// SPDX-License-Identifier: GPL-2.0+ /* * Texas Instruments' K3 DSP Remoteproc driver * * Copyright (C) 2018-2020 Texas Instruments Incorporated - https://www.ti.com/ * Lokesh Vutla * Suman Anna */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ti_sci_proc.h" #define KEYSTONE_RPROC_LOCAL_ADDRESS_MASK (SZ_16M - 1) /** * struct k3_dsp_mem - internal memory structure * @cpu_addr: MPU virtual address of the memory region * @bus_addr: Bus address used to access the memory region * @dev_addr: Device address from remoteproc view * @size: Size of the memory region */ struct k3_dsp_mem { void __iomem *cpu_addr; phys_addr_t bus_addr; phys_addr_t dev_addr; size_t size; }; /** * struct k3_dsp_boot_data - internal data structure used for boot * @boot_align_addr: Boot vector address alignment granularity * @uses_lreset: Flag to denote the need for local reset management */ struct k3_dsp_boot_data { u32 boot_align_addr; bool uses_lreset; }; /** * struct k3_dsp_privdata - Structure representing Remote processor data. * @rproc_rst: rproc reset control data * @tsp: Pointer to TISCI proc contrl handle * @data: Pointer to DSP specific boot data structure * @mem: Array of available memories * @num_mem: Number of available memories * @in_use: flag to tell if the core is already in use. */ struct k3_dsp_privdata { struct reset_ctl dsp_rst; struct ti_sci_proc tsp; struct k3_dsp_boot_data *data; struct k3_dsp_mem *mem; int num_mems; bool in_use; }; /* * The C66x DSP cores have a local reset that affects only the CPU, and a * generic module reset that powers on the device and allows the DSP internal * memories to be accessed while the local reset is asserted. This function is * used to release the global reset on C66x DSPs to allow loading into the DSP * internal RAMs. This helper function is invoked in k3_dsp_load() before any * actual firmware loading and is undone only in k3_dsp_stop(). The local reset * on C71x cores is a no-op and the global reset cannot be released on C71x * cores until after the firmware images are loaded, so this function does * nothing for C71x cores. */ static int k3_dsp_prepare(struct udevice *dev) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); struct k3_dsp_boot_data *data = dsp->data; int ret; /* local reset is no-op on C71x processors */ if (!data->uses_lreset) return 0; ret = ti_sci_proc_power_domain_on(&dsp->tsp); if (ret) dev_err(dev, "cannot enable internal RAM loading, ret = %d\n", ret); return ret; } /* * This function is the counterpart to k3_dsp_prepare() and is used to assert * the global reset on C66x DSP cores (no-op for C71x DSP cores). This completes * the second step of powering down the C66x DSP cores. The cores themselves * are halted through the local reset in first step. This function is invoked * in k3_dsp_stop() after the local reset is asserted. */ static int k3_dsp_unprepare(struct udevice *dev) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); struct k3_dsp_boot_data *data = dsp->data; /* local reset is no-op on C71x processors */ if (!data->uses_lreset) return 0; return ti_sci_proc_power_domain_off(&dsp->tsp); } /** * k3_dsp_load() - Load up the Remote processor image * @dev: rproc device pointer * @addr: Address at which image is available * @size: size of the image * * Return: 0 if all goes good, else appropriate error message. */ static int k3_dsp_load(struct udevice *dev, ulong addr, ulong size) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); struct k3_dsp_boot_data *data = dsp->data; u32 boot_vector; int ret; if (dsp->in_use) { dev_err(dev, "Invalid op: Trying to load/start on already running core %d\n", dsp->tsp.proc_id); return -EINVAL; } dev_dbg(dev, "%s addr = 0x%lx, size = 0x%lx\n", __func__, addr, size); ret = ti_sci_proc_request(&dsp->tsp); if (ret) return ret; ret = k3_dsp_prepare(dev); if (ret) { dev_err(dev, "DSP prepare failed for core %d\n", dsp->tsp.proc_id); goto proc_release; } ret = rproc_elf_load_image(dev, addr, size); if (ret < 0) { dev_err(dev, "Loading elf failed %d\n", ret); goto unprepare; } boot_vector = rproc_elf_get_boot_addr(dev, addr); if (boot_vector & (data->boot_align_addr - 1)) { ret = -EINVAL; dev_err(dev, "Boot vector 0x%x not aligned on 0x%x boundary\n", boot_vector, data->boot_align_addr); goto proc_release; } dev_dbg(dev, "%s: Boot vector = 0x%x\n", __func__, boot_vector); ret = ti_sci_proc_set_config(&dsp->tsp, boot_vector, 0, 0); unprepare: if (ret) k3_dsp_unprepare(dev); proc_release: ti_sci_proc_release(&dsp->tsp); return ret; } /** * k3_dsp_start() - Start the remote processor * @dev: rproc device pointer * * Return: 0 if all went ok, else return appropriate error */ static int k3_dsp_start(struct udevice *dev) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); struct k3_dsp_boot_data *data = dsp->data; int ret; dev_dbg(dev, "%s\n", __func__); ret = ti_sci_proc_request(&dsp->tsp); if (ret) return ret; if (!data->uses_lreset) { ret = ti_sci_proc_power_domain_on(&dsp->tsp); if (ret) goto proc_release; } ret = reset_deassert(&dsp->dsp_rst); if (ret) { if (!data->uses_lreset) ti_sci_proc_power_domain_off(&dsp->tsp); } dsp->in_use = true; proc_release: ti_sci_proc_release(&dsp->tsp); return ret; } static int k3_dsp_stop(struct udevice *dev) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); dev_dbg(dev, "%s\n", __func__); dsp->in_use = false; ti_sci_proc_request(&dsp->tsp); reset_assert(&dsp->dsp_rst); ti_sci_proc_power_domain_off(&dsp->tsp); ti_sci_proc_release(&dsp->tsp); return 0; } /** * k3_dsp_init() - Initialize the remote processor * @dev: rproc device pointer * * Return: 0 if all went ok, else return appropriate error */ static int k3_dsp_init(struct udevice *dev) { dev_dbg(dev, "%s\n", __func__); return 0; } static int k3_dsp_reset(struct udevice *dev) { dev_dbg(dev, "%s\n", __func__); return 0; } static void *k3_dsp_da_to_va(struct udevice *dev, ulong da, ulong len) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); phys_addr_t bus_addr, dev_addr; void __iomem *va = NULL; size_t size; u32 offset; int i; dev_dbg(dev, "%s\n", __func__); if (len <= 0) return NULL; for (i = 0; i < dsp->num_mems; i++) { bus_addr = dsp->mem[i].bus_addr; dev_addr = dsp->mem[i].dev_addr; size = dsp->mem[i].size; if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { offset = da - dev_addr; va = dsp->mem[i].cpu_addr + offset; return (__force void *)va; } if (da >= bus_addr && (da + len) <= (bus_addr + size)) { offset = da - bus_addr; va = dsp->mem[i].cpu_addr + offset; return (__force void *)va; } } /* Assume it is DDR region and return da */ return map_physmem(da, len, MAP_NOCACHE); } static const struct dm_rproc_ops k3_dsp_ops = { .init = k3_dsp_init, .load = k3_dsp_load, .start = k3_dsp_start, .stop = k3_dsp_stop, .reset = k3_dsp_reset, .device_to_virt = k3_dsp_da_to_va, }; static int ti_sci_proc_of_to_priv(struct udevice *dev, struct ti_sci_proc *tsp) { u32 ids[2]; int ret; dev_dbg(dev, "%s\n", __func__); tsp->sci = ti_sci_get_by_phandle(dev, "ti,sci"); if (IS_ERR(tsp->sci)) { dev_err(dev, "ti_sci get failed: %ld\n", PTR_ERR(tsp->sci)); return PTR_ERR(tsp->sci); } ret = dev_read_u32_array(dev, "ti,sci-proc-ids", ids, 2); if (ret) { dev_err(dev, "Proc IDs not populated %d\n", ret); return ret; } tsp->ops = &tsp->sci->ops.proc_ops; tsp->proc_id = ids[0]; tsp->host_id = ids[1]; tsp->dev_id = dev_read_u32_default(dev, "ti,sci-dev-id", TI_SCI_RESOURCE_NULL); if (tsp->dev_id == TI_SCI_RESOURCE_NULL) { dev_err(dev, "Device ID not populated %d\n", ret); return -ENODEV; } return 0; } static int k3_dsp_of_get_memories(struct udevice *dev) { static const char * const mem_names[] = {"l2sram", "l1pram", "l1dram"}; struct k3_dsp_privdata *dsp = dev_get_priv(dev); int i; dev_dbg(dev, "%s\n", __func__); dsp->num_mems = ARRAY_SIZE(mem_names); dsp->mem = calloc(dsp->num_mems, sizeof(*dsp->mem)); if (!dsp->mem) return -ENOMEM; for (i = 0; i < dsp->num_mems; i++) { /* C71 cores only have a L1P Cache, there are no L1P SRAMs */ if (((device_is_compatible(dev, "ti,j721e-c71-dsp")) || (device_is_compatible(dev, "ti,j721s2-c71-dsp"))) && !strcmp(mem_names[i], "l1pram")) { dsp->mem[i].bus_addr = FDT_ADDR_T_NONE; dsp->mem[i].dev_addr = FDT_ADDR_T_NONE; dsp->mem[i].cpu_addr = NULL; dsp->mem[i].size = 0; continue; } dsp->mem[i].bus_addr = dev_read_addr_size_name(dev, mem_names[i], (fdt_addr_t *)&dsp->mem[i].size); if (dsp->mem[i].bus_addr == FDT_ADDR_T_NONE) { dev_err(dev, "%s bus address not found\n", mem_names[i]); return -EINVAL; } dsp->mem[i].cpu_addr = map_physmem(dsp->mem[i].bus_addr, dsp->mem[i].size, MAP_NOCACHE); dsp->mem[i].dev_addr = dsp->mem[i].bus_addr & KEYSTONE_RPROC_LOCAL_ADDRESS_MASK; dev_dbg(dev, "memory %8s: bus addr %pa size 0x%zx va %p da %pa\n", mem_names[i], &dsp->mem[i].bus_addr, dsp->mem[i].size, dsp->mem[i].cpu_addr, &dsp->mem[i].dev_addr); } return 0; } /** * k3_of_to_priv() - generate private data from device tree * @dev: corresponding k3 dsp processor device * @dsp: pointer to driver specific private data * * Return: 0 if all goes good, else appropriate error message. */ static int k3_dsp_of_to_priv(struct udevice *dev, struct k3_dsp_privdata *dsp) { int ret; dev_dbg(dev, "%s\n", __func__); ret = reset_get_by_index(dev, 0, &dsp->dsp_rst); if (ret) { dev_err(dev, "reset_get() failed: %d\n", ret); return ret; } ret = ti_sci_proc_of_to_priv(dev, &dsp->tsp); if (ret) return ret; ret = k3_dsp_of_get_memories(dev); if (ret) return ret; dsp->data = (struct k3_dsp_boot_data *)dev_get_driver_data(dev); return 0; } /** * k3_dsp_probe() - Basic probe * @dev: corresponding k3 remote processor device * * Return: 0 if all goes good, else appropriate error message. */ static int k3_dsp_probe(struct udevice *dev) { struct k3_dsp_privdata *dsp; int ret; dev_dbg(dev, "%s\n", __func__); dsp = dev_get_priv(dev); ret = k3_dsp_of_to_priv(dev, dsp); if (ret) { dev_dbg(dev, "%s: Probe failed with error %d\n", __func__, ret); return ret; } /* * The DSP local resets are deasserted by default on Power-On-Reset. * Assert the local resets to ensure the DSPs don't execute bogus code * in .load() callback when the module reset is released to support * internal memory loading. This is needed for C66x DSPs, and is a * no-op on C71x DSPs. */ reset_assert(&dsp->dsp_rst); dev_dbg(dev, "Remoteproc successfully probed\n"); return 0; } static int k3_dsp_remove(struct udevice *dev) { struct k3_dsp_privdata *dsp = dev_get_priv(dev); free(dsp->mem); return 0; } static const struct k3_dsp_boot_data c66_data = { .boot_align_addr = SZ_1K, .uses_lreset = true, }; static const struct k3_dsp_boot_data c71_data = { .boot_align_addr = SZ_2M, .uses_lreset = false, }; static const struct udevice_id k3_dsp_ids[] = { { .compatible = "ti,j721e-c66-dsp", .data = (ulong)&c66_data, }, { .compatible = "ti,j721e-c71-dsp", .data = (ulong)&c71_data, }, { .compatible = "ti,j721s2-c71-dsp", .data = (ulong)&c71_data, }, {} }; U_BOOT_DRIVER(k3_dsp) = { .name = "k3_dsp", .of_match = k3_dsp_ids, .id = UCLASS_REMOTEPROC, .ops = &k3_dsp_ops, .probe = k3_dsp_probe, .remove = k3_dsp_remove, .priv_auto = sizeof(struct k3_dsp_privdata), };