// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2022 Sean Anderson * * This driver supports the Security Fuse Processor device found on some * Layerscape processors. At the moment, we only support a few processors. * This driver was written with reference to the Layerscape SDK User * Guide [1] and the ATF SFP driver [2]. * * [1] https://docs.nxp.com/bundle/GUID-487B2E69-BB19-42CB-AC38-7EF18C0FE3AE/page/GUID-27FC40AD-3321-4A82-B29E-7BB49EE94F23.html * [2] https://source.codeaurora.org/external/qoriq/qoriq-components/atf/tree/drivers/nxp/sfp?h=github.com/master */ #define LOG_CATEGORY UCLASS_MISC #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define SFP_INGR 0x20 #define SFP_SVHESR 0x24 #define SFP_SFPCR 0x28 #define SFP_START 0x200 #define SFP_END 0x284 #define SFP_SIZE (SFP_END - SFP_START + 4) #define SFP_INGR_ERR BIT(8) #define SFP_INGR_INST GENMASK(7, 0) #define SFP_INGR_READFB 0x01 #define SFP_INGR_PROGFB 0x02 #define SFP_SFPCR_PPW GENMASK(15, 0) enum ls2_sfp_ioctl { LS2_SFP_IOCTL_READ, LS2_SFP_IOCTL_PROG, }; /** * struct ls2_sfp_priv - private data for LS2 SFP * @base: Base address of SFP * @supply: The (optional) supply for TA_PROG_SFP * @programmed: Whether we've already programmed the fuses since the last * reset. The SFP has a *very* limited amount of programming * cycles (two to six, depending on the model), so we try and * prevent accidentally performing additional programming * cycles. * @dirty: Whether the mirror registers have been written to (overridden) * since we've last read the fuses (either as part of the reset * process or using a READFB instruction). There is a much larger, * but still finite, limit on the number of SFP read cycles (around * 300,000), so we try and minimize reads as well. */ struct ls2_sfp_priv { void __iomem *base; struct udevice *supply; bool programmed, dirty; }; static u32 ls2_sfp_readl(struct ls2_sfp_priv *priv, ulong off) { u32 val = be32_to_cpu(readl(priv->base + off)); log_debug("%08x = readl(%p)\n", val, priv->base + off); return val; } static void ls2_sfp_writel(struct ls2_sfp_priv *priv, ulong val, ulong off) { log_debug("writel(%08lx, %p)\n", val, priv->base + off); writel(cpu_to_be32(val), priv->base + off); } static bool ls2_sfp_validate(struct udevice *dev, int offset, int size) { if (offset < 0 || size < 0) { dev_notice(dev, "size and offset must be positive\n"); return false; } if (offset & 3 || size & 3) { dev_notice(dev, "size and offset must be multiples of 4\n"); return false; } if (offset + size > SFP_SIZE) { dev_notice(dev, "size + offset must be <= %#x\n", SFP_SIZE); return false; } return true; } static int ls2_sfp_read(struct udevice *dev, int offset, void *buf_bytes, int size) { int i; struct ls2_sfp_priv *priv = dev_get_priv(dev); u32 *buf = buf_bytes; if (!ls2_sfp_validate(dev, offset, size)) return -EINVAL; for (i = 0; i < size; i += 4) buf[i >> 2] = ls2_sfp_readl(priv, SFP_START + offset + i); return size; } static int ls2_sfp_write(struct udevice *dev, int offset, const void *buf_bytes, int size) { int i; struct ls2_sfp_priv *priv = dev_get_priv(dev); const u32 *buf = buf_bytes; if (!ls2_sfp_validate(dev, offset, size)) return -EINVAL; for (i = 0; i < size; i += 4) ls2_sfp_writel(priv, buf[i >> 2], SFP_START + offset + i); priv->dirty = true; return size; } static int ls2_sfp_check_secret(struct udevice *dev) { struct ls2_sfp_priv *priv = dev_get_priv(dev); u32 svhesr = ls2_sfp_readl(priv, SFP_SVHESR); if (svhesr) { dev_warn(dev, "secret value hamming error not zero: %08x\n", svhesr); return -EIO; } return 0; } static int ls2_sfp_transaction(struct ls2_sfp_priv *priv, ulong inst) { u32 ingr; ls2_sfp_writel(priv, inst, SFP_INGR); do { ingr = ls2_sfp_readl(priv, SFP_INGR); } while (FIELD_GET(SFP_INGR_INST, ingr)); return FIELD_GET(SFP_INGR_ERR, ingr) ? -EIO : 0; } static int ls2_sfp_ioctl(struct udevice *dev, unsigned long request, void *buf) { int ret; struct ls2_sfp_priv *priv = dev_get_priv(dev); switch (request) { case LS2_SFP_IOCTL_READ: if (!priv->dirty) { dev_dbg(dev, "ignoring read request, since fuses are not dirty\n"); return 0; } ret = ls2_sfp_transaction(priv, SFP_INGR_READFB); if (ret) { dev_err(dev, "error reading fuses\n"); return ret; } ls2_sfp_check_secret(dev); priv->dirty = false; return 0; case LS2_SFP_IOCTL_PROG: if (priv->programmed) { dev_warn(dev, "fuses already programmed\n"); return -EPERM; } ret = ls2_sfp_check_secret(dev); if (ret) return ret; if (priv->supply) { ret = regulator_set_enable(priv->supply, true); if (ret) return ret; } ret = ls2_sfp_transaction(priv, SFP_INGR_PROGFB); priv->programmed = true; if (priv->supply) regulator_set_enable(priv->supply, false); if (ret) dev_err(dev, "error programming fuses\n"); return ret; default: dev_dbg(dev, "unknown ioctl %lu\n", request); return -EINVAL; } } static const struct misc_ops ls2_sfp_ops = { .read = ls2_sfp_read, .write = ls2_sfp_write, .ioctl = ls2_sfp_ioctl, }; static int ls2_sfp_probe(struct udevice *dev) { int ret; struct clk clk; struct ls2_sfp_priv *priv = dev_get_priv(dev); ulong rate; priv->base = dev_read_addr_ptr(dev); if (!priv->base) { dev_dbg(dev, "could not read register base\n"); return -EINVAL; } ret = device_get_supply_regulator(dev, "ta-sfp-prog-supply", &priv->supply); if (ret && ret != -ENODEV && ret != -ENOSYS) { dev_dbg(dev, "problem getting supply (err %d)\n", ret); return ret; } ret = clk_get_by_name(dev, "sfp", &clk); if (ret == -ENOSYS) { rate = gd->bus_clk / 4; } else if (ret) { dev_dbg(dev, "could not get clock (err %d)\n", ret); return ret; } else { ret = clk_enable(&clk); if (ret) { dev_dbg(dev, "could not enable clock (err %d)\n", ret); return ret; } rate = clk_get_rate(&clk); if (!rate || IS_ERR_VALUE(rate)) { ret = rate ? rate : -ENOENT; dev_dbg(dev, "could not get clock rate (err %d)\n", ret); return ret; } } /* sfp clock in MHz * 12 */ ls2_sfp_writel(priv, FIELD_PREP(SFP_SFPCR_PPW, rate * 12 / 1000000), SFP_SFPCR); ls2_sfp_check_secret(dev); return 0; } static const struct udevice_id ls2_sfp_ids[] = { { .compatible = "fsl,ls1021a-sfp" }, { } }; U_BOOT_DRIVER(ls2_sfp) = { .name = "ls2_sfp", .id = UCLASS_MISC, .of_match = ls2_sfp_ids, .probe = ls2_sfp_probe, .ops = &ls2_sfp_ops, .priv_auto = sizeof(struct ls2_sfp_priv), }; static int ls2_sfp_device(struct udevice **dev) { int ret = uclass_get_device_by_driver(UCLASS_MISC, DM_DRIVER_GET(ls2_sfp), dev); if (ret) log_debug("device not found (err %d)\n", ret); return ret; } int fuse_read(u32 bank, u32 word, u32 *val) { int ret; struct udevice *dev; ret = ls2_sfp_device(&dev); if (ret) return ret; ret = misc_ioctl(dev, LS2_SFP_IOCTL_READ, NULL); if (ret) return ret; ret = misc_read(dev, word << 2, val, sizeof(*val)); return ret < 0 ? ret : 0; } int fuse_sense(u32 bank, u32 word, u32 *val) { int ret; struct udevice *dev; ret = ls2_sfp_device(&dev); if (ret) return ret; ret = misc_read(dev, word << 2, val, sizeof(*val)); return ret < 0 ? ret : 0; } int fuse_prog(u32 bank, u32 word, u32 val) { int ret; struct udevice *dev; ret = ls2_sfp_device(&dev); if (ret) return ret; ret = misc_write(dev, word << 2, &val, sizeof(val)); if (ret < 0) return ret; return misc_ioctl(dev, LS2_SFP_IOCTL_PROG, NULL); } int fuse_override(u32 bank, u32 word, u32 val) { int ret; struct udevice *dev; ret = ls2_sfp_device(&dev); if (ret) return ret; ret = misc_write(dev, word << 2, &val, sizeof(val)); return ret < 0 ? ret : 0; }