAN
+environment this makes updating the operating system a hassle. After installing
+a new kernel version the boot files have to be copied to the TFTP server
+directory.
+
+The HTTPS protocol provides certificate based validation of servers. Sensitive
+data like passwords can be securely transmitted.
+
+The iSCSI protocol is used for connecting storage attached networks. It
+provides mutual authentication using the CHAP protocol. It typically runs on
+a TCP transport.
+
+Thus a better solution than DHCP/TFTP/NFS boot would be to load a boot script
+via HTTPS and to download any other files needed for booting via iSCSI from the
+same target where the operating system is installed.
+
+An alternative to implementing these protocols in U-Boot is to use an existing
+software that can run on top of U-Boot. iPXE[1] is the "swiss army knife" of
+network booting. It supports both HTTPS and iSCSI. It has a scripting engine for
+fine grained control of the boot process and can provide a command shell.
+
+iPXE can be built as an EFI application (named snp.efi) which can be loaded and
+run by U-Boot.
+
+Boot sequence
+-------------
+
+U-Boot loads the EFI application iPXE snp.efi using the bootefi command. This
+application has network access via the simple network protocol offered by
+U-Boot.
+
+iPXE executes its internal script. This script may optionally chain load a
+secondary boot script via HTTPS or open a shell.
+
+For the further boot process iPXE connects to the iSCSI server. This includes
+the mutual authentication using the CHAP protocol. After the authentication iPXE
+has access to the iSCSI targets.
+
+For a selected iSCSI target iPXE sets up a handle with the block IO protocol. It
+uses the ConnectController boot service of U-Boot to request U-Boot to connect a
+file system driver. U-Boot reads from the iSCSI drive via the block IO protocol
+offered by iPXE. It creates the partition handles and installs the simple file
+protocol. Now iPXE can call the simple file protocol to load GRUB[2]. U-Boot
+uses the block IO protocol offered by iPXE to fulfill the request.
+
+Once GRUB is started it uses the same block IO protocol to load Linux. Via
+the EFI stub Linux is called as an EFI application::
+
+ +--------+ +--------+
+ | | Runs | |
+ | U-Boot |========>| iPXE |
+ | EFI | | snp.efi|
+ +--------+ | | DHCP | |
+ | |<===|********|<========| |
+ | DHCP | | | Get IP | |
+ | Server | | | Address | |
+ | |===>|********|========>| |
+ +--------+ | | Response| |
+ | | | |
+ | | | |
+ +--------+ | | HTTPS | |
+ | |<===|********|<========| |
+ | HTTPS | | | Load | |
+ | Server | | | Script | |
+ | |===>|********|========>| |
+ +--------+ | | | |
+ | | | |
+ | | | |
+ +--------+ | | iSCSI | |
+ | |<===|********|<========| |
+ | iSCSI | | | Auth | |
+ | Server |===>|********|========>| |
+ | | | | | |
+ | | | | Loads | |
+ | |<===|********|<========| | +--------+
+ | | | | GRUB | | Runs | |
+ | |===>|********|========>| |======>| GRUB |
+ | | | | | | | |
+ | | | | | | | |
+ | | | | | | Loads | |
+ | |<===|********|<========|********|<======| | +--------+
+ | | | | | | Linux | | Runs | |
+ | |===>|********|========>|********|======>| |=====>| Linux |
+ | | | | | | | | | |
+ +--------+ +--------+ +--------+ +--------+ | |
+ | |
+ | |
+ | ~ ~ ~ ~|
+
+Security
+--------
+
+The iSCSI protocol is not encrypted. The traffic could be secured using IPsec
+but neither U-Boot nor iPXE does support this. So we should at least separate
+the iSCSI traffic from all other network traffic. This can be achieved using a
+virtual local area network (VLAN).
+
+Configuration
+-------------
+
+iPXE
+~~~~
+
+For running iPXE on arm64 the bin-arm64-efi/snp.efi build target is needed::
+
+ git clone http://git.ipxe.org/ipxe.git
+ cd ipxe/src
+ make bin-arm64-efi/snp.efi -j6 EMBED=myscript.ipxe
+
+The available commands for the boot script are documented at:
+
+http://ipxe.org/cmd
+
+Credentials are managed as environment variables. These are described here:
+
+http://ipxe.org/cfg
+
+iPXE by default will put the CPU to rest when waiting for input. U-Boot does
+not wake it up due to missing interrupt support. To avoid this behavior create
+file src/config/local/nap.h:
+
+.. code-block:: c
+
+ /* nap.h */
+ #undef NAP_EFIX86
+ #undef NAP_EFIARM
+ #define NAP_NULL
+
+The supported commands in iPXE are controlled by an include, too. Putting the
+following into src/config/local/general.h is sufficient for most use cases:
+
+.. code-block:: c
+
+ /* general.h */
+ #define NSLOOKUP_CMD /* Name resolution command */
+ #define PING_CMD /* Ping command */
+ #define NTP_CMD /* NTP commands */
+ #define VLAN_CMD /* VLAN commands */
+ #define IMAGE_EFI /* EFI image support */
+ #define DOWNLOAD_PROTO_HTTPS /* Secure Hypertext Transfer Protocol */
+ #define DOWNLOAD_PROTO_FTP /* File Transfer Protocol */
+ #define DOWNLOAD_PROTO_NFS /* Network File System Protocol */
+ #define DOWNLOAD_PROTO_FILE /* Local file system access */
+
+Open-iSCSI
+~~~~~~~~~~
+
+When the root file system is on an iSCSI drive you should disable pings and set
+the replacement timer to a high value in the configuration file [3]::
+
+ node.conn[0].timeo.noop_out_interval = 0
+ node.conn[0].timeo.noop_out_timeout = 0
+ node.session.timeo.replacement_timeout = 86400
+
+Links
+-----
+
+* [1] https://ipxe.org - iPXE open source boot firmware
+* [2] https://www.gnu.org/software/grub/ -
+ GNU GRUB (Grand Unified Bootloader)
+* [3] https://github.com/open-iscsi/open-iscsi/blob/master/README -
+ Open-iSCSI README
diff --git a/doc/develop/uefi/u-boot_on_efi.rst b/doc/develop/uefi/u-boot_on_efi.rst
new file mode 100644
index 00000000000..c9a41bc919f
--- /dev/null
+++ b/doc/develop/uefi/u-boot_on_efi.rst
@@ -0,0 +1,235 @@
+.. SPDX-License-Identifier: GPL-2.0+
+.. Copyright (C) 2015 Google, Inc
+
+U-Boot on EFI
+=============
+This document provides information about U-Boot running on top of EFI, either
+as an application or just as a means of getting U-Boot onto a new platform.
+
+
+Motivation
+----------
+Running U-Boot on EFI is useful in several situations:
+
+- You have EFI running on a board but U-Boot does not natively support it
+ fully yet. You can boot into U-Boot from EFI and use that until U-Boot is
+ fully ported
+
+- You need to use an EFI implementation (e.g. UEFI) because your vendor
+ requires it in order to provide support
+
+- You plan to use coreboot to boot into U-Boot but coreboot support does
+ not currently exist for your platform. In the meantime you can use U-Boot
+ on EFI and then move to U-Boot on coreboot when ready
+
+- You use EFI but want to experiment with a simpler alternative like U-Boot
+
+
+Status
+------
+Only x86 is supported at present. If you are using EFI on another architecture
+you may want to reconsider. However, much of the code is generic so could be
+ported.
+
+U-Boot supports running as an EFI application for 32-bit EFI only. This is
+not very useful since only a serial port is provided. You can look around at
+memory and type 'help' but that is about it.
+
+More usefully, U-Boot supports building itself as a payload for either 32-bit
+or 64-bit EFI. U-Boot is packaged up and loaded in its entirety by EFI. Once
+started, U-Boot changes to 32-bit mode (currently) and takes over the
+machine. You can use devices, boot a kernel, etc.
+
+
+Build Instructions
+------------------
+First choose a board that has EFI support and obtain an EFI implementation
+for that board. It will be either 32-bit or 64-bit. Alternatively, you can
+opt for using QEMU [1] and the OVMF [2], as detailed below.
+
+To build U-Boot as an EFI application (32-bit EFI required), enable CONFIG_EFI
+and CONFIG_EFI_APP. The efi-x86_app config (efi-x86_app_defconfig) is set up
+for this. Just build U-Boot as normal, e.g.::
+
+ make efi-x86_app_defconfig
+ make
+
+To build U-Boot as an EFI payload (32-bit or 64-bit EFI can be used), enable
+CONFIG_EFI, CONFIG_EFI_STUB, and select either CONFIG_EFI_STUB_32BIT or
+CONFIG_EFI_STUB_64BIT. The efi-x86_payload configs (efi-x86_payload32_defconfig
+and efi-x86_payload32_defconfig) are set up for this. Then build U-Boot as
+normal, e.g.::
+
+ make efi-x86_payload32_defconfig (or efi-x86_payload64_defconfig)
+ make
+
+You will end up with one of these files depending on what you build for:
+
+* u-boot-app.efi - U-Boot EFI application
+* u-boot-payload.efi - U-Boot EFI payload application
+
+
+Trying it out
+-------------
+QEMU is an emulator and it can emulate an x86 machine. Please make sure your
+QEMU version is 2.3.0 or above to test this. You can run the payload with
+something like this::
+
+ mkdir /tmp/efi
+ cp /path/to/u-boot*.efi /tmp/efi
+ qemu-system-x86_64 -bios bios.bin -hda fat:/tmp/efi/
+
+Add -nographic if you want to use the terminal for output. Once it starts
+type 'fs0:u-boot-payload.efi' to run the payload or 'fs0:u-boot-app.efi' to
+run the application. 'bios.bin' is the EFI 'BIOS'. Check [2] to obtain a
+prebuilt EFI BIOS for QEMU or you can build one from source as well.
+
+To try it on real hardware, put u-boot-app.efi on a suitable boot medium,
+such as a USB stick. Then you can type something like this to start it::
+
+ fs0:u-boot-payload.efi
+
+(or fs0:u-boot-app.efi for the application)
+
+This will start the payload, copy U-Boot into RAM and start U-Boot. Note
+that EFI does not support booting a 64-bit application from a 32-bit
+EFI (or vice versa). Also it will often fail to print an error message if
+you get this wrong.
+
+
+Inner workings
+--------------
+Here follow a few implementation notes for those who want to fiddle with
+this and perhaps contribute patches.
+
+The application and payload approaches sound similar but are in fact
+implemented completely differently.
+
+EFI Application
+~~~~~~~~~~~~~~~
+For the application the whole of U-Boot is built as a shared library. The
+efi_main() function is in lib/efi/efi_app.c. It sets up some basic EFI
+functions with efi_init(), sets up U-Boot global_data, allocates memory for
+U-Boot's malloc(), etc. and enters the normal init sequence (board_init_f()
+and board_init_r()).
+
+Since U-Boot limits its memory access to the allocated regions very little
+special code is needed. The CONFIG_EFI_APP option controls a few things
+that need to change so 'git grep CONFIG_EFI_APP' may be instructive.
+The CONFIG_EFI option controls more general EFI adjustments.
+
+The only available driver is the serial driver. This calls back into EFI
+'boot services' to send and receive characters. Although it is implemented
+as a serial driver the console device is not necessarilly serial. If you
+boot EFI with video output then the 'serial' device will operate on your
+target devices's display instead and the device's USB keyboard will also
+work if connected. If you have both serial and video output, then both
+consoles will be active. Even though U-Boot does the same thing normally,
+These are features of EFI, not U-Boot.
+
+Very little code is involved in implementing the EFI application feature.
+U-Boot is highly portable. Most of the difficulty is in modifying the
+Makefile settings to pass the right build flags. In particular there is very
+little x86-specific code involved - you can find most of it in
+arch/x86/cpu. Porting to ARM (which can also use EFI if you are brave
+enough) should be straightforward.
+
+Use the 'reset' command to get back to EFI.
+
+EFI Payload
+~~~~~~~~~~~
+The payload approach is a different kettle of fish. It works by building
+U-Boot exactly as normal for your target board, then adding the entire
+image (including device tree) into a small EFI stub application responsible
+for booting it. The stub application is built as a normal EFI application
+except that it has a lot of data attached to it.
+
+The stub application is implemented in lib/efi/efi_stub.c. The efi_main()
+function is called by EFI. It is responsible for copying U-Boot from its
+original location into memory, disabling EFI boot services and starting
+U-Boot. U-Boot then starts as normal, relocates, starts all drivers, etc.
+
+The stub application is architecture-dependent. At present it has some
+x86-specific code and a comment at the top of efi_stub.c describes this.
+
+While the stub application does allocate some memory from EFI this is not
+used by U-Boot (the payload). In fact when U-Boot starts it has all of the
+memory available to it and can operate as it pleases (but see the next
+section).
+
+Tables
+~~~~~~
+The payload can pass information to U-Boot in the form of EFI tables. At
+present this feature is used to pass the EFI memory map, an inordinately
+large list of memory regions. You can use the 'efi mem all' command to
+display this list. U-Boot uses the list to work out where to relocate
+itself.
+
+Although U-Boot can use any memory it likes, EFI marks some memory as used
+by 'run-time services', code that hangs around while U-Boot is running and
+is even present when Linux is running. This is common on x86 and provides
+a way for Linux to call back into the firmware to control things like CPU
+fan speed. U-Boot uses only 'conventional' memory, in EFI terminology. It
+will relocate itself to the top of the largest block of memory it can find
+below 4GB.
+
+Interrupts
+~~~~~~~~~~
+U-Boot drivers typically don't use interrupts. Since EFI enables interrupts
+it is possible that an interrupt will fire that U-Boot cannot handle. This
+seems to cause problems. For this reason the U-Boot payload runs with
+interrupts disabled at present.
+
+32/64-bit
+~~~~~~~~~
+While the EFI application can in principle be built as either 32- or 64-bit,
+only 32-bit is currently supported. This means that the application can only
+be used with 32-bit EFI.
+
+The payload stub can be build as either 32- or 64-bits. Only a small amount
+of code is built this way (see the extra- line in lib/efi/Makefile).
+Everything else is built as a normal U-Boot, so is always 32-bit on x86 at
+present.
+
+Future work
+-----------
+This work could be extended in a number of ways:
+
+- Add ARM support
+
+- Add 64-bit application support
+
+- Figure out how to solve the interrupt problem
+
+- Add more drivers to the application side (e.g. video, block devices, USB,
+ environment access). This would mostly be an academic exercise as a strong
+ use case is not readily apparent, but it might be fun.
+
+- Avoid turning off boot services in the stub. Instead allow U-Boot to make
+ use of boot services in case it wants to. It is unclear what it might want
+ though.
+
+Where is the code?
+------------------
+lib/efi
+ payload stub, application, support code. Mostly arch-neutral
+
+arch/x86/cpu/efi
+ x86 support code for running as an EFI application and payload
+
+board/efi/efi-x86_app/efi.c
+ x86 board code for running as an EFI application
+
+board/efi/efi-x86_payload
+ generic x86 EFI payload board support code
+
+common/cmd_efi.c
+ the 'efi' command
+
+--
+Ben Stoltz, Simon Glass
+Google, Inc
+July 2015
+
+* [1] http://www.qemu.org
+* [2] http://www.tianocore.org/ovmf/
diff --git a/doc/develop/uefi/uefi.rst b/doc/develop/uefi/uefi.rst
new file mode 100644
index 00000000000..b3494c22e07
--- /dev/null
+++ b/doc/develop/uefi/uefi.rst
@@ -0,0 +1,498 @@
+.. SPDX-License-Identifier: GPL-2.0+
+.. Copyright (c) 2018 Heinrich Schuchardt
+
+UEFI on U-Boot
+==============
+
+The Unified Extensible Firmware Interface Specification (UEFI) [1] has become
+the default for booting on AArch64 and x86 systems. It provides a stable API for
+the interaction of drivers and applications with the firmware. The API comprises
+access to block storage, network, and console to name a few. The Linux kernel
+and boot loaders like GRUB or the FreeBSD loader can be executed.
+
+Development target
+------------------
+
+The implementation of UEFI in U-Boot strives to reach the requirements described
+in the "Embedded Base Boot Requirements (EBBR) Specification - Release v1.0"
+[2]. The "Server Base Boot Requirements System Software on ARM Platforms" [3]
+describes a superset of the EBBR specification and may be used as further
+reference.
+
+A full blown UEFI implementation would contradict the U-Boot design principle
+"keep it small".
+
+Building U-Boot for UEFI
+------------------------
+
+The UEFI standard supports only little-endian systems. The UEFI support can be
+activated for ARM and x86 by specifying::
+
+ CONFIG_CMD_BOOTEFI=y
+ CONFIG_EFI_LOADER=y
+
+in the .config file.
+
+Support for attaching virtual block devices, e.g. iSCSI drives connected by the
+loaded UEFI application [4], requires::
+
+ CONFIG_BLK=y
+ CONFIG_PARTITIONS=y
+
+Executing a UEFI binary
+~~~~~~~~~~~~~~~~~~~~~~~
+
+The bootefi command is used to start UEFI applications or to install UEFI
+drivers. It takes two parameters::
+
+ bootefi <image address> [fdt address]
+
+* image address - the memory address of the UEFI binary
+* fdt address - the memory address of the flattened device tree
+
+Below you find the output of an example session starting GRUB::
+
+ => load mmc 0:2 ${fdt_addr_r} boot/dtb
+ 29830 bytes read in 14 ms (2 MiB/s)
+ => load mmc 0:1 ${kernel_addr_r} efi/debian/grubaa64.efi
+ reading efi/debian/grubaa64.efi
+ 120832 bytes read in 7 ms (16.5 MiB/s)
+ => bootefi ${kernel_addr_r} ${fdt_addr_r}
+
+When booting from a memory location it is unknown from which file it was loaded.
+Therefore the bootefi command uses the device path of the block device partition
+or the network adapter and the file name of the most recently loaded PE-COFF
+file when setting up the loaded image protocol.
+
+Launching a UEFI binary from a FIT image
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A signed FIT image can be used to securely boot a UEFI image via the
+bootm command. This feature is available if U-Boot is configured with::
+
+ CONFIG_BOOTM_EFI=y
+
+A sample configuration is provided as file doc/uImage.FIT/uefi.its.
+
+Below you find the output of an example session starting GRUB::
+
+ => load mmc 0:1 ${kernel_addr_r} image.fit
+ 4620426 bytes read in 83 ms (53.1 MiB/s)
+ => bootm ${kernel_addr_r}#config-grub-nofdt
+ ## Loading kernel from FIT Image at 40400000 ...
+ Using 'config-grub-nofdt' configuration
+ Verifying Hash Integrity ... sha256,rsa2048:dev+ OK
+ Trying 'efi-grub' kernel subimage
+ Description: GRUB EFI Firmware
+ Created: 2019-11-20 8:18:16 UTC
+ Type: Kernel Image (no loading done)
+ Compression: uncompressed
+ Data Start: 0x404000d0
+ Data Size: 450560 Bytes = 440 KiB
+ Hash algo: sha256
+ Hash value: 4dbee00021112df618f58b3f7cf5e1595533d543094064b9ce991e8b054a9eec
+ Verifying Hash Integrity ... sha256+ OK
+ XIP Kernel Image (no loading done)
+ ## Transferring control to EFI (at address 404000d0) ...
+ Welcome to GRUB!
+
+See doc/uImage.FIT/howto.txt for an introduction to FIT images.
+
+Configuring UEFI secure boot
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The UEFI specification[1] defines a secure way of executing UEFI images
+by verifying a signature (or message digest) of image with certificates.
+This feature on U-Boot is enabled with::
+
+ CONFIG_UEFI_SECURE_BOOT=y
+
+To make the boot sequence safe, you need to establish a chain of trust;
+In UEFI secure boot the chain trust is defined by the following UEFI variables
+
+* PK - Platform Key
+* KEK - Key Exchange Keys
+* db - white list database
+* dbx - black list database
+
+An in depth description of UEFI secure boot is beyond the scope of this
+document. Please, refer to the UEFI specification and available online
+documentation. Here is a simple example that you can follow for your initial
+attempt (Please note that the actual steps will depend on your system and
+environment.):
+
+Install the required tools on your host
+
+* openssl
+* efitools
+* sbsigntool
+
+Create signing keys and the key database on your host:
+
+The platform key
+
+.. code-block:: bash
+
+ openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=TEST_PK/ \
+ -keyout PK.key -out PK.crt -nodes -days 365
+ cert-to-efi-sig-list -g 11111111-2222-3333-4444-123456789abc \
+ PK.crt PK.esl;
+ sign-efi-sig-list -c PK.crt -k PK.key PK PK.esl PK.auth
+
+The key exchange keys
+
+.. code-block:: bash
+
+ openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=TEST_KEK/ \
+ -keyout KEK.key -out KEK.crt -nodes -days 365
+ cert-to-efi-sig-list -g 11111111-2222-3333-4444-123456789abc \
+ KEK.crt KEK.esl
+ sign-efi-sig-list -c PK.crt -k PK.key KEK KEK.esl KEK.auth
+
+The whitelist database
+
+.. code-block:: bash
+
+ openssl req -x509 -sha256 -newkey rsa:2048 -subj /CN=TEST_db/ \
+ -keyout db.key -out db.crt -nodes -days 365
+ cert-to-efi-sig-list -g 11111111-2222-3333-4444-123456789abc \
+ db.crt db.esl
+ sign-efi-sig-list -c KEK.crt -k KEK.key db db.esl db.auth
+
+Copy the \*.auth files to media, say mmc, that is accessible from U-Boot.
+
+Sign an image with one of the keys in "db" on your host
+
+.. code-block:: bash
+
+ sbsign --key db.key --cert db.crt helloworld.efi
+
+Now in U-Boot install the keys on your board::
+
+ fatload mmc 0:1 <tmpaddr> PK.auth
+ setenv -e -nv -bs -rt -at -i <tmpaddr>:$filesize PK
+ fatload mmc 0:1 <tmpaddr> KEK.auth
+ setenv -e -nv -bs -rt -at -i <tmpaddr>:$filesize KEK
+ fatload mmc 0:1 <tmpaddr> db.auth
+ setenv -e -nv -bs -rt -at -i <tmpaddr>:$filesize db
+
+Set up boot parameters on your board::
+
+ efidebug boot add -b 1 HELLO mmc 0:1 /helloworld.efi.signed ""
+
+Now your board can run the signed image via the boot manager (see below).
+You can also try this sequence by running Pytest, test_efi_secboot,
+on the sandbox
+
+.. code-block:: bash
+
+ cd <U-Boot source directory>
+ pytest.py test/py/tests/test_efi_secboot/test_signed.py --bd sandbox
+
+UEFI binaries may be signed by Microsoft using the following certificates:
+
+* KEK: Microsoft Corporation KEK CA 2011
+ http://go.microsoft.com/fwlink/?LinkId=321185.
+* db: Microsoft Windows Production PCA 2011
+ http://go.microsoft.com/fwlink/p/?linkid=321192.
+* db: Microsoft Corporation UEFI CA 2011
+ http://go.microsoft.com/fwlink/p/?linkid=321194.
+
+Using OP-TEE for EFI variables
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Instead of implementing UEFI variable services inside U-Boot they can
+also be provided in the secure world by a module for OP-TEE[1]. The
+interface between U-Boot and OP-TEE for variable services is enabled by
+CONFIG_EFI_MM_COMM_TEE=y.
+
+Tianocore EDK II's standalone management mode driver for variables can
+be linked to OP-TEE for this purpose. This module uses the Replay
+Protected Memory Block (RPMB) of an eMMC device for persisting
+non-volatile variables. When calling the variable services via the
+OP-TEE API U-Boot's OP-TEE supplicant relays calls to the RPMB driver
+which has to be enabled via CONFIG_SUPPORT_EMMC_RPMB=y.
+
+[1] https://optee.readthedocs.io/ - OP-TEE documentation
+
+Executing the boot manager
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The UEFI specification foresees to define boot entries and boot sequence via
+UEFI variables. Booting according to these variables is possible via::
+
+ bootefi bootmgr [fdt address]
+
+As of U-Boot v2020.10 UEFI variables cannot be set at runtime. The U-Boot
+command 'efidebug' can be used to set the variables.
+
+Executing the built in hello world application
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+A hello world UEFI application can be built with::
+
+ CONFIG_CMD_BOOTEFI_HELLO_COMPILE=y
+
+It can be embedded into the U-Boot binary with::
+
+ CONFIG_CMD_BOOTEFI_HELLO=y
+
+The bootefi command is used to start the embedded hello world application::
+
+ bootefi hello [fdt address]
+
+Below you find the output of an example session::
+
+ => bootefi hello ${fdtcontroladdr}
+ ## Starting EFI application at 01000000 ...
+ WARNING: using memory device/image path, this may confuse some payloads!
+ Hello, world!
+ Running on UEFI 2.7
+ Have SMBIOS table
+ Have device tree
+ Load options: root=/dev/sdb3 init=/sbin/init rootwait ro
+ ## Application terminated, r = 0
+
+The environment variable fdtcontroladdr points to U-Boot's internal device tree
+(if available).
+
+Executing the built-in self-test
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+An UEFI self-test suite can be embedded in U-Boot by building with::
+
+ CONFIG_CMD_BOOTEFI_SELFTEST=y
+
+For testing the UEFI implementation the bootefi command can be used to start the
+self-test::
+
+ bootefi selftest [fdt address]
+
+The environment variable 'efi_selftest' can be used to select a single test. If
+it is not provided all tests are executed except those marked as 'on request'.
+If the environment variable is set to 'list' a list of all tests is shown.
+
+Below you can find the output of an example session::
+
+ => setenv efi_selftest simple network protocol
+ => bootefi selftest
+ Testing EFI API implementation
+ Selected test: 'simple network protocol'
+ Setting up 'simple network protocol'
+ Setting up 'simple network protocol' succeeded
+ Executing 'simple network protocol'
+ DHCP Discover
+ DHCP reply received from 192.168.76.2 (52:55:c0:a8:4c:02)
+ as broadcast message.
+ Executing 'simple network protocol' succeeded
+ Tearing down 'simple network protocol'
+ Tearing down 'simple network protocol' succeeded
+ Boot services terminated
+ Summary: 0 failures
+ Preparing for reset. Press any key.
+
+The UEFI life cycle
+-------------------
+
+After the U-Boot platform has been initialized the UEFI API provides two kinds
+of services:
+
+* boot services
+* runtime services
+
+The API can be extended by loading UEFI drivers which come in two variants:
+
+* boot drivers
+* runtime drivers
+
+UEFI drivers are installed with U-Boot's bootefi command. With the same command
+UEFI applications can be executed.
+
+Loaded images of UEFI drivers stay in memory after returning to U-Boot while
+loaded images of applications are removed from memory.
+
+An UEFI application (e.g. an operating system) that wants to take full control
+of the system calls ExitBootServices. After a UEFI application calls
+ExitBootServices
+
+* boot services are not available anymore
+* timer events are stopped
+* the memory used by U-Boot except for runtime services is released
+* the memory used by boot time drivers is released
+
+So this is a point of no return. Afterwards the UEFI application can only return
+to U-Boot by rebooting.
+
+The UEFI object model
+---------------------
+
+UEFI offers a flexible and expandable object model. The objects in the UEFI API
+are devices, drivers, and loaded images. These objects are referenced by
+handles.
+
+The interfaces implemented by the objects are referred to as protocols. These
+are identified by GUIDs. They can be installed and uninstalled by calling the
+appropriate boot services.
+
+Handles are created by the InstallProtocolInterface or the
+InstallMultipleProtocolinterfaces service if NULL is passed as handle.
+
+Handles are deleted when the last protocol has been removed with the
+UninstallProtocolInterface or the UninstallMultipleProtocolInterfaces service.
+
+Devices offer the EFI_DEVICE_PATH_PROTOCOL. A device path is the concatenation
+of device nodes. By their device paths all devices of a system are arranged in a
+tree.
+
+Drivers offer the EFI_DRIVER_BINDING_PROTOCOL. This protocol is used to connect
+a driver to devices (which are referenced as controllers in this context).
+
+Loaded images offer the EFI_LOADED_IMAGE_PROTOCOL. This protocol provides meta
+information about the image and a pointer to the unload callback function.
+
+The UEFI events
+---------------
+
+In the UEFI terminology an event is a data object referencing a notification
+function which is queued for calling when the event is signaled. The following
+types of events exist:
+
+* periodic and single shot timer events
+* exit boot services events, triggered by calling the ExitBootServices() service
+* virtual address change events
+* memory map change events
+* read to boot events
+* reset system events
+* system table events
+* events that are only triggered programmatically
+
+Events can be created with the CreateEvent service and deleted with CloseEvent
+service.
+
+Events can be assigned to an event group. If any of the events in a group is
+signaled, all other events in the group are also set to the signaled state.
+
+The UEFI driver model
+---------------------
+
+A driver is specific for a single protocol installed on a device. To install a
+driver on a device the ConnectController service is called. In this context
+controller refers to the device for which the driver is installed.
+
+The relevant drivers are identified using the EFI_DRIVER_BINDING_PROTOCOL. This
+protocol has has three functions:
+
+* supported - determines if the driver is compatible with the device
+* start - installs the driver by opening the relevant protocol with
+ attribute EFI_OPEN_PROTOCOL_BY_DRIVER
+* stop - uninstalls the driver
+
+The driver may create child controllers (child devices). E.g. a driver for block
+IO devices will create the device handles for the partitions. The child
+controllers will open the supported protocol with the attribute
+EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
+
+A driver can be detached from a device using the DisconnectController service.
+
+U-Boot devices mapped as UEFI devices
+-------------------------------------
+
+Some of the U-Boot devices are mapped as UEFI devices
+
+* block IO devices
+* console
+* graphical output
+* network adapter
+
+As of U-Boot 2018.03 the logic for doing this is hard coded.
+
+The development target is to integrate the setup of these UEFI devices with the
+U-Boot driver model [5]. So when a U-Boot device is discovered a handle should
+be created and the device path protocol and the relevant IO protocol should be
+installed. The UEFI driver then would be attached by calling ConnectController.
+When a U-Boot device is removed DisconnectController should be called.
+
+UEFI devices mapped as U-Boot devices
+-------------------------------------
+
+UEFI drivers binaries and applications may create new (virtual) devices, install
+a protocol and call the ConnectController service. Now the matching UEFI driver
+is determined by iterating over the implementations of the
+EFI_DRIVER_BINDING_PROTOCOL.
+
+It is the task of the UEFI driver to create a corresponding U-Boot device and to
+proxy calls for this U-Boot device to the controller.
+
+In U-Boot 2018.03 this has only been implemented for block IO devices.
+
+UEFI uclass
+~~~~~~~~~~~
+
+An UEFI uclass driver (lib/efi_driver/efi_uclass.c) has been created that
+takes care of initializing the UEFI drivers and providing the
+EFI_DRIVER_BINDING_PROTOCOL implementation for the UEFI drivers.
+
+A linker created list is used to keep track of the UEFI drivers. To create an
+entry in the list the UEFI driver uses the U_BOOT_DRIVER macro specifying
+UCLASS_EFI as the ID of its uclass, e.g::
+
+ /* Identify as UEFI driver */
+ U_BOOT_DRIVER(efi_block) = {
+ .name = "EFI block driver",
+ .id = UCLASS_EFI,
+ .ops = &driver_ops,
+ };
+
+The available operations are defined via the structure struct efi_driver_ops::
+
+ struct efi_driver_ops {
+ const efi_guid_t *protocol;
+ const efi_guid_t *child_protocol;
+ int (*bind)(efi_handle_t handle, void *interface);
+ };
+
+When the supported() function of the EFI_DRIVER_BINDING_PROTOCOL is called the
+uclass checks if the protocol GUID matches the protocol GUID of the UEFI driver.
+In the start() function the bind() function of the UEFI driver is called after
+checking the GUID.
+The stop() function of the EFI_DRIVER_BINDING_PROTOCOL disconnects the child
+controllers created by the UEFI driver and the UEFI driver. (In U-Boot v2013.03
+this is not yet completely implemented.)
+
+UEFI block IO driver
+~~~~~~~~~~~~~~~~~~~~
+
+The UEFI block IO driver supports devices exposing the EFI_BLOCK_IO_PROTOCOL.
+
+When connected it creates a new U-Boot block IO device with interface type
+IF_TYPE_EFI, adds child controllers mapping the partitions, and installs the
+EFI_SIMPLE_FILE_SYSTEM_PROTOCOL on these. This can be used together with the
+software iPXE to boot from iSCSI network drives [4].
+
+This driver is only available if U-Boot is configured with::
+
+ CONFIG_BLK=y
+ CONFIG_PARTITIONS=y
+
+Miscellaneous
+-------------
+
+Load file 2 protocol
+~~~~~~~~~~~~~~~~~~~~
+
+The load file 2 protocol can be used by the Linux kernel to load the initial
+RAM disk. U-Boot can be configured to provide an implementation with::
+
+ EFI_LOAD_FILE2_INITRD=y
+ EFI_INITRD_FILESPEC=interface dev:part path_to_initrd
+
+Links
+-----
+
+* [1] http://uefi.org/specifications - UEFI specifications
+* [2] https://github.com/ARM-software/ebbr/releases/download/v1.0/ebbr-v1.0.pdf -
+ Embedded Base Boot Requirements (EBBR) Specification - Release v1.0
+* [3] https://developer.arm.com/docs/den0044/latest/server-base-boot-requirements-system-software-on-arm-platforms-version-11 -
+ Server Base Boot Requirements System Software on ARM Platforms - Version 1.1
+* [4] :doc:`iscsi`
+* [5] :doc:`../driver-model/index`