// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2010 * Texas Instruments, * * Aneesh V */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if CONFIG_IS_ENABLED(BANNER_PRINT) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; DECLARE_BINMAN_MAGIC_SYM; #ifndef CFG_SYS_UBOOT_START #define CFG_SYS_UBOOT_START CONFIG_TEXT_BASE #endif u32 *boot_params_ptr = NULL; #if CONFIG_IS_ENABLED(BINMAN_UBOOT_SYMBOLS) /* See spl.h for information about this */ binman_sym_declare(ulong, u_boot_any, image_pos); binman_sym_declare(ulong, u_boot_any, size); #ifdef CONFIG_TPL binman_sym_declare(ulong, u_boot_spl_any, image_pos); binman_sym_declare(ulong, u_boot_spl_any, size); #endif #ifdef CONFIG_VPL binman_sym_declare(ulong, u_boot_vpl_any, image_pos); binman_sym_declare(ulong, u_boot_vpl_any, size); #endif #endif /* BINMAN_UBOOT_SYMBOLS */ /* Define board data structure */ static struct bd_info bdata __attribute__ ((section(".data"))); #if CONFIG_IS_ENABLED(SHOW_BOOT_PROGRESS) /* * Board-specific Platform code can reimplement show_boot_progress () if needed */ __weak void show_boot_progress(int val) {} #endif #if defined(CONFIG_SPL_OS_BOOT) || CONFIG_IS_ENABLED(HANDOFF) || \ defined(CONFIG_SPL_ATF) /* weak, default platform-specific function to initialize dram banks */ __weak int dram_init_banksize(void) { return 0; } #endif /* * Default function to determine if u-boot or the OS should * be started. This implementation always returns 1. * * Please implement your own board specific funcion to do this. * * RETURN * 0 to not start u-boot * positive if u-boot should start */ #if CONFIG_IS_ENABLED(OS_BOOT) __weak int spl_start_uboot(void) { puts(SPL_TPL_PROMPT "Please implement spl_start_uboot() for your board\n"); puts(SPL_TPL_PROMPT "Direct Linux boot not active!\n"); return 1; } /* * Weak default function for arch specific zImage check. Return zero * and fill start and end address if image is recognized. */ int __weak bootz_setup(ulong image, ulong *start, ulong *end) { return 1; } int __weak booti_setup(ulong image, ulong *relocated_addr, ulong *size, bool force_reloc) { return 1; } #endif /* Weak default function for arch/board-specific fixups to the spl_image_info */ void __weak spl_perform_fixups(struct spl_image_info *spl_image) { } void spl_fixup_fdt(void *fdt_blob) { #if defined(CONFIG_SPL_OF_LIBFDT) int err; if (!fdt_blob) return; err = fdt_check_header(fdt_blob); if (err < 0) { printf("fdt_root: %s\n", fdt_strerror(err)); return; } /* fixup the memory dt node */ err = fdt_shrink_to_minimum(fdt_blob, 0); if (err == 0) { printf(SPL_TPL_PROMPT "fdt_shrink_to_minimum err - %d\n", err); return; } err = arch_fixup_fdt(fdt_blob); if (err) { printf(SPL_TPL_PROMPT "arch_fixup_fdt err - %d\n", err); return; } #endif } ulong spl_get_image_pos(void) { if (!CONFIG_IS_ENABLED(BINMAN_UBOOT_SYMBOLS)) return BINMAN_SYM_MISSING; #ifdef CONFIG_VPL if (spl_next_phase() == PHASE_VPL) return binman_sym(ulong, u_boot_vpl_any, image_pos); #endif return spl_next_phase() == PHASE_SPL ? binman_sym(ulong, u_boot_spl_any, image_pos) : binman_sym(ulong, u_boot_any, image_pos); } ulong spl_get_image_size(void) { if (!CONFIG_IS_ENABLED(BINMAN_UBOOT_SYMBOLS)) return BINMAN_SYM_MISSING; #ifdef CONFIG_VPL if (spl_next_phase() == PHASE_VPL) return binman_sym(ulong, u_boot_vpl_any, size); #endif return spl_next_phase() == PHASE_SPL ? binman_sym(ulong, u_boot_spl_any, size) : binman_sym(ulong, u_boot_any, size); } ulong spl_get_image_text_base(void) { #ifdef CONFIG_VPL if (spl_next_phase() == PHASE_VPL) return CONFIG_VPL_TEXT_BASE; #endif return spl_next_phase() == PHASE_SPL ? CONFIG_SPL_TEXT_BASE : CONFIG_TEXT_BASE; } /* * Weak default function for board specific cleanup/preparation before * Linux boot. Some boards/platforms might not need it, so just provide * an empty stub here. */ __weak void spl_board_prepare_for_linux(void) { /* Nothing to do! */ } __weak void spl_board_prepare_for_optee(void *fdt) { } __weak const char *spl_board_loader_name(u32 boot_device) { return NULL; } #if CONFIG_IS_ENABLED(OPTEE_IMAGE) __weak void __noreturn jump_to_image_optee(struct spl_image_info *spl_image) { spl_optee_entry(NULL, NULL, spl_image->fdt_addr, (void *)spl_image->entry_point); } #endif __weak void spl_board_prepare_for_boot(void) { /* Nothing to do! */ } __weak struct legacy_img_hdr *spl_get_load_buffer(ssize_t offset, size_t size) { return map_sysmem(CONFIG_TEXT_BASE + offset, 0); } #ifdef CONFIG_SPL_RAW_IMAGE_SUPPORT void spl_set_header_raw_uboot(struct spl_image_info *spl_image) { ulong u_boot_pos = spl_get_image_pos(); #if CONFIG_SYS_MONITOR_LEN != 0 spl_image->size = CONFIG_SYS_MONITOR_LEN; #else /* Unknown U-Boot size, let's assume it will not be more than 200 KB */ spl_image->size = 200 * 1024; #endif /* * Binman error cases: address of the end of the previous region or the * start of the image's entry area (usually 0) if there is no previous * region. */ if (u_boot_pos && u_boot_pos != BINMAN_SYM_MISSING) { /* Binman does not support separated entry addresses */ spl_image->entry_point = u_boot_pos; spl_image->load_addr = u_boot_pos; } else { spl_image->entry_point = CFG_SYS_UBOOT_START; spl_image->load_addr = CONFIG_TEXT_BASE; } spl_image->os = IH_OS_U_BOOT; spl_image->name = "U-Boot"; } #endif #if CONFIG_IS_ENABLED(LOAD_FIT_FULL) /* Parse and load full fitImage in SPL */ static int spl_load_fit_image(struct spl_image_info *spl_image, const struct legacy_img_hdr *header) { struct bootm_headers images; const char *fit_uname_config = NULL; uintptr_t fdt_hack; const char *uname; ulong fw_data = 0, dt_data = 0, img_data = 0; ulong fw_len = 0, dt_len = 0, img_len = 0; int idx, conf_noffset; int ret; #ifdef CONFIG_SPL_FIT_SIGNATURE images.verify = 1; #endif ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_STANDALONE, -1, FIT_LOAD_OPTIONAL, &fw_data, &fw_len); if (ret >= 0) { printf("DEPRECATED: 'standalone = ' property."); printf("Please use either 'firmware =' or 'kernel ='\n"); } else { ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_FIRMWARE, -1, FIT_LOAD_OPTIONAL, &fw_data, &fw_len); } if (ret < 0) { ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_KERNEL, -1, FIT_LOAD_OPTIONAL, &fw_data, &fw_len); } if (ret < 0) return ret; spl_image->size = fw_len; spl_image->entry_point = fw_data; spl_image->load_addr = fw_data; if (fit_image_get_os(header, ret, &spl_image->os)) spl_image->os = IH_OS_INVALID; spl_image->name = genimg_get_os_name(spl_image->os); debug(SPL_TPL_PROMPT "payload image: %32s load addr: 0x%lx size: %d\n", spl_image->name, spl_image->load_addr, spl_image->size); #ifdef CONFIG_SPL_FIT_SIGNATURE images.verify = 1; #endif ret = fit_image_load(&images, (ulong)header, NULL, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_FLATDT, -1, FIT_LOAD_OPTIONAL, &dt_data, &dt_len); if (ret >= 0) { spl_image->fdt_addr = (void *)dt_data; if (spl_image->os == IH_OS_U_BOOT) { /* HACK: U-Boot expects FDT at a specific address */ fdt_hack = spl_image->load_addr + spl_image->size; fdt_hack = (fdt_hack + 3) & ~3; debug("Relocating FDT to %p\n", spl_image->fdt_addr); memcpy((void *)fdt_hack, spl_image->fdt_addr, dt_len); } } conf_noffset = fit_conf_get_node((const void *)header, fit_uname_config); if (conf_noffset < 0) return 0; for (idx = 0; uname = fdt_stringlist_get((const void *)header, conf_noffset, FIT_LOADABLE_PROP, idx, NULL), uname; idx++) { #ifdef CONFIG_SPL_FIT_SIGNATURE images.verify = 1; #endif ret = fit_image_load(&images, (ulong)header, &uname, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_LOADABLE, -1, FIT_LOAD_OPTIONAL_NON_ZERO, &img_data, &img_len); if (ret < 0) return ret; } return 0; } #endif __weak int spl_parse_board_header(struct spl_image_info *spl_image, const struct spl_boot_device *bootdev, const void *image_header, size_t size) { return -EINVAL; } __weak int spl_parse_legacy_header(struct spl_image_info *spl_image, const struct legacy_img_hdr *header) { /* LEGACY image not supported */ debug("Legacy boot image support not enabled, proceeding to other boot methods\n"); return -EINVAL; } int spl_parse_image_header(struct spl_image_info *spl_image, const struct spl_boot_device *bootdev, const struct legacy_img_hdr *header) { #if CONFIG_IS_ENABLED(LOAD_FIT_FULL) int ret = spl_load_fit_image(spl_image, header); if (!ret) return ret; #endif if (image_get_magic(header) == IH_MAGIC) { int ret; ret = spl_parse_legacy_header(spl_image, header); if (ret) return ret; } else { #ifdef CONFIG_SPL_PANIC_ON_RAW_IMAGE /* * CONFIG_SPL_PANIC_ON_RAW_IMAGE is defined when the * code which loads images in SPL cannot guarantee that * absolutely all read errors will be reported. * An example is the LPC32XX MLC NAND driver, which * will consider that a completely unreadable NAND block * is bad, and thus should be skipped silently. */ panic("** no mkimage signature but raw image not supported"); #endif #if CONFIG_IS_ENABLED(OS_BOOT) #if defined(CMD_BOOTI) ulong start, size; if (!booti_setup((ulong)header, &start, &size, 0)) { spl_image->name = "Linux"; spl_image->os = IH_OS_LINUX; spl_image->load_addr = start; spl_image->entry_point = start; spl_image->size = size; debug(SPL_TPL_PROMPT "payload Image, load addr: 0x%lx size: %d\n", spl_image->load_addr, spl_image->size); return 0; } #elif defined(CMD_BOOTZ) ulong start, end; if (!bootz_setup((ulong)header, &start, &end)) { spl_image->name = "Linux"; spl_image->os = IH_OS_LINUX; spl_image->load_addr = CONFIG_SYS_LOAD_ADDR; spl_image->entry_point = CONFIG_SYS_LOAD_ADDR; spl_image->size = end - start; debug(SPL_TPL_PROMPT "payload zImage, load addr: 0x%lx size: %d\n", spl_image->load_addr, spl_image->size); return 0; } #endif #endif if (!spl_parse_board_header(spl_image, bootdev, (const void *)header, sizeof(*header))) return 0; #ifdef CONFIG_SPL_RAW_IMAGE_SUPPORT /* Signature not found - assume u-boot.bin */ debug("mkimage signature not found - ih_magic = %x\n", header->ih_magic); spl_set_header_raw_uboot(spl_image); #else /* RAW image not supported, proceed to other boot methods. */ debug("Raw boot image support not enabled, proceeding to other boot methods\n"); return -EINVAL; #endif } return 0; } __weak void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image) { typedef void __noreturn (*image_entry_noargs_t)(void); image_entry_noargs_t image_entry = (image_entry_noargs_t)spl_image->entry_point; debug("image entry point: 0x%lx\n", spl_image->entry_point); image_entry(); } #if CONFIG_IS_ENABLED(HANDOFF) /** * Set up the SPL hand-off information * * This is initially empty (zero) but can be written by */ static int setup_spl_handoff(void) { struct spl_handoff *ho; ho = bloblist_ensure(BLOBLISTT_U_BOOT_SPL_HANDOFF, sizeof(struct spl_handoff)); if (!ho) return -ENOENT; return 0; } __weak int handoff_arch_save(struct spl_handoff *ho) { return 0; } static int write_spl_handoff(void) { struct spl_handoff *ho; int ret; ho = bloblist_find(BLOBLISTT_U_BOOT_SPL_HANDOFF, sizeof(struct spl_handoff)); if (!ho) return -ENOENT; handoff_save_dram(ho); ret = handoff_arch_save(ho); if (ret) return ret; debug(SPL_TPL_PROMPT "Wrote SPL handoff\n"); return 0; } #else static inline int setup_spl_handoff(void) { return 0; } static inline int write_spl_handoff(void) { return 0; } #endif /* HANDOFF */ /** * get_bootstage_id() - Get the bootstage ID to emit * * @start: true if this is for starting SPL, false for ending it * Return: bootstage ID to use */ static enum bootstage_id get_bootstage_id(bool start) { enum u_boot_phase phase = spl_phase(); if (IS_ENABLED(CONFIG_TPL_BUILD) && phase == PHASE_TPL) return start ? BOOTSTAGE_ID_START_TPL : BOOTSTAGE_ID_END_TPL; else if (IS_ENABLED(CONFIG_VPL_BUILD) && phase == PHASE_VPL) return start ? BOOTSTAGE_ID_START_VPL : BOOTSTAGE_ID_END_VPL; else return start ? BOOTSTAGE_ID_START_SPL : BOOTSTAGE_ID_END_SPL; } static int spl_common_init(bool setup_malloc) { int ret; #if CONFIG_VAL(SYS_MALLOC_F_LEN) if (setup_malloc) { #ifdef CFG_MALLOC_F_ADDR gd->malloc_base = CFG_MALLOC_F_ADDR; #endif gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN); gd->malloc_ptr = 0; } #endif ret = bootstage_init(u_boot_first_phase()); if (ret) { debug("%s: Failed to set up bootstage: ret=%d\n", __func__, ret); return ret; } #ifdef CONFIG_BOOTSTAGE_STASH if (!u_boot_first_phase()) { const void *stash = map_sysmem(CONFIG_BOOTSTAGE_STASH_ADDR, CONFIG_BOOTSTAGE_STASH_SIZE); ret = bootstage_unstash(stash, CONFIG_BOOTSTAGE_STASH_SIZE); if (ret) debug("%s: Failed to unstash bootstage: ret=%d\n", __func__, ret); } #endif /* CONFIG_BOOTSTAGE_STASH */ bootstage_mark_name(get_bootstage_id(true), spl_phase_name(spl_phase())); #if CONFIG_IS_ENABLED(LOG) ret = log_init(); if (ret) { debug("%s: Failed to set up logging\n", __func__); return ret; } #endif if (CONFIG_IS_ENABLED(OF_REAL)) { ret = fdtdec_setup(); if (ret) { debug("fdtdec_setup() returned error %d\n", ret); return ret; } } if (CONFIG_IS_ENABLED(DM)) { bootstage_start(BOOTSTAGE_ID_ACCUM_DM_SPL, spl_phase() == PHASE_TPL ? "dm tpl" : "dm_spl"); /* With CONFIG_SPL_OF_PLATDATA, bring in all devices */ ret = dm_init_and_scan(!CONFIG_IS_ENABLED(OF_PLATDATA)); bootstage_accum(BOOTSTAGE_ID_ACCUM_DM_SPL); if (ret) { debug("dm_init_and_scan() returned error %d\n", ret); return ret; } } return 0; } void spl_set_bd(void) { /* * NOTE: On some platforms (e.g. x86) bdata may be in flash and not * writeable. */ if (!gd->bd) gd->bd = &bdata; } int spl_early_init(void) { int ret; debug("%s\n", __func__); ret = spl_common_init(true); if (ret) return ret; gd->flags |= GD_FLG_SPL_EARLY_INIT; return 0; } int spl_init(void) { int ret; bool setup_malloc = !(IS_ENABLED(CONFIG_SPL_STACK_R) && IS_ENABLED(CONFIG_SPL_SYS_MALLOC_SIMPLE)); debug("%s\n", __func__); if (!(gd->flags & GD_FLG_SPL_EARLY_INIT)) { ret = spl_common_init(setup_malloc); if (ret) return ret; } gd->flags |= GD_FLG_SPL_INIT; return 0; } #ifndef BOOT_DEVICE_NONE #define BOOT_DEVICE_NONE 0xdeadbeef #endif __weak void board_boot_order(u32 *spl_boot_list) { spl_boot_list[0] = spl_boot_device(); } __weak int spl_check_board_image(struct spl_image_info *spl_image, const struct spl_boot_device *bootdev) { return 0; } static int spl_load_image(struct spl_image_info *spl_image, struct spl_image_loader *loader) { int ret; struct spl_boot_device bootdev; bootdev.boot_device = loader->boot_device; bootdev.boot_device_name = NULL; ret = loader->load_image(spl_image, &bootdev); #ifdef CONFIG_SPL_LEGACY_IMAGE_CRC_CHECK if (!ret && spl_image->dcrc_length) { /* check data crc */ ulong dcrc = crc32_wd(0, (unsigned char *)spl_image->dcrc_data, spl_image->dcrc_length, CHUNKSZ_CRC32); if (dcrc != spl_image->dcrc) { puts("SPL: Image data CRC check failed!\n"); ret = -EINVAL; } } #endif if (!ret) ret = spl_check_board_image(spl_image, &bootdev); return ret; } /** * boot_from_devices() - Try loading a booting U-Boot from a list of devices * * @spl_image: Place to put the image details if successful * @spl_boot_list: List of boot devices to try * @count: Number of elements in spl_boot_list * Return: 0 if OK, -ENODEV if there were no boot devices * if CONFIG_SHOW_ERRORS is enabled, returns -ENXIO if there were * devices but none worked */ static int boot_from_devices(struct spl_image_info *spl_image, u32 spl_boot_list[], int count) { struct spl_image_loader *drv = ll_entry_start(struct spl_image_loader, spl_image_loader); const int n_ents = ll_entry_count(struct spl_image_loader, spl_image_loader); int ret = -ENODEV; int i; for (i = 0; i < count && spl_boot_list[i] != BOOT_DEVICE_NONE; i++) { struct spl_image_loader *loader; int bootdev = spl_boot_list[i]; if (CONFIG_IS_ENABLED(SHOW_ERRORS)) ret = -ENXIO; for (loader = drv; loader != drv + n_ents; loader++) { if (bootdev != loader->boot_device) continue; if (!CONFIG_IS_ENABLED(SILENT_CONSOLE)) { if (loader) printf("Trying to boot from %s\n", spl_loader_name(loader)); else if (CONFIG_IS_ENABLED(SHOW_ERRORS)) { printf(SPL_TPL_PROMPT "Unsupported Boot Device %d\n", bootdev); } else { puts(SPL_TPL_PROMPT "Unsupported Boot Device!\n"); } } if (loader && !spl_load_image(spl_image, loader)) { spl_image->boot_device = bootdev; return 0; } } } return ret; } #if defined(CONFIG_SPL_FRAMEWORK_BOARD_INIT_F) void board_init_f(ulong dummy) { if (CONFIG_IS_ENABLED(OF_CONTROL)) { int ret; ret = spl_early_init(); if (ret) { debug("spl_early_init() failed: %d\n", ret); hang(); } } preloader_console_init(); } #endif void board_init_r(gd_t *dummy1, ulong dummy2) { u32 spl_boot_list[] = { BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, BOOT_DEVICE_NONE, }; struct spl_image_info spl_image; int ret; debug(">>" SPL_TPL_PROMPT "board_init_r()\n"); spl_set_bd(); #if defined(CONFIG_SYS_SPL_MALLOC) mem_malloc_init(SYS_SPL_MALLOC_START, CONFIG_SYS_SPL_MALLOC_SIZE); gd->flags |= GD_FLG_FULL_MALLOC_INIT; #endif if (!(gd->flags & GD_FLG_SPL_INIT)) { if (spl_init()) hang(); } #if !defined(CONFIG_PPC) && !defined(CONFIG_ARCH_MX6) /* * timer_init() does not exist on PPC systems. The timer is initialized * and enabled (decrementer) in interrupt_init() here. */ timer_init(); #endif if (CONFIG_IS_ENABLED(BLOBLIST)) { ret = bloblist_init(); if (ret) { debug("%s: Failed to set up bloblist: ret=%d\n", __func__, ret); puts(SPL_TPL_PROMPT "Cannot set up bloblist\n"); hang(); } } if (CONFIG_IS_ENABLED(HANDOFF)) { int ret; ret = setup_spl_handoff(); if (ret) { puts(SPL_TPL_PROMPT "Cannot set up SPL handoff\n"); hang(); } } #if CONFIG_IS_ENABLED(BOARD_INIT) spl_board_init(); #endif #if defined(CONFIG_SPL_WATCHDOG) && CONFIG_IS_ENABLED(WDT) initr_watchdog(); #endif if (IS_ENABLED(CONFIG_SPL_OS_BOOT) || CONFIG_IS_ENABLED(HANDOFF) || IS_ENABLED(CONFIG_SPL_ATF)) dram_init_banksize(); if (CONFIG_IS_ENABLED(PCI) && !(gd->flags & GD_FLG_DM_DEAD)) { ret = pci_init(); if (ret) puts(SPL_TPL_PROMPT "Cannot initialize PCI\n"); /* Don't fail. We still can try other boot methods. */ } bootcount_inc(); /* Dump driver model states to aid analysis */ if (CONFIG_IS_ENABLED(DM_STATS)) { struct dm_stats mem; dm_get_mem(&mem); dm_dump_mem(&mem); } memset(&spl_image, '\0', sizeof(spl_image)); #ifdef CONFIG_SYS_SPL_ARGS_ADDR spl_image.arg = (void *)CONFIG_SYS_SPL_ARGS_ADDR; #endif spl_image.boot_device = BOOT_DEVICE_NONE; board_boot_order(spl_boot_list); ret = boot_from_devices(&spl_image, spl_boot_list, ARRAY_SIZE(spl_boot_list)); if (ret) { if (CONFIG_IS_ENABLED(SHOW_ERRORS) && CONFIG_IS_ENABLED(LIBCOMMON_SUPPORT)) printf(SPL_TPL_PROMPT "failed to boot from all boot devices (err=%d)\n", ret); else puts(SPL_TPL_PROMPT "failed to boot from all boot devices\n"); hang(); } spl_perform_fixups(&spl_image); if (CONFIG_IS_ENABLED(HANDOFF)) { ret = write_spl_handoff(); if (ret) printf(SPL_TPL_PROMPT "SPL hand-off write failed (err=%d)\n", ret); } if (CONFIG_IS_ENABLED(BLOBLIST)) { ret = bloblist_finish(); if (ret) printf("Warning: Failed to finish bloblist (ret=%d)\n", ret); } switch (spl_image.os) { case IH_OS_U_BOOT: debug("Jumping to %s...\n", spl_phase_name(spl_next_phase())); break; #if CONFIG_IS_ENABLED(ATF) case IH_OS_ARM_TRUSTED_FIRMWARE: debug("Jumping to U-Boot via ARM Trusted Firmware\n"); spl_fixup_fdt(spl_image.fdt_addr); spl_invoke_atf(&spl_image); break; #endif #if CONFIG_IS_ENABLED(OPTEE_IMAGE) case IH_OS_TEE: debug("Jumping to U-Boot via OP-TEE\n"); spl_board_prepare_for_optee(spl_image.fdt_addr); jump_to_image_optee(&spl_image); break; #endif #if CONFIG_IS_ENABLED(OPENSBI) case IH_OS_OPENSBI: debug("Jumping to U-Boot via RISC-V OpenSBI\n"); spl_invoke_opensbi(&spl_image); break; #endif #if CONFIG_IS_ENABLED(OS_BOOT) case IH_OS_LINUX: debug("Jumping to Linux\n"); #if defined(CONFIG_SYS_SPL_ARGS_ADDR) spl_fixup_fdt((void *)CONFIG_SYS_SPL_ARGS_ADDR); #endif spl_board_prepare_for_linux(); jump_to_image_linux(&spl_image); #endif default: debug("Unsupported OS image.. Jumping nevertheless..\n"); } #if CONFIG_VAL(SYS_MALLOC_F_LEN) && !defined(CONFIG_SYS_SPL_MALLOC_SIZE) debug("SPL malloc() used 0x%lx bytes (%ld KB)\n", gd->malloc_ptr, gd->malloc_ptr / 1024); #endif bootstage_mark_name(get_bootstage_id(false), "end phase"); #ifdef CONFIG_BOOTSTAGE_STASH ret = bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR, CONFIG_BOOTSTAGE_STASH_SIZE); if (ret) debug("Failed to stash bootstage: err=%d\n", ret); #endif if (IS_ENABLED(CONFIG_SPL_VIDEO_REMOVE)) { struct udevice *dev; int rc; rc = uclass_find_device(UCLASS_VIDEO, 0, &dev); if (!rc && dev) { rc = device_remove(dev, DM_REMOVE_NORMAL); if (rc) printf("Cannot remove video device '%s' (err=%d)\n", dev->name, rc); } } spl_board_prepare_for_boot(); jump_to_image_no_args(&spl_image); } /* * This requires UART clocks to be enabled. In order for this to work the * caller must ensure that the gd pointer is valid. */ void preloader_console_init(void) { #ifdef CONFIG_SPL_SERIAL gd->baudrate = CONFIG_BAUDRATE; serial_init(); /* serial communications setup */ gd->have_console = 1; #if CONFIG_IS_ENABLED(BANNER_PRINT) puts("\nU-Boot " SPL_TPL_NAME " " PLAIN_VERSION " (" U_BOOT_DATE " - " U_BOOT_TIME " " U_BOOT_TZ ")\n"); #endif #ifdef CONFIG_SPL_DISPLAY_PRINT spl_display_print(); #endif #endif } /** * This function is called before the stack is changed from initial stack to * relocated stack. It tries to dump the stack size used */ __weak void spl_relocate_stack_check(void) { #if CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE) ulong init_sp = gd->start_addr_sp; ulong stack_bottom = init_sp - CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK); u8 *ptr = (u8 *)stack_bottom; ulong i; for (i = 0; i < CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK); i++) { if (*ptr != CONFIG_VAL(SYS_STACK_F_CHECK_BYTE)) break; ptr++; } printf("SPL initial stack usage: %lu bytes\n", CONFIG_VAL(SIZE_LIMIT_PROVIDE_STACK) - i); #endif } /** * spl_relocate_stack_gd() - Relocate stack ready for board_init_r() execution * * Sometimes board_init_f() runs with a stack in SRAM but we want to use SDRAM * for the main board_init_r() execution. This is typically because we need * more stack space for things like the MMC sub-system. * * This function calculates the stack position, copies the global_data into * place, sets the new gd (except for ARM, for which setting GD within a C * function may not always work) and returns the new stack position. The * caller is responsible for setting up the sp register and, in the case * of ARM, setting up gd. * * All of this is done using the same layout and alignments as done in * board_init_f_init_reserve() / board_init_f_alloc_reserve(). * * Return: new stack location, or 0 to use the same stack */ ulong spl_relocate_stack_gd(void) { #ifdef CONFIG_SPL_STACK_R gd_t *new_gd; ulong ptr = CONFIG_SPL_STACK_R_ADDR; if (CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE)) spl_relocate_stack_check(); #if defined(CONFIG_SPL_SYS_MALLOC_SIMPLE) && CONFIG_VAL(SYS_MALLOC_F_LEN) if (CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN) { debug("SPL malloc() before relocation used 0x%lx bytes (%ld KB)\n", gd->malloc_ptr, gd->malloc_ptr / 1024); ptr -= CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN; gd->malloc_base = ptr; gd->malloc_limit = CONFIG_SPL_STACK_R_MALLOC_SIMPLE_LEN; gd->malloc_ptr = 0; } #endif /* Get stack position: use 8-byte alignment for ABI compliance */ ptr = CONFIG_SPL_STACK_R_ADDR - roundup(sizeof(gd_t),16); gd->start_addr_sp = ptr; new_gd = (gd_t *)ptr; memcpy(new_gd, (void *)gd, sizeof(gd_t)); #if CONFIG_IS_ENABLED(DM) dm_fixup_for_gd_move(new_gd); #endif #if !defined(CONFIG_ARM) && !defined(CONFIG_RISCV) gd = new_gd; #endif return ptr; #else return 0; #endif } #if defined(CONFIG_BOOTCOUNT_LIMIT) && \ ((!defined(CONFIG_TPL_BUILD) && !defined(CONFIG_SPL_BOOTCOUNT_LIMIT)) || \ (defined(CONFIG_TPL_BUILD) && !defined(CONFIG_TPL_BOOTCOUNT_LIMIT))) void bootcount_store(ulong a) { } ulong bootcount_load(void) { return 0; } #endif