// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2016 Carlo Caione */ #include #include #include #include #include #include #include #include #include #include #include #include "meson_gx_mmc.h" bool meson_gx_mmc_is_compatible(struct udevice *dev, enum meson_gx_mmc_compatible family) { enum meson_gx_mmc_compatible compat = dev_get_driver_data(dev); return compat == family; } static inline void *get_regbase(const struct mmc *mmc) { struct meson_mmc_plat *pdata = mmc->priv; return pdata->regbase; } static inline uint32_t meson_read(struct mmc *mmc, int offset) { return readl(get_regbase(mmc) + offset); } static inline void meson_write(struct mmc *mmc, uint32_t val, int offset) { writel(val, get_regbase(mmc) + offset); } static void meson_mmc_config_clock(struct mmc *mmc) { uint32_t meson_mmc_clk = 0; unsigned int clk, clk_src, clk_div; if (!mmc->clock) return; /* TOFIX This should use the proper clock taken from DT */ /* 1GHz / CLK_MAX_DIV = 15,9 MHz */ if (mmc->clock > 16000000) { clk = SD_EMMC_CLKSRC_DIV2; clk_src = CLK_SRC_DIV2; } else { clk = SD_EMMC_CLKSRC_24M; clk_src = CLK_SRC_24M; } clk_div = DIV_ROUND_UP(clk, mmc->clock); /* * SM1 SoCs doesn't work fine over 50MHz with CLK_CO_PHASE_180 * If CLK_CO_PHASE_270 is used, it's more stable than other. * Other SoCs use CLK_CO_PHASE_180 by default. * It needs to find what is a proper value about each SoCs. */ if (meson_gx_mmc_is_compatible(mmc->dev, MMC_COMPATIBLE_SM1)) meson_mmc_clk |= CLK_CO_PHASE_270; else meson_mmc_clk |= CLK_CO_PHASE_180; /* 180 phase tx clock */ meson_mmc_clk |= CLK_TX_PHASE_000; /* clock settings */ meson_mmc_clk |= clk_src; meson_mmc_clk |= clk_div; meson_write(mmc, meson_mmc_clk, MESON_SD_EMMC_CLOCK); } static int meson_dm_mmc_set_ios(struct udevice *dev) { struct mmc *mmc = mmc_get_mmc_dev(dev); uint32_t meson_mmc_cfg; meson_mmc_config_clock(mmc); meson_mmc_cfg = meson_read(mmc, MESON_SD_EMMC_CFG); meson_mmc_cfg &= ~CFG_BUS_WIDTH_MASK; if (mmc->bus_width == 1) meson_mmc_cfg |= CFG_BUS_WIDTH_1; else if (mmc->bus_width == 4) meson_mmc_cfg |= CFG_BUS_WIDTH_4; else if (mmc->bus_width == 8) meson_mmc_cfg |= CFG_BUS_WIDTH_8; else return -EINVAL; /* 512 bytes block length */ meson_mmc_cfg &= ~CFG_BL_LEN_MASK; meson_mmc_cfg |= CFG_BL_LEN_512; /* Response timeout 256 clk */ meson_mmc_cfg &= ~CFG_RESP_TIMEOUT_MASK; meson_mmc_cfg |= CFG_RESP_TIMEOUT_256; /* Command-command gap 16 clk */ meson_mmc_cfg &= ~CFG_RC_CC_MASK; meson_mmc_cfg |= CFG_RC_CC_16; meson_write(mmc, meson_mmc_cfg, MESON_SD_EMMC_CFG); return 0; } static void meson_mmc_setup_cmd(struct mmc *mmc, struct mmc_data *data, struct mmc_cmd *cmd) { uint32_t meson_mmc_cmd = 0, cfg; meson_mmc_cmd |= cmd->cmdidx << CMD_CFG_CMD_INDEX_SHIFT; if (cmd->resp_type & MMC_RSP_PRESENT) { if (cmd->resp_type & MMC_RSP_136) meson_mmc_cmd |= CMD_CFG_RESP_128; if (cmd->resp_type & MMC_RSP_BUSY) meson_mmc_cmd |= CMD_CFG_R1B; if (!(cmd->resp_type & MMC_RSP_CRC)) meson_mmc_cmd |= CMD_CFG_RESP_NOCRC; } else { meson_mmc_cmd |= CMD_CFG_NO_RESP; } if (data) { cfg = meson_read(mmc, MESON_SD_EMMC_CFG); cfg &= ~CFG_BL_LEN_MASK; cfg |= ilog2(data->blocksize) << CFG_BL_LEN_SHIFT; meson_write(mmc, cfg, MESON_SD_EMMC_CFG); if (data->flags == MMC_DATA_WRITE) meson_mmc_cmd |= CMD_CFG_DATA_WR; meson_mmc_cmd |= CMD_CFG_DATA_IO | CMD_CFG_BLOCK_MODE | data->blocks; } meson_mmc_cmd |= CMD_CFG_TIMEOUT_4S | CMD_CFG_OWNER | CMD_CFG_END_OF_CHAIN; meson_write(mmc, meson_mmc_cmd, MESON_SD_EMMC_CMD_CFG); } static void meson_mmc_setup_addr(struct mmc *mmc, struct mmc_data *data) { struct meson_mmc_plat *pdata = mmc->priv; unsigned int data_size; uint32_t data_addr = 0; if (data) { data_size = data->blocks * data->blocksize; if (data->flags == MMC_DATA_READ) { data_addr = (ulong) data->dest; invalidate_dcache_range(data_addr, data_addr + data_size); } else { pdata->w_buf = calloc(data_size, sizeof(char)); data_addr = (ulong) pdata->w_buf; memcpy(pdata->w_buf, data->src, data_size); flush_dcache_range(data_addr, data_addr + data_size); } } meson_write(mmc, data_addr, MESON_SD_EMMC_CMD_DAT); } static void meson_mmc_read_response(struct mmc *mmc, struct mmc_cmd *cmd) { if (cmd->resp_type & MMC_RSP_136) { cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP3); cmd->response[1] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP2); cmd->response[2] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP1); cmd->response[3] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP); } else { cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP); } } static int meson_dm_mmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data) { struct mmc *mmc = mmc_get_mmc_dev(dev); struct meson_mmc_plat *pdata = mmc->priv; uint32_t status; ulong start; int ret = 0; /* max block size supported by chip is 512 byte */ if (data && data->blocksize > 512) return -EINVAL; meson_mmc_setup_cmd(mmc, data, cmd); meson_mmc_setup_addr(mmc, data); meson_write(mmc, cmd->cmdarg, MESON_SD_EMMC_CMD_ARG); /* use 10s timeout */ start = get_timer(0); do { status = meson_read(mmc, MESON_SD_EMMC_STATUS); } while(!(status & STATUS_END_OF_CHAIN) && get_timer(start) < 10000); if (!(status & STATUS_END_OF_CHAIN)) ret = -ETIMEDOUT; else if (status & STATUS_RESP_TIMEOUT) ret = -ETIMEDOUT; else if (status & STATUS_ERR_MASK) ret = -EIO; meson_mmc_read_response(mmc, cmd); if (data && data->flags == MMC_DATA_WRITE) free(pdata->w_buf); /* reset status bits */ meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS); return ret; } static const struct dm_mmc_ops meson_dm_mmc_ops = { .send_cmd = meson_dm_mmc_send_cmd, .set_ios = meson_dm_mmc_set_ios, }; static int meson_mmc_of_to_plat(struct udevice *dev) { struct meson_mmc_plat *pdata = dev_get_plat(dev); fdt_addr_t addr; addr = dev_read_addr(dev); if (addr == FDT_ADDR_T_NONE) return -EINVAL; pdata->regbase = (void *)addr; return 0; } static int meson_mmc_probe(struct udevice *dev) { struct meson_mmc_plat *pdata = dev_get_plat(dev); struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct mmc *mmc = &pdata->mmc; struct mmc_config *cfg = &pdata->cfg; struct clk_bulk clocks; uint32_t val; int ret; /* Enable the clocks feeding the MMC controller */ ret = clk_get_bulk(dev, &clocks); if (ret) return ret; ret = clk_enable_bulk(&clocks); if (ret) return ret; cfg->voltages = MMC_VDD_33_34 | MMC_VDD_32_33 | MMC_VDD_31_32 | MMC_VDD_165_195; cfg->host_caps = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS; cfg->f_min = DIV_ROUND_UP(SD_EMMC_CLKSRC_24M, CLK_MAX_DIV); cfg->f_max = 100000000; /* 100 MHz */ cfg->b_max = 511; /* max 512 - 1 blocks */ cfg->name = dev->name; mmc->priv = pdata; upriv->mmc = mmc; mmc_set_clock(mmc, cfg->f_min, MMC_CLK_ENABLE); #if CONFIG_IS_ENABLED(MMC_PWRSEQ) /* Enable power if needed */ ret = mmc_pwrseq_get_power(dev, cfg); if (!ret) { ret = pwrseq_set_power(cfg->pwr_dev, true); if (ret) return ret; } #endif /* reset all status bits */ meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS); /* disable interrupts */ meson_write(mmc, 0, MESON_SD_EMMC_IRQ_EN); /* enable auto clock mode */ val = meson_read(mmc, MESON_SD_EMMC_CFG); val &= ~CFG_SDCLK_ALWAYS_ON; val |= CFG_AUTO_CLK; meson_write(mmc, val, MESON_SD_EMMC_CFG); return 0; } int meson_mmc_bind(struct udevice *dev) { struct meson_mmc_plat *pdata = dev_get_plat(dev); return mmc_bind(dev, &pdata->mmc, &pdata->cfg); } static const struct udevice_id meson_mmc_match[] = { { .compatible = "amlogic,meson-gx-mmc", .data = MMC_COMPATIBLE_GX }, { .compatible = "amlogic,meson-axg-mmc", .data = MMC_COMPATIBLE_GX }, { .compatible = "amlogic,meson-sm1-mmc", .data = MMC_COMPATIBLE_SM1 }, { /* sentinel */ } }; U_BOOT_DRIVER(meson_mmc) = { .name = "meson_gx_mmc", .id = UCLASS_MMC, .of_match = meson_mmc_match, .ops = &meson_dm_mmc_ops, .probe = meson_mmc_probe, .bind = meson_mmc_bind, .of_to_plat = meson_mmc_of_to_plat, .plat_auto = sizeof(struct meson_mmc_plat), };