// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2009-2015 Freescale Semiconductor, Inc. and others * * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. * Ported to U-Boot by Stefan Agner * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir * Jason ported to M54418TWR and MVFA5. * Authors: Stefan Agner * Bill Pringlemeir * Shaohui Xie * Jason Jin * * Based on original driver mpc5121_nfc.c. * * Limitations: * - Untested on MPC5125 and M54418. * - DMA and pipelining not used. * - 2K pages or less. * - HW ECC: Only 2K page with 64+ OOB. * - HW ECC: Only 24 and 32-bit error correction implemented. */ #include #include #include #include #include #include #include #include #include #if CONFIG_NAND_VF610_NFC_DT #include #include #include #endif /* Register Offsets */ #define NFC_FLASH_CMD1 0x3F00 #define NFC_FLASH_CMD2 0x3F04 #define NFC_COL_ADDR 0x3F08 #define NFC_ROW_ADDR 0x3F0c #define NFC_ROW_ADDR_INC 0x3F14 #define NFC_FLASH_STATUS1 0x3F18 #define NFC_FLASH_STATUS2 0x3F1c #define NFC_CACHE_SWAP 0x3F28 #define NFC_SECTOR_SIZE 0x3F2c #define NFC_FLASH_CONFIG 0x3F30 #define NFC_IRQ_STATUS 0x3F38 /* Addresses for NFC MAIN RAM BUFFER areas */ #define NFC_MAIN_AREA(n) ((n) * 0x1000) #define PAGE_2K 0x0800 #define OOB_64 0x0040 #define OOB_MAX 0x0100 /* * NFC_CMD2[CODE] values. See section: * - 31.4.7 Flash Command Code Description, Vybrid manual * - 23.8.6 Flash Command Sequencer, MPC5125 manual * * Briefly these are bitmasks of controller cycles. */ #define READ_PAGE_CMD_CODE 0x7EE0 #define READ_ONFI_PARAM_CMD_CODE 0x4860 #define PROGRAM_PAGE_CMD_CODE 0x7FC0 #define ERASE_CMD_CODE 0x4EC0 #define READ_ID_CMD_CODE 0x4804 #define RESET_CMD_CODE 0x4040 #define STATUS_READ_CMD_CODE 0x4068 /* NFC ECC mode define */ #define ECC_BYPASS 0 #define ECC_45_BYTE 6 #define ECC_60_BYTE 7 /*** Register Mask and bit definitions */ /* NFC_FLASH_CMD1 Field */ #define CMD_BYTE2_MASK 0xFF000000 #define CMD_BYTE2_SHIFT 24 /* NFC_FLASH_CM2 Field */ #define CMD_BYTE1_MASK 0xFF000000 #define CMD_BYTE1_SHIFT 24 #define CMD_CODE_MASK 0x00FFFF00 #define CMD_CODE_SHIFT 8 #define BUFNO_MASK 0x00000006 #define BUFNO_SHIFT 1 #define START_BIT (1<<0) /* NFC_COL_ADDR Field */ #define COL_ADDR_MASK 0x0000FFFF #define COL_ADDR_SHIFT 0 /* NFC_ROW_ADDR Field */ #define ROW_ADDR_MASK 0x00FFFFFF #define ROW_ADDR_SHIFT 0 #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 #define ROW_ADDR_CHIP_SEL_SHIFT 24 /* NFC_FLASH_STATUS2 Field */ #define STATUS_BYTE1_MASK 0x000000FF /* NFC_FLASH_CONFIG Field */ #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22 #define CONFIG_ECC_SRAM_REQ_BIT (1<<21) #define CONFIG_DMA_REQ_BIT (1<<20) #define CONFIG_ECC_MODE_MASK 0x000E0000 #define CONFIG_ECC_MODE_SHIFT 17 #define CONFIG_FAST_FLASH_BIT (1<<16) #define CONFIG_16BIT (1<<7) #define CONFIG_BOOT_MODE_BIT (1<<6) #define CONFIG_ADDR_AUTO_INCR_BIT (1<<5) #define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4) #define CONFIG_PAGE_CNT_MASK 0xF #define CONFIG_PAGE_CNT_SHIFT 0 /* NFC_IRQ_STATUS Field */ #define IDLE_IRQ_BIT (1<<29) #define IDLE_EN_BIT (1<<20) #define CMD_DONE_CLEAR_BIT (1<<18) #define IDLE_CLEAR_BIT (1<<17) #define NFC_TIMEOUT (1000) /* * ECC status - seems to consume 8 bytes (double word). The documented * status byte is located in the lowest byte of the second word (which is * the 4th or 7th byte depending on endianness). * Calculate an offset to store the ECC status at the end of the buffer. */ #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) #define ECC_STATUS 0x4 #define ECC_STATUS_MASK 0x80 #define ECC_STATUS_ERR_COUNT 0x3F enum vf610_nfc_alt_buf { ALT_BUF_DATA = 0, ALT_BUF_ID = 1, ALT_BUF_STAT = 2, ALT_BUF_ONFI = 3, }; struct vf610_nfc { struct nand_chip chip; void __iomem *regs; uint buf_offset; int write_sz; /* Status and ID are in alternate locations. */ enum vf610_nfc_alt_buf alt_buf; }; #define mtd_to_nfc(_mtd) nand_get_controller_data(mtd_to_nand(_mtd)) #if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES) #define ECC_HW_MODE ECC_45_BYTE static struct nand_ecclayout vf610_nfc_ecc = { .eccbytes = 45, .eccpos = {19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {.offset = 2, .length = 17} } }; #elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES) #define ECC_HW_MODE ECC_60_BYTE static struct nand_ecclayout vf610_nfc_ecc = { .eccbytes = 60, .eccpos = { 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, .oobfree = { {.offset = 2, .length = 2} } }; #endif static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); return readl(nfc->regs + reg); } static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); writel(val, nfc->regs + reg); } static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits) { vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits); } static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits) { vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits); } static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg, u32 mask, u32 shift, u32 val) { vf610_nfc_write(mtd, reg, (vf610_nfc_read(mtd, reg) & (~mask)) | val << shift); } static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n) { /* * Use this accessor for the internal SRAM buffers. On the ARM * Freescale Vybrid SoC it's known that the driver can treat * the SRAM buffer as if it's memory. Other platform might need * to treat the buffers differently. * * For the time being, use memcpy */ memcpy(dst, src, n); } /* Clear flags for upcoming command */ static inline void vf610_nfc_clear_status(void __iomem *regbase) { void __iomem *reg = regbase + NFC_IRQ_STATUS; u32 tmp = __raw_readl(reg); tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; __raw_writel(tmp, reg); } /* Wait for complete operation */ static void vf610_nfc_done(struct mtd_info *mtd) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); uint start; /* * Barrier is needed after this write. This write need * to be done before reading the next register the first * time. * vf610_nfc_set implicates such a barrier by using writel * to write to the register. */ vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT); start = get_timer(0); while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) { if (get_timer(start) > NFC_TIMEOUT) { printf("Timeout while waiting for IDLE.\n"); return; } } vf610_nfc_clear_status(nfc->regs); } static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col) { u32 flash_id; if (col < 4) { flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1); flash_id >>= (3 - col) * 8; } else { flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2); flash_id >>= 24; } return flash_id & 0xff; } static u8 vf610_nfc_get_status(struct mtd_info *mtd) { return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK; } /* Single command */ static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1, u32 cmd_code) { void __iomem *reg = regbase + NFC_FLASH_CMD2; u32 tmp; vf610_nfc_clear_status(regbase); tmp = __raw_readl(reg); tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK); tmp |= cmd_byte1 << CMD_BYTE1_SHIFT; tmp |= cmd_code << CMD_CODE_SHIFT; __raw_writel(tmp, reg); } /* Two commands */ static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1, u32 cmd_byte2, u32 cmd_code) { void __iomem *reg = regbase + NFC_FLASH_CMD1; u32 tmp; vf610_nfc_send_command(regbase, cmd_byte1, cmd_code); tmp = __raw_readl(reg); tmp &= ~CMD_BYTE2_MASK; tmp |= cmd_byte2 << CMD_BYTE2_SHIFT; __raw_writel(tmp, reg); } static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) { if (column != -1) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); if (nfc->chip.options & NAND_BUSWIDTH_16) column = column / 2; vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK, COL_ADDR_SHIFT, column); } if (page != -1) vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK, ROW_ADDR_SHIFT, page); } static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode) { vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_MODE_MASK, CONFIG_ECC_MODE_SHIFT, ecc_mode); } static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size) { __raw_writel(size, regbase + NFC_SECTOR_SIZE); } /* Send command to NAND chip */ static void vf610_nfc_command(struct mtd_info *mtd, unsigned command, int column, int page) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0; nfc->buf_offset = max(column, 0); nfc->alt_buf = ALT_BUF_DATA; switch (command) { case NAND_CMD_SEQIN: /* Use valid column/page from preread... */ vf610_nfc_addr_cycle(mtd, column, page); nfc->buf_offset = 0; /* * SEQIN => data => PAGEPROG sequence is done by the controller * hence we do not need to issue the command here... */ return; case NAND_CMD_PAGEPROG: trfr_sz += nfc->write_sz; vf610_nfc_ecc_mode(mtd, ECC_HW_MODE); vf610_nfc_transfer_size(nfc->regs, trfr_sz); vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN, command, PROGRAM_PAGE_CMD_CODE); break; case NAND_CMD_RESET: vf610_nfc_transfer_size(nfc->regs, 0); vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE); break; case NAND_CMD_READOOB: trfr_sz += mtd->oobsize; column = mtd->writesize; vf610_nfc_transfer_size(nfc->regs, trfr_sz); vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0, NAND_CMD_READSTART, READ_PAGE_CMD_CODE); vf610_nfc_addr_cycle(mtd, column, page); vf610_nfc_ecc_mode(mtd, ECC_BYPASS); break; case NAND_CMD_READ0: trfr_sz += mtd->writesize + mtd->oobsize; vf610_nfc_transfer_size(nfc->regs, trfr_sz); vf610_nfc_ecc_mode(mtd, ECC_HW_MODE); vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0, NAND_CMD_READSTART, READ_PAGE_CMD_CODE); vf610_nfc_addr_cycle(mtd, column, page); break; case NAND_CMD_PARAM: nfc->alt_buf = ALT_BUF_ONFI; trfr_sz = 3 * sizeof(struct nand_onfi_params); vf610_nfc_transfer_size(nfc->regs, trfr_sz); vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM, READ_ONFI_PARAM_CMD_CODE); vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK, ROW_ADDR_SHIFT, column); vf610_nfc_ecc_mode(mtd, ECC_BYPASS); break; case NAND_CMD_ERASE1: vf610_nfc_transfer_size(nfc->regs, 0); vf610_nfc_send_commands(nfc->regs, command, NAND_CMD_ERASE2, ERASE_CMD_CODE); vf610_nfc_addr_cycle(mtd, column, page); break; case NAND_CMD_READID: nfc->alt_buf = ALT_BUF_ID; nfc->buf_offset = 0; vf610_nfc_transfer_size(nfc->regs, 0); vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE); vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK, ROW_ADDR_SHIFT, column); break; case NAND_CMD_STATUS: nfc->alt_buf = ALT_BUF_STAT; vf610_nfc_transfer_size(nfc->regs, 0); vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE); break; default: return; } vf610_nfc_done(mtd); nfc->write_sz = 0; } /* Read data from NFC buffers */ static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); uint c = nfc->buf_offset; /* Alternate buffers are only supported through read_byte */ if (nfc->alt_buf) return; vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len); nfc->buf_offset += len; } /* Write data to NFC buffers */ static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); uint c = nfc->buf_offset; uint l; l = min_t(uint, len, mtd->writesize + mtd->oobsize - c); vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l); nfc->write_sz += l; nfc->buf_offset += l; } /* Read byte from NFC buffers */ static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); u8 tmp; uint c = nfc->buf_offset; switch (nfc->alt_buf) { case ALT_BUF_ID: tmp = vf610_nfc_get_id(mtd, c); break; case ALT_BUF_STAT: tmp = vf610_nfc_get_status(mtd); break; #ifdef __LITTLE_ENDIAN case ALT_BUF_ONFI: /* Reverse byte since the controller uses big endianness */ c = nfc->buf_offset ^ 0x3; /* fall-through */ #endif default: tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c)); break; } nfc->buf_offset++; return tmp; } /* Read word from NFC buffers */ static u16 vf610_nfc_read_word(struct mtd_info *mtd) { u16 tmp; vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); return tmp; } /* If not provided, upper layers apply a fixed delay. */ static int vf610_nfc_dev_ready(struct mtd_info *mtd) { /* NFC handles R/B internally; always ready. */ return 1; } /* * This function supports Vybrid only (MPC5125 would have full RB and four CS) */ static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip) { #ifdef CONFIG_VF610 u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR); tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); if (chip >= 0) { tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT; } vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp); #endif } /* Count the number of 0's in buff upto max_bits */ static inline int count_written_bits(uint8_t *buff, int size, int max_bits) { uint32_t *buff32 = (uint32_t *)buff; int k, written_bits = 0; for (k = 0; k < (size / 4); k++) { written_bits += hweight32(~buff32[k]); if (written_bits > max_bits) break; } return written_bits; } static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, uint8_t *oob, int page) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; u8 ecc_status; u8 ecc_count; int flips; int flips_threshold = nfc->chip.ecc.strength / 2; ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff; ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; if (!(ecc_status & ECC_STATUS_MASK)) return ecc_count; /* Read OOB without ECC unit enabled */ vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page); vf610_nfc_read_buf(mtd, oob, mtd->oobsize); /* * On an erased page, bit count (including OOB) should be zero or * at least less then half of the ECC strength. */ flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold); flips += count_written_bits(oob, mtd->oobsize, flips_threshold); if (unlikely(flips > flips_threshold)) return -EINVAL; /* Erased page. */ memset(dat, 0xff, nfc->chip.ecc.size); memset(oob, 0xff, mtd->oobsize); return flips; } static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int eccsize = chip->ecc.size; int stat; vf610_nfc_read_buf(mtd, buf, eccsize); if (oob_required) vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize); stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page); if (stat < 0) { mtd->ecc_stats.failed++; return 0; } else { mtd->ecc_stats.corrected += stat; return stat; } } /* * ECC will be calculated automatically */ static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); vf610_nfc_write_buf(mtd, buf, mtd->writesize); if (oob_required) vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize); /* Always write whole page including OOB due to HW ECC */ nfc->write_sz = mtd->writesize + mtd->oobsize; return 0; } struct vf610_nfc_config { int hardware_ecc; int width; int flash_bbt; }; static int vf610_nfc_nand_init(int devnum, void __iomem *addr) { struct mtd_info *mtd; struct nand_chip *chip; struct vf610_nfc *nfc; int err = 0; struct vf610_nfc_config cfg = { .hardware_ecc = 1, #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT .width = 16, #else .width = 8, #endif .flash_bbt = 1, }; nfc = calloc(1, sizeof(*nfc)); if (!nfc) { printf(KERN_ERR "%s: Memory exhausted!\n", __func__); return -ENOMEM; } chip = &nfc->chip; nfc->regs = addr; mtd = nand_to_mtd(chip); nand_set_controller_data(chip, nfc); if (cfg.width == 16) chip->options |= NAND_BUSWIDTH_16; chip->dev_ready = vf610_nfc_dev_ready; chip->cmdfunc = vf610_nfc_command; chip->read_byte = vf610_nfc_read_byte; chip->read_word = vf610_nfc_read_word; chip->read_buf = vf610_nfc_read_buf; chip->write_buf = vf610_nfc_write_buf; chip->select_chip = vf610_nfc_select_chip; chip->options |= NAND_NO_SUBPAGE_WRITE; chip->ecc.size = PAGE_2K; /* Set configuration register. */ vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); /* Disable virtual pages, only one elementary transfer unit */ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, CONFIG_PAGE_CNT_SHIFT, 1); /* first scan to find the device and get the page size */ if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) { err = -ENXIO; goto error; } if (cfg.width == 16) vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT); /* Bad block options. */ if (cfg.flash_bbt) chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB | NAND_BBT_CREATE; /* Single buffer only, max 256 OOB minus ECC status */ if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { dev_err(nfc->dev, "Unsupported flash page size\n"); err = -ENXIO; goto error; } if (cfg.hardware_ecc) { if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { dev_err(nfc->dev, "Unsupported flash with hwecc\n"); err = -ENXIO; goto error; } if (chip->ecc.size != mtd->writesize) { dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size); dev_err(nfc->dev, "Step size needs to be page size\n"); err = -ENXIO; goto error; } /* Current HW ECC layouts only use 64 bytes of OOB */ if (mtd->oobsize > 64) mtd->oobsize = 64; /* propagate ecc.layout to mtd_info */ mtd->ecclayout = chip->ecc.layout; chip->ecc.read_page = vf610_nfc_read_page; chip->ecc.write_page = vf610_nfc_write_page; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = PAGE_2K; chip->ecc.layout = &vf610_nfc_ecc; #if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES) chip->ecc.strength = 24; chip->ecc.bytes = 45; #elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES) chip->ecc.strength = 32; chip->ecc.bytes = 60; #endif /* Set ECC_STATUS offset */ vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_ADDR_MASK, CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR >> 3); /* Enable ECC status in SRAM */ vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); } /* second phase scan */ err = nand_scan_tail(mtd); if (err) return err; err = nand_register(devnum, mtd); if (err) return err; return 0; error: return err; } #if CONFIG_NAND_VF610_NFC_DT static const struct udevice_id vf610_nfc_dt_ids[] = { { .compatible = "fsl,vf610-nfc", }, { /* sentinel */ } }; static int vf610_nfc_dt_probe(struct udevice *dev) { struct resource res; int ret; ret = dev_read_resource(dev, 0, &res); if (ret) return ret; return vf610_nfc_nand_init(0, devm_ioremap(dev, res.start, resource_size(&res))); } U_BOOT_DRIVER(vf610_nfc_dt) = { .name = "vf610-nfc-dt", .id = UCLASS_MTD, .of_match = vf610_nfc_dt_ids, .probe = vf610_nfc_dt_probe, }; void board_nand_init(void) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_MTD, DM_GET_DRIVER(vf610_nfc_dt), &dev); if (ret && ret != -ENODEV) pr_err("Failed to initialize NAND controller. (error %d)\n", ret); } #else void board_nand_init(void) { int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE); if (err) printf("VF610 NAND init failed (err %d)\n", err); } #endif /* CONFIG_NAND_VF610_NFC_DT */