// SPDX-License-Identifier: GPL-2.0+ /** * ufs.c - Universal Flash Subsystem (UFS) driver * * Taken from Linux Kernel v5.2 (drivers/scsi/ufs/ufshcd.c) and ported * to u-boot. * * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ufs.h" #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ UTP_TASK_REQ_COMPL |\ UFSHCD_ERROR_MASK) /* maximum number of link-startup retries */ #define DME_LINKSTARTUP_RETRIES 3 /* maximum number of retries for a general UIC command */ #define UFS_UIC_COMMAND_RETRIES 3 /* Query request retries */ #define QUERY_REQ_RETRIES 3 /* Query request timeout */ #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ /* maximum timeout in ms for a general UIC command */ #define UFS_UIC_CMD_TIMEOUT 1000 /* NOP OUT retries waiting for NOP IN response */ #define NOP_OUT_RETRIES 10 /* Timeout after 30 msecs if NOP OUT hangs without response */ #define NOP_OUT_TIMEOUT 30 /* msecs */ /* Only use one Task Tag for all requests */ #define TASK_TAG 0 /* Expose the flag value from utp_upiu_query.value */ #define MASK_QUERY_UPIU_FLAG_LOC 0xFF #define MAX_PRDT_ENTRY 262144 /* maximum bytes per request */ #define UFS_MAX_BYTES (128 * 256 * 1024) static inline bool ufshcd_is_hba_active(struct ufs_hba *hba); static inline void ufshcd_hba_stop(struct ufs_hba *hba); static int ufshcd_hba_enable(struct ufs_hba *hba); /* * ufshcd_wait_for_register - wait for register value to change */ static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, u32 val, unsigned long timeout_ms) { int err = 0; unsigned long start = get_timer(0); /* ignore bits that we don't intend to wait on */ val = val & mask; while ((ufshcd_readl(hba, reg) & mask) != val) { if (get_timer(start) > timeout_ms) { if ((ufshcd_readl(hba, reg) & mask) != val) err = -ETIMEDOUT; break; } } return err; } /** * ufshcd_init_pwr_info - setting the POR (power on reset) * values in hba power info */ static void ufshcd_init_pwr_info(struct ufs_hba *hba) { hba->pwr_info.gear_rx = UFS_PWM_G1; hba->pwr_info.gear_tx = UFS_PWM_G1; hba->pwr_info.lane_rx = 1; hba->pwr_info.lane_tx = 1; hba->pwr_info.pwr_rx = SLOWAUTO_MODE; hba->pwr_info.pwr_tx = SLOWAUTO_MODE; hba->pwr_info.hs_rate = 0; } /** * ufshcd_print_pwr_info - print power params as saved in hba * power info */ static void ufshcd_print_pwr_info(struct ufs_hba *hba) { static const char * const names[] = { "INVALID MODE", "FAST MODE", "SLOW_MODE", "INVALID MODE", "FASTAUTO_MODE", "SLOWAUTO_MODE", "INVALID MODE", }; dev_err(hba->dev, "[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, names[hba->pwr_info.pwr_rx], names[hba->pwr_info.pwr_tx], hba->pwr_info.hs_rate); } /** * ufshcd_ready_for_uic_cmd - Check if controller is ready * to accept UIC commands */ static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) { if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY) return true; else return false; } /** * ufshcd_get_uic_cmd_result - Get the UIC command result */ static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & MASK_UIC_COMMAND_RESULT; } /** * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command */ static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); } /** * ufshcd_is_device_present - Check if any device connected to * the host controller */ static inline bool ufshcd_is_device_present(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT) ? true : false; } /** * ufshcd_send_uic_cmd - UFS Interconnect layer command API * */ static int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) { unsigned long start = 0; u32 intr_status; u32 enabled_intr_status; if (!ufshcd_ready_for_uic_cmd(hba)) { dev_err(hba->dev, "Controller not ready to accept UIC commands\n"); return -EIO; } debug("sending uic command:%d\n", uic_cmd->command); /* Write Args */ ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); /* Write UIC Cmd */ ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, REG_UIC_COMMAND); start = get_timer(0); do { intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); enabled_intr_status = intr_status & hba->intr_mask; ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); if (get_timer(start) > UFS_UIC_CMD_TIMEOUT) { dev_err(hba->dev, "Timedout waiting for UIC response\n"); return -ETIMEDOUT; } if (enabled_intr_status & UFSHCD_ERROR_MASK) { dev_err(hba->dev, "Error in status:%08x\n", enabled_intr_status); return -1; } } while (!(enabled_intr_status & UFSHCD_UIC_MASK)); uic_cmd->argument2 = ufshcd_get_uic_cmd_result(hba); uic_cmd->argument3 = ufshcd_get_dme_attr_val(hba); debug("Sent successfully\n"); return 0; } /** * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET * */ int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, u8 attr_set, u32 mib_val, u8 peer) { struct uic_command uic_cmd = {0}; static const char *const action[] = { "dme-set", "dme-peer-set" }; const char *set = action[!!peer]; int ret; int retries = UFS_UIC_COMMAND_RETRIES; uic_cmd.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; uic_cmd.argument1 = attr_sel; uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); uic_cmd.argument3 = mib_val; do { /* for peer attributes we retry upon failure */ ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); } while (ret && peer && --retries); if (ret) dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", set, UIC_GET_ATTR_ID(attr_sel), mib_val, UFS_UIC_COMMAND_RETRIES - retries); return ret; } /** * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET * */ int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, u32 *mib_val, u8 peer) { struct uic_command uic_cmd = {0}; static const char *const action[] = { "dme-get", "dme-peer-get" }; const char *get = action[!!peer]; int ret; int retries = UFS_UIC_COMMAND_RETRIES; uic_cmd.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; uic_cmd.argument1 = attr_sel; do { /* for peer attributes we retry upon failure */ ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", get, UIC_GET_ATTR_ID(attr_sel), ret); } while (ret && peer && --retries); if (ret) dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", get, UIC_GET_ATTR_ID(attr_sel), UFS_UIC_COMMAND_RETRIES - retries); if (mib_val && !ret) *mib_val = uic_cmd.argument3; return ret; } static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) { u32 tx_lanes, i, err = 0; if (!peer) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &tx_lanes); else ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &tx_lanes); for (i = 0; i < tx_lanes; i++) { if (!peer) err = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LCC_ENABLE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 0); else err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB_SEL(TX_LCC_ENABLE, UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 0); if (err) { dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", __func__, peer, i, err); break; } } return err; } static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) { return ufshcd_disable_tx_lcc(hba, true); } /** * ufshcd_dme_link_startup - Notify Unipro to perform link startup * */ static int ufshcd_dme_link_startup(struct ufs_hba *hba) { struct uic_command uic_cmd = {0}; int ret; uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; ret = ufshcd_send_uic_cmd(hba, &uic_cmd); if (ret) dev_dbg(hba->dev, "dme-link-startup: error code %d\n", ret); return ret; } /** * ufshcd_disable_intr_aggr - Disables interrupt aggregation. * */ static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) { ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); } /** * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY */ static inline int ufshcd_get_lists_status(u32 reg) { return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); } /** * ufshcd_enable_run_stop_reg - Enable run-stop registers, * When run-stop registers are set to 1, it indicates the * host controller that it can process the requests */ static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) { ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, REG_UTP_TASK_REQ_LIST_RUN_STOP); ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); } /** * ufshcd_enable_intr - enable interrupts */ static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) { u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); u32 rw; if (hba->version == UFSHCI_VERSION_10) { rw = set & INTERRUPT_MASK_RW_VER_10; set = rw | ((set ^ intrs) & intrs); } else { set |= intrs; } ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); hba->intr_mask = set; } /** * ufshcd_make_hba_operational - Make UFS controller operational * * To bring UFS host controller to operational state, * 1. Enable required interrupts * 2. Configure interrupt aggregation * 3. Program UTRL and UTMRL base address * 4. Configure run-stop-registers * */ static int ufshcd_make_hba_operational(struct ufs_hba *hba) { int err = 0; u32 reg; /* Enable required interrupts */ ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); /* Disable interrupt aggregation */ ufshcd_disable_intr_aggr(hba); /* Configure UTRL and UTMRL base address registers */ ufshcd_writel(hba, lower_32_bits((dma_addr_t)hba->utrdl), REG_UTP_TRANSFER_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits((dma_addr_t)hba->utrdl), REG_UTP_TRANSFER_REQ_LIST_BASE_H); ufshcd_writel(hba, lower_32_bits((dma_addr_t)hba->utmrdl), REG_UTP_TASK_REQ_LIST_BASE_L); ufshcd_writel(hba, upper_32_bits((dma_addr_t)hba->utmrdl), REG_UTP_TASK_REQ_LIST_BASE_H); /* * UCRDY, UTMRLDY and UTRLRDY bits must be 1 */ reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); if (!(ufshcd_get_lists_status(reg))) { ufshcd_enable_run_stop_reg(hba); } else { dev_err(hba->dev, "Host controller not ready to process requests"); err = -EIO; goto out; } out: return err; } /** * ufshcd_link_startup - Initialize unipro link startup */ static int ufshcd_link_startup(struct ufs_hba *hba) { int ret; int retries = DME_LINKSTARTUP_RETRIES; bool link_startup_again = true; link_startup: do { ufshcd_ops_link_startup_notify(hba, PRE_CHANGE); ret = ufshcd_dme_link_startup(hba); /* check if device is detected by inter-connect layer */ if (!ret && !ufshcd_is_device_present(hba)) { dev_err(hba->dev, "%s: Device not present\n", __func__); ret = -ENXIO; goto out; } /* * DME link lost indication is only received when link is up, * but we can't be sure if the link is up until link startup * succeeds. So reset the local Uni-Pro and try again. */ if (ret && ufshcd_hba_enable(hba)) goto out; } while (ret && retries--); if (ret) /* failed to get the link up... retire */ goto out; if (link_startup_again) { link_startup_again = false; retries = DME_LINKSTARTUP_RETRIES; goto link_startup; } /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ ufshcd_init_pwr_info(hba); if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { ret = ufshcd_disable_device_tx_lcc(hba); if (ret) goto out; } /* Include any host controller configuration via UIC commands */ ret = ufshcd_ops_link_startup_notify(hba, POST_CHANGE); if (ret) goto out; ret = ufshcd_make_hba_operational(hba); out: if (ret) dev_err(hba->dev, "link startup failed %d\n", ret); return ret; } /** * ufshcd_hba_stop - Send controller to reset state */ static inline void ufshcd_hba_stop(struct ufs_hba *hba) { int err; ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE, CONTROLLER_DISABLE, 10); if (err) dev_err(hba->dev, "%s: Controller disable failed\n", __func__); } /** * ufshcd_is_hba_active - Get controller state */ static inline bool ufshcd_is_hba_active(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE) ? false : true; } /** * ufshcd_hba_start - Start controller initialization sequence */ static inline void ufshcd_hba_start(struct ufs_hba *hba) { ufshcd_writel(hba, CONTROLLER_ENABLE, REG_CONTROLLER_ENABLE); } /** * ufshcd_hba_enable - initialize the controller */ static int ufshcd_hba_enable(struct ufs_hba *hba) { int retry; if (!ufshcd_is_hba_active(hba)) /* change controller state to "reset state" */ ufshcd_hba_stop(hba); ufshcd_ops_hce_enable_notify(hba, PRE_CHANGE); /* start controller initialization sequence */ ufshcd_hba_start(hba); /* * To initialize a UFS host controller HCE bit must be set to 1. * During initialization the HCE bit value changes from 1->0->1. * When the host controller completes initialization sequence * it sets the value of HCE bit to 1. The same HCE bit is read back * to check if the controller has completed initialization sequence. * So without this delay the value HCE = 1, set in the previous * instruction might be read back. * This delay can be changed based on the controller. */ mdelay(1); /* wait for the host controller to complete initialization */ retry = 10; while (ufshcd_is_hba_active(hba)) { if (retry) { retry--; } else { dev_err(hba->dev, "Controller enable failed\n"); return -EIO; } mdelay(5); } /* enable UIC related interrupts */ ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); ufshcd_ops_hce_enable_notify(hba, POST_CHANGE); return 0; } /** * ufshcd_host_memory_configure - configure local reference block with * memory offsets */ static void ufshcd_host_memory_configure(struct ufs_hba *hba) { struct utp_transfer_req_desc *utrdlp; dma_addr_t cmd_desc_dma_addr; u16 response_offset; u16 prdt_offset; utrdlp = hba->utrdl; cmd_desc_dma_addr = (dma_addr_t)hba->ucdl; utrdlp->command_desc_base_addr_lo = cpu_to_le32(lower_32_bits(cmd_desc_dma_addr)); utrdlp->command_desc_base_addr_hi = cpu_to_le32(upper_32_bits(cmd_desc_dma_addr)); response_offset = offsetof(struct utp_transfer_cmd_desc, response_upiu); prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); utrdlp->response_upiu_offset = cpu_to_le16(response_offset >> 2); utrdlp->prd_table_offset = cpu_to_le16(prdt_offset >> 2); utrdlp->response_upiu_length = cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); hba->ucd_req_ptr = (struct utp_upiu_req *)hba->ucdl; hba->ucd_rsp_ptr = (struct utp_upiu_rsp *)&hba->ucdl->response_upiu; hba->ucd_prdt_ptr = (struct ufshcd_sg_entry *)&hba->ucdl->prd_table; } /** * ufshcd_memory_alloc - allocate memory for host memory space data structures */ static int ufshcd_memory_alloc(struct ufs_hba *hba) { /* Allocate one Transfer Request Descriptor * Should be aligned to 1k boundary. */ hba->utrdl = memalign(1024, sizeof(struct utp_transfer_req_desc)); if (!hba->utrdl) { dev_err(hba->dev, "Transfer Descriptor memory allocation failed\n"); return -ENOMEM; } /* Allocate one Command Descriptor * Should be aligned to 1k boundary. */ hba->ucdl = memalign(1024, sizeof(struct utp_transfer_cmd_desc)); if (!hba->ucdl) { dev_err(hba->dev, "Command descriptor memory allocation failed\n"); return -ENOMEM; } return 0; } /** * ufshcd_get_intr_mask - Get the interrupt bit mask */ static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) { u32 intr_mask = 0; switch (hba->version) { case UFSHCI_VERSION_10: intr_mask = INTERRUPT_MASK_ALL_VER_10; break; case UFSHCI_VERSION_11: case UFSHCI_VERSION_20: intr_mask = INTERRUPT_MASK_ALL_VER_11; break; case UFSHCI_VERSION_21: default: intr_mask = INTERRUPT_MASK_ALL_VER_21; break; } return intr_mask; } /** * ufshcd_get_ufs_version - Get the UFS version supported by the HBA */ static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) { return ufshcd_readl(hba, REG_UFS_VERSION); } /** * ufshcd_get_upmcrs - Get the power mode change request status */ static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) { return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; } /** * ufshcd_cache_flush_and_invalidate - Flush and invalidate cache * * Flush and invalidate cache in aligned address..address+size range. * The invalidation is in place to avoid stale data in cache. */ static void ufshcd_cache_flush_and_invalidate(void *addr, unsigned long size) { uintptr_t aaddr = (uintptr_t)addr & ~(ARCH_DMA_MINALIGN - 1); unsigned long asize = ALIGN(size, ARCH_DMA_MINALIGN); flush_dcache_range(aaddr, aaddr + asize); invalidate_dcache_range(aaddr, aaddr + asize); } /** * ufshcd_prepare_req_desc_hdr() - Fills the requests header * descriptor according to request */ static void ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, u32 *upiu_flags, enum dma_data_direction cmd_dir) { struct utp_transfer_req_desc *req_desc = hba->utrdl; u32 data_direction; u32 dword_0; if (cmd_dir == DMA_FROM_DEVICE) { data_direction = UTP_DEVICE_TO_HOST; *upiu_flags = UPIU_CMD_FLAGS_READ; } else if (cmd_dir == DMA_TO_DEVICE) { data_direction = UTP_HOST_TO_DEVICE; *upiu_flags = UPIU_CMD_FLAGS_WRITE; } else { data_direction = UTP_NO_DATA_TRANSFER; *upiu_flags = UPIU_CMD_FLAGS_NONE; } dword_0 = data_direction | (0x1 << UPIU_COMMAND_TYPE_OFFSET); /* Enable Interrupt for command */ dword_0 |= UTP_REQ_DESC_INT_CMD; /* Transfer request descriptor header fields */ req_desc->header.dword_0 = cpu_to_le32(dword_0); /* dword_1 is reserved, hence it is set to 0 */ req_desc->header.dword_1 = 0; /* * assigning invalid value for command status. Controller * updates OCS on command completion, with the command * status */ req_desc->header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); /* dword_3 is reserved, hence it is set to 0 */ req_desc->header.dword_3 = 0; req_desc->prd_table_length = 0; ufshcd_cache_flush_and_invalidate(req_desc, sizeof(*req_desc)); } static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, u32 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr; struct ufs_query *query = &hba->dev_cmd.query; u16 len = be16_to_cpu(query->request.upiu_req.length); /* Query request header */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(UPIU_TRANSACTION_QUERY_REQ, upiu_flags, 0, TASK_TAG); ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(0, query->request.query_func, 0, 0); /* Data segment length only need for WRITE_DESC */ if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) ucd_req_ptr->header.dword_2 = UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len); else ucd_req_ptr->header.dword_2 = 0; /* Copy the Query Request buffer as is */ memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, QUERY_OSF_SIZE); /* Copy the Descriptor */ if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) { memcpy(ucd_req_ptr + 1, query->descriptor, len); ufshcd_cache_flush_and_invalidate(ucd_req_ptr, 2 * sizeof(*ucd_req_ptr)); } else { ufshcd_cache_flush_and_invalidate(ucd_req_ptr, sizeof(*ucd_req_ptr)); } memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); ufshcd_cache_flush_and_invalidate(hba->ucd_rsp_ptr, sizeof(*hba->ucd_rsp_ptr)); } static inline void ufshcd_prepare_utp_nop_upiu(struct ufs_hba *hba) { struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr; memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); /* command descriptor fields */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(UPIU_TRANSACTION_NOP_OUT, 0, 0, TASK_TAG); /* clear rest of the fields of basic header */ ucd_req_ptr->header.dword_1 = 0; ucd_req_ptr->header.dword_2 = 0; memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); ufshcd_cache_flush_and_invalidate(ucd_req_ptr, sizeof(*ucd_req_ptr)); ufshcd_cache_flush_and_invalidate(hba->ucd_rsp_ptr, sizeof(*hba->ucd_rsp_ptr)); } /** * ufshcd_comp_devman_upiu - UFS Protocol Information Unit(UPIU) * for Device Management Purposes */ static int ufshcd_comp_devman_upiu(struct ufs_hba *hba, enum dev_cmd_type cmd_type) { u32 upiu_flags; int ret = 0; hba->dev_cmd.type = cmd_type; ufshcd_prepare_req_desc_hdr(hba, &upiu_flags, DMA_NONE); switch (cmd_type) { case DEV_CMD_TYPE_QUERY: ufshcd_prepare_utp_query_req_upiu(hba, upiu_flags); break; case DEV_CMD_TYPE_NOP: ufshcd_prepare_utp_nop_upiu(hba); break; default: ret = -EINVAL; } return ret; } static int ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag) { unsigned long start; u32 intr_status; u32 enabled_intr_status; ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); start = get_timer(0); do { intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); enabled_intr_status = intr_status & hba->intr_mask; ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); if (get_timer(start) > QUERY_REQ_TIMEOUT) { dev_err(hba->dev, "Timedout waiting for UTP response\n"); return -ETIMEDOUT; } if (enabled_intr_status & UFSHCD_ERROR_MASK) { dev_err(hba->dev, "Error in status:%08x\n", enabled_intr_status); return -1; } } while (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL)); return 0; } /** * ufshcd_get_req_rsp - returns the TR response transaction type */ static inline int ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24; } /** * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status * */ static inline int ufshcd_get_tr_ocs(struct ufs_hba *hba) { struct utp_transfer_req_desc *req_desc = hba->utrdl; return le32_to_cpu(req_desc->header.dword_2) & MASK_OCS; } static inline int ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr) { return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT; } static int ufshcd_check_query_response(struct ufs_hba *hba) { struct ufs_query_res *query_res = &hba->dev_cmd.query.response; /* Get the UPIU response */ query_res->response = ufshcd_get_rsp_upiu_result(hba->ucd_rsp_ptr) >> UPIU_RSP_CODE_OFFSET; return query_res->response; } /** * ufshcd_copy_query_response() - Copy the Query Response and the data * descriptor */ static int ufshcd_copy_query_response(struct ufs_hba *hba) { struct ufs_query_res *query_res = &hba->dev_cmd.query.response; memcpy(&query_res->upiu_res, &hba->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); /* Get the descriptor */ if (hba->dev_cmd.query.descriptor && hba->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { u8 *descp = (u8 *)hba->ucd_rsp_ptr + GENERAL_UPIU_REQUEST_SIZE; u16 resp_len; u16 buf_len; /* data segment length */ resp_len = be32_to_cpu(hba->ucd_rsp_ptr->header.dword_2) & MASK_QUERY_DATA_SEG_LEN; buf_len = be16_to_cpu(hba->dev_cmd.query.request.upiu_req.length); if (likely(buf_len >= resp_len)) { memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); } else { dev_warn(hba->dev, "%s: Response size is bigger than buffer", __func__); return -EINVAL; } } return 0; } /** * ufshcd_exec_dev_cmd - API for sending device management requests */ static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, enum dev_cmd_type cmd_type, int timeout) { int err; int resp; err = ufshcd_comp_devman_upiu(hba, cmd_type); if (err) return err; err = ufshcd_send_command(hba, TASK_TAG); if (err) return err; err = ufshcd_get_tr_ocs(hba); if (err) { dev_err(hba->dev, "Error in OCS:%d\n", err); return -EINVAL; } resp = ufshcd_get_req_rsp(hba->ucd_rsp_ptr); switch (resp) { case UPIU_TRANSACTION_NOP_IN: break; case UPIU_TRANSACTION_QUERY_RSP: err = ufshcd_check_query_response(hba); if (!err) err = ufshcd_copy_query_response(hba); break; case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ err = -EPERM; dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", __func__); break; default: err = -EINVAL; dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", __func__, resp); } return err; } /** * ufshcd_init_query() - init the query response and request parameters */ static inline void ufshcd_init_query(struct ufs_hba *hba, struct ufs_query_req **request, struct ufs_query_res **response, enum query_opcode opcode, u8 idn, u8 index, u8 selector) { *request = &hba->dev_cmd.query.request; *response = &hba->dev_cmd.query.response; memset(*request, 0, sizeof(struct ufs_query_req)); memset(*response, 0, sizeof(struct ufs_query_res)); (*request)->upiu_req.opcode = opcode; (*request)->upiu_req.idn = idn; (*request)->upiu_req.index = index; (*request)->upiu_req.selector = selector; } /** * ufshcd_query_flag() - API function for sending flag query requests */ int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, bool *flag_res) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err, index = 0, selector = 0; int timeout = QUERY_REQ_TIMEOUT; ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); switch (opcode) { case UPIU_QUERY_OPCODE_SET_FLAG: case UPIU_QUERY_OPCODE_CLEAR_FLAG: case UPIU_QUERY_OPCODE_TOGGLE_FLAG: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; break; case UPIU_QUERY_OPCODE_READ_FLAG: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; if (!flag_res) { /* No dummy reads */ dev_err(hba->dev, "%s: Invalid argument for read request\n", __func__); err = -EINVAL; goto out; } break; default: dev_err(hba->dev, "%s: Expected query flag opcode but got = %d\n", __func__, opcode); err = -EINVAL; goto out; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); if (err) { dev_err(hba->dev, "%s: Sending flag query for idn %d failed, err = %d\n", __func__, idn, err); goto out; } if (flag_res) *flag_res = (be32_to_cpu(response->upiu_res.value) & MASK_QUERY_UPIU_FLAG_LOC) & 0x1; out: return err; } static int ufshcd_query_flag_retry(struct ufs_hba *hba, enum query_opcode opcode, enum flag_idn idn, bool *flag_res) { int ret; int retries; for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { ret = ufshcd_query_flag(hba, opcode, idn, flag_res); if (ret) dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", __func__, ret, retries); else break; } if (ret) dev_err(hba->dev, "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n", __func__, opcode, idn, ret, retries); return ret; } static int __ufshcd_query_descriptor(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len) { struct ufs_query_req *request = NULL; struct ufs_query_res *response = NULL; int err; if (!desc_buf) { dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", __func__, opcode); err = -EINVAL; goto out; } if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", __func__, *buf_len); err = -EINVAL; goto out; } ufshcd_init_query(hba, &request, &response, opcode, idn, index, selector); hba->dev_cmd.query.descriptor = desc_buf; request->upiu_req.length = cpu_to_be16(*buf_len); switch (opcode) { case UPIU_QUERY_OPCODE_WRITE_DESC: request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; break; case UPIU_QUERY_OPCODE_READ_DESC: request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; break; default: dev_err(hba->dev, "%s: Expected query descriptor opcode but got = 0x%.2x\n", __func__, opcode); err = -EINVAL; goto out; } err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); if (err) { dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", __func__, opcode, idn, index, err); goto out; } hba->dev_cmd.query.descriptor = NULL; *buf_len = be16_to_cpu(response->upiu_res.length); out: return err; } /** * ufshcd_query_descriptor_retry - API function for sending descriptor requests */ int ufshcd_query_descriptor_retry(struct ufs_hba *hba, enum query_opcode opcode, enum desc_idn idn, u8 index, u8 selector, u8 *desc_buf, int *buf_len) { int err; int retries; for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { err = __ufshcd_query_descriptor(hba, opcode, idn, index, selector, desc_buf, buf_len); if (!err || err == -EINVAL) break; } return err; } /** * ufshcd_read_desc_length - read the specified descriptor length from header */ static int ufshcd_read_desc_length(struct ufs_hba *hba, enum desc_idn desc_id, int desc_index, int *desc_length) { int ret; u8 header[QUERY_DESC_HDR_SIZE]; int header_len = QUERY_DESC_HDR_SIZE; if (desc_id >= QUERY_DESC_IDN_MAX) return -EINVAL; ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, desc_id, desc_index, 0, header, &header_len); if (ret) { dev_err(hba->dev, "%s: Failed to get descriptor header id %d", __func__, desc_id); return ret; } else if (desc_id != header[QUERY_DESC_DESC_TYPE_OFFSET]) { dev_warn(hba->dev, "%s: descriptor header id %d and desc_id %d mismatch", __func__, header[QUERY_DESC_DESC_TYPE_OFFSET], desc_id); ret = -EINVAL; } *desc_length = header[QUERY_DESC_LENGTH_OFFSET]; return ret; } static void ufshcd_init_desc_sizes(struct ufs_hba *hba) { int err; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_DEVICE, 0, &hba->desc_size.dev_desc); if (err) hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_POWER, 0, &hba->desc_size.pwr_desc); if (err) hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_INTERCONNECT, 0, &hba->desc_size.interc_desc); if (err) hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_CONFIGURATION, 0, &hba->desc_size.conf_desc); if (err) hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_UNIT, 0, &hba->desc_size.unit_desc); if (err) hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_GEOMETRY, 0, &hba->desc_size.geom_desc); if (err) hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE; err = ufshcd_read_desc_length(hba, QUERY_DESC_IDN_HEALTH, 0, &hba->desc_size.hlth_desc); if (err) hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE; } /** * ufshcd_map_desc_id_to_length - map descriptor IDN to its length * */ int ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id, int *desc_len) { switch (desc_id) { case QUERY_DESC_IDN_DEVICE: *desc_len = hba->desc_size.dev_desc; break; case QUERY_DESC_IDN_POWER: *desc_len = hba->desc_size.pwr_desc; break; case QUERY_DESC_IDN_GEOMETRY: *desc_len = hba->desc_size.geom_desc; break; case QUERY_DESC_IDN_CONFIGURATION: *desc_len = hba->desc_size.conf_desc; break; case QUERY_DESC_IDN_UNIT: *desc_len = hba->desc_size.unit_desc; break; case QUERY_DESC_IDN_INTERCONNECT: *desc_len = hba->desc_size.interc_desc; break; case QUERY_DESC_IDN_STRING: *desc_len = QUERY_DESC_MAX_SIZE; break; case QUERY_DESC_IDN_HEALTH: *desc_len = hba->desc_size.hlth_desc; break; case QUERY_DESC_IDN_RFU_0: case QUERY_DESC_IDN_RFU_1: *desc_len = 0; break; default: *desc_len = 0; return -EINVAL; } return 0; } EXPORT_SYMBOL(ufshcd_map_desc_id_to_length); /** * ufshcd_read_desc_param - read the specified descriptor parameter * */ int ufshcd_read_desc_param(struct ufs_hba *hba, enum desc_idn desc_id, int desc_index, u8 param_offset, u8 *param_read_buf, u8 param_size) { int ret; u8 *desc_buf; int buff_len; bool is_kmalloc = true; /* Safety check */ if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) return -EINVAL; /* Get the max length of descriptor from structure filled up at probe * time. */ ret = ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len); /* Sanity checks */ if (ret || !buff_len) { dev_err(hba->dev, "%s: Failed to get full descriptor length", __func__); return ret; } /* Check whether we need temp memory */ if (param_offset != 0 || param_size < buff_len) { desc_buf = kmalloc(buff_len, GFP_KERNEL); if (!desc_buf) return -ENOMEM; } else { desc_buf = param_read_buf; is_kmalloc = false; } /* Request for full descriptor */ ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, desc_id, desc_index, 0, desc_buf, &buff_len); if (ret) { dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d", __func__, desc_id, desc_index, param_offset, ret); goto out; } /* Sanity check */ if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header", __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); ret = -EINVAL; goto out; } /* Check wherher we will not copy more data, than available */ if (is_kmalloc && param_size > buff_len) param_size = buff_len; if (is_kmalloc) memcpy(param_read_buf, &desc_buf[param_offset], param_size); out: if (is_kmalloc) kfree(desc_buf); return ret; } /* replace non-printable or non-ASCII characters with spaces */ static inline void ufshcd_remove_non_printable(uint8_t *val) { if (!val) return; if (*val < 0x20 || *val > 0x7e) *val = ' '; } /** * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power * state) and waits for it to take effect. * */ static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) { unsigned long start = 0; u8 status; int ret; ret = ufshcd_send_uic_cmd(hba, cmd); if (ret) { dev_err(hba->dev, "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", cmd->command, cmd->argument3, ret); return ret; } start = get_timer(0); do { status = ufshcd_get_upmcrs(hba); if (get_timer(start) > UFS_UIC_CMD_TIMEOUT) { dev_err(hba->dev, "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", cmd->command, status); ret = (status != PWR_OK) ? status : -1; break; } } while (status != PWR_LOCAL); return ret; } /** * ufshcd_uic_change_pwr_mode - Perform the UIC power mode change * using DME_SET primitives. */ static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) { struct uic_command uic_cmd = {0}; int ret; uic_cmd.command = UIC_CMD_DME_SET; uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); uic_cmd.argument3 = mode; ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); return ret; } static void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufs_hba *hba, struct scsi_cmd *pccb, u32 upiu_flags) { struct utp_upiu_req *ucd_req_ptr = hba->ucd_req_ptr; unsigned int cdb_len; /* command descriptor fields */ ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(UPIU_TRANSACTION_COMMAND, upiu_flags, pccb->lun, TASK_TAG); ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0); /* Total EHS length and Data segment length will be zero */ ucd_req_ptr->header.dword_2 = 0; ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(pccb->datalen); cdb_len = min_t(unsigned short, pccb->cmdlen, UFS_CDB_SIZE); memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); memcpy(ucd_req_ptr->sc.cdb, pccb->cmd, cdb_len); memset(hba->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); ufshcd_cache_flush_and_invalidate(ucd_req_ptr, sizeof(*ucd_req_ptr)); ufshcd_cache_flush_and_invalidate(hba->ucd_rsp_ptr, sizeof(*hba->ucd_rsp_ptr)); } static inline void prepare_prdt_desc(struct ufshcd_sg_entry *entry, unsigned char *buf, ulong len) { entry->size = cpu_to_le32(len) | GENMASK(1, 0); entry->base_addr = cpu_to_le32(lower_32_bits((unsigned long)buf)); entry->upper_addr = cpu_to_le32(upper_32_bits((unsigned long)buf)); } static void prepare_prdt_table(struct ufs_hba *hba, struct scsi_cmd *pccb) { struct utp_transfer_req_desc *req_desc = hba->utrdl; struct ufshcd_sg_entry *prd_table = hba->ucd_prdt_ptr; uintptr_t aaddr = (uintptr_t)(pccb->pdata) & ~(ARCH_DMA_MINALIGN - 1); ulong datalen = pccb->datalen; int table_length; u8 *buf; int i; if (!datalen) { req_desc->prd_table_length = 0; ufshcd_cache_flush_and_invalidate(req_desc, sizeof(*req_desc)); return; } if (pccb->dma_dir == DMA_TO_DEVICE) { /* Write to device */ flush_dcache_range(aaddr, aaddr + ALIGN(datalen, ARCH_DMA_MINALIGN)); } /* In any case, invalidate cache to avoid stale data in it. */ invalidate_dcache_range(aaddr, aaddr + ALIGN(datalen, ARCH_DMA_MINALIGN)); table_length = DIV_ROUND_UP(pccb->datalen, MAX_PRDT_ENTRY); buf = pccb->pdata; i = table_length; while (--i) { prepare_prdt_desc(&prd_table[table_length - i - 1], buf, MAX_PRDT_ENTRY - 1); buf += MAX_PRDT_ENTRY; datalen -= MAX_PRDT_ENTRY; } prepare_prdt_desc(&prd_table[table_length - i - 1], buf, datalen - 1); req_desc->prd_table_length = table_length; ufshcd_cache_flush_and_invalidate(prd_table, sizeof(*prd_table) * table_length); ufshcd_cache_flush_and_invalidate(req_desc, sizeof(*req_desc)); } static int ufs_scsi_exec(struct udevice *scsi_dev, struct scsi_cmd *pccb) { struct ufs_hba *hba = dev_get_uclass_priv(scsi_dev->parent); u32 upiu_flags; int ocs, result = 0; u8 scsi_status; ufshcd_prepare_req_desc_hdr(hba, &upiu_flags, pccb->dma_dir); ufshcd_prepare_utp_scsi_cmd_upiu(hba, pccb, upiu_flags); prepare_prdt_table(hba, pccb); ufshcd_send_command(hba, TASK_TAG); ocs = ufshcd_get_tr_ocs(hba); switch (ocs) { case OCS_SUCCESS: result = ufshcd_get_req_rsp(hba->ucd_rsp_ptr); switch (result) { case UPIU_TRANSACTION_RESPONSE: result = ufshcd_get_rsp_upiu_result(hba->ucd_rsp_ptr); scsi_status = result & MASK_SCSI_STATUS; if (scsi_status) return -EINVAL; break; case UPIU_TRANSACTION_REJECT_UPIU: /* TODO: handle Reject UPIU Response */ dev_err(hba->dev, "Reject UPIU not fully implemented\n"); return -EINVAL; default: dev_err(hba->dev, "Unexpected request response code = %x\n", result); return -EINVAL; } break; default: dev_err(hba->dev, "OCS error from controller = %x\n", ocs); return -EINVAL; } return 0; } static inline int ufshcd_read_desc(struct ufs_hba *hba, enum desc_idn desc_id, int desc_index, u8 *buf, u32 size) { return ufshcd_read_desc_param(hba, desc_id, desc_index, 0, buf, size); } static int ufshcd_read_device_desc(struct ufs_hba *hba, u8 *buf, u32 size) { return ufshcd_read_desc(hba, QUERY_DESC_IDN_DEVICE, 0, buf, size); } /** * ufshcd_read_string_desc - read string descriptor * */ int ufshcd_read_string_desc(struct ufs_hba *hba, int desc_index, u8 *buf, u32 size, bool ascii) { int err = 0; err = ufshcd_read_desc(hba, QUERY_DESC_IDN_STRING, desc_index, buf, size); if (err) { dev_err(hba->dev, "%s: reading String Desc failed after %d retries. err = %d\n", __func__, QUERY_REQ_RETRIES, err); goto out; } if (ascii) { int desc_len; int ascii_len; int i; u8 *buff_ascii; desc_len = buf[0]; /* remove header and divide by 2 to move from UTF16 to UTF8 */ ascii_len = (desc_len - QUERY_DESC_HDR_SIZE) / 2 + 1; if (size < ascii_len + QUERY_DESC_HDR_SIZE) { dev_err(hba->dev, "%s: buffer allocated size is too small\n", __func__); err = -ENOMEM; goto out; } buff_ascii = kmalloc(ascii_len, GFP_KERNEL); if (!buff_ascii) { err = -ENOMEM; goto out; } /* * the descriptor contains string in UTF16 format * we need to convert to utf-8 so it can be displayed */ utf16_to_utf8(buff_ascii, (uint16_t *)&buf[QUERY_DESC_HDR_SIZE], ascii_len); /* replace non-printable or non-ASCII characters with spaces */ for (i = 0; i < ascii_len; i++) ufshcd_remove_non_printable(&buff_ascii[i]); memset(buf + QUERY_DESC_HDR_SIZE, 0, size - QUERY_DESC_HDR_SIZE); memcpy(buf + QUERY_DESC_HDR_SIZE, buff_ascii, ascii_len); buf[QUERY_DESC_LENGTH_OFFSET] = ascii_len + QUERY_DESC_HDR_SIZE; kfree(buff_ascii); } out: return err; } static int ufs_get_device_desc(struct ufs_hba *hba, struct ufs_dev_desc *dev_desc) { int err; size_t buff_len; u8 model_index; u8 *desc_buf; buff_len = max_t(size_t, hba->desc_size.dev_desc, QUERY_DESC_MAX_SIZE + 1); desc_buf = kmalloc(buff_len, GFP_KERNEL); if (!desc_buf) { err = -ENOMEM; goto out; } err = ufshcd_read_device_desc(hba, desc_buf, hba->desc_size.dev_desc); if (err) { dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", __func__, err); goto out; } /* * getting vendor (manufacturerID) and Bank Index in big endian * format */ dev_desc->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; /* Zero-pad entire buffer for string termination. */ memset(desc_buf, 0, buff_len); err = ufshcd_read_string_desc(hba, model_index, desc_buf, QUERY_DESC_MAX_SIZE, true/*ASCII*/); if (err) { dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", __func__, err); goto out; } desc_buf[QUERY_DESC_MAX_SIZE] = '\0'; strlcpy(dev_desc->model, (char *)(desc_buf + QUERY_DESC_HDR_SIZE), min_t(u8, desc_buf[QUERY_DESC_LENGTH_OFFSET], MAX_MODEL_LEN)); /* Null terminate the model string */ dev_desc->model[MAX_MODEL_LEN] = '\0'; out: kfree(desc_buf); return err; } /** * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device */ static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) { struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; if (hba->max_pwr_info.is_valid) return 0; if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { pwr_info->pwr_tx = FASTAUTO_MODE; pwr_info->pwr_rx = FASTAUTO_MODE; } else { pwr_info->pwr_tx = FAST_MODE; pwr_info->pwr_rx = FAST_MODE; } pwr_info->hs_rate = PA_HS_MODE_B; /* Get the connected lane count */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), &pwr_info->lane_rx); ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), &pwr_info->lane_tx); if (!pwr_info->lane_rx || !pwr_info->lane_tx) { dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", __func__, pwr_info->lane_rx, pwr_info->lane_tx); return -EINVAL; } /* * First, get the maximum gears of HS speed. * If a zero value, it means there is no HSGEAR capability. * Then, get the maximum gears of PWM speed. */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); if (!pwr_info->gear_rx) { ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), &pwr_info->gear_rx); if (!pwr_info->gear_rx) { dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", __func__, pwr_info->gear_rx); return -EINVAL; } pwr_info->pwr_rx = SLOW_MODE; } ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_tx); if (!pwr_info->gear_tx) { ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), &pwr_info->gear_tx); if (!pwr_info->gear_tx) { dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", __func__, pwr_info->gear_tx); return -EINVAL; } pwr_info->pwr_tx = SLOW_MODE; } hba->max_pwr_info.is_valid = true; return 0; } static int ufshcd_change_power_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_mode) { int ret; /* if already configured to the requested pwr_mode */ if (pwr_mode->gear_rx == hba->pwr_info.gear_rx && pwr_mode->gear_tx == hba->pwr_info.gear_tx && pwr_mode->lane_rx == hba->pwr_info.lane_rx && pwr_mode->lane_tx == hba->pwr_info.lane_tx && pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && pwr_mode->hs_rate == hba->pwr_info.hs_rate) { dev_dbg(hba->dev, "%s: power already configured\n", __func__); return 0; } /* * Configure attributes for power mode change with below. * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, * - PA_HSSERIES */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), pwr_mode->lane_rx); if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE); else ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), pwr_mode->lane_tx); if (pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_tx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE); else ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE); if (pwr_mode->pwr_rx == FASTAUTO_MODE || pwr_mode->pwr_tx == FASTAUTO_MODE || pwr_mode->pwr_rx == FAST_MODE || pwr_mode->pwr_tx == FAST_MODE) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), pwr_mode->hs_rate); ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 | pwr_mode->pwr_tx); if (ret) { dev_err(hba->dev, "%s: power mode change failed %d\n", __func__, ret); return ret; } /* Copy new Power Mode to power info */ memcpy(&hba->pwr_info, pwr_mode, sizeof(struct ufs_pa_layer_attr)); return ret; } /** * ufshcd_verify_dev_init() - Verify device initialization * */ static int ufshcd_verify_dev_init(struct ufs_hba *hba) { int retries; int err; for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, NOP_OUT_TIMEOUT); if (!err || err == -ETIMEDOUT) break; dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); } if (err) dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); return err; } /** * ufshcd_complete_dev_init() - checks device readiness */ static int ufshcd_complete_dev_init(struct ufs_hba *hba) { int i; int err; bool flag_res = 1; err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, QUERY_FLAG_IDN_FDEVICEINIT, NULL); if (err) { dev_err(hba->dev, "%s setting fDeviceInit flag failed with error %d\n", __func__, err); goto out; } /* poll for max. 1000 iterations for fDeviceInit flag to clear */ for (i = 0; i < 1000 && !err && flag_res; i++) err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, QUERY_FLAG_IDN_FDEVICEINIT, &flag_res); if (err) dev_err(hba->dev, "%s reading fDeviceInit flag failed with error %d\n", __func__, err); else if (flag_res) dev_err(hba->dev, "%s fDeviceInit was not cleared by the device\n", __func__); out: return err; } static void ufshcd_def_desc_sizes(struct ufs_hba *hba) { hba->desc_size.dev_desc = QUERY_DESC_DEVICE_DEF_SIZE; hba->desc_size.pwr_desc = QUERY_DESC_POWER_DEF_SIZE; hba->desc_size.interc_desc = QUERY_DESC_INTERCONNECT_DEF_SIZE; hba->desc_size.conf_desc = QUERY_DESC_CONFIGURATION_DEF_SIZE; hba->desc_size.unit_desc = QUERY_DESC_UNIT_DEF_SIZE; hba->desc_size.geom_desc = QUERY_DESC_GEOMETRY_DEF_SIZE; hba->desc_size.hlth_desc = QUERY_DESC_HEALTH_DEF_SIZE; } int ufs_start(struct ufs_hba *hba) { struct ufs_dev_desc card = {0}; int ret; ret = ufshcd_link_startup(hba); if (ret) return ret; ret = ufshcd_verify_dev_init(hba); if (ret) return ret; ret = ufshcd_complete_dev_init(hba); if (ret) return ret; /* Init check for device descriptor sizes */ ufshcd_init_desc_sizes(hba); ret = ufs_get_device_desc(hba, &card); if (ret) { dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", __func__, ret); return ret; } if (ufshcd_get_max_pwr_mode(hba)) { dev_err(hba->dev, "%s: Failed getting max supported power mode\n", __func__); } else { ret = ufshcd_change_power_mode(hba, &hba->max_pwr_info.info); if (ret) { dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", __func__, ret); return ret; } printf("Device at %s up at:", hba->dev->name); ufshcd_print_pwr_info(hba); } return 0; } int ufshcd_probe(struct udevice *ufs_dev, struct ufs_hba_ops *hba_ops) { struct ufs_hba *hba = dev_get_uclass_priv(ufs_dev); struct scsi_plat *scsi_plat; struct udevice *scsi_dev; int err; device_find_first_child(ufs_dev, &scsi_dev); if (!scsi_dev) return -ENODEV; scsi_plat = dev_get_uclass_plat(scsi_dev); scsi_plat->max_id = UFSHCD_MAX_ID; scsi_plat->max_lun = UFS_MAX_LUNS; scsi_plat->max_bytes_per_req = UFS_MAX_BYTES; hba->dev = ufs_dev; hba->ops = hba_ops; hba->mmio_base = dev_read_addr_ptr(ufs_dev); /* Set descriptor lengths to specification defaults */ ufshcd_def_desc_sizes(hba); ufshcd_ops_init(hba); /* Read capabilties registers */ hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; /* Get UFS version supported by the controller */ hba->version = ufshcd_get_ufs_version(hba); if (hba->version != UFSHCI_VERSION_10 && hba->version != UFSHCI_VERSION_11 && hba->version != UFSHCI_VERSION_20 && hba->version != UFSHCI_VERSION_21 && hba->version != UFSHCI_VERSION_30) dev_err(hba->dev, "invalid UFS version 0x%x\n", hba->version); /* Get Interrupt bit mask per version */ hba->intr_mask = ufshcd_get_intr_mask(hba); /* Allocate memory for host memory space */ err = ufshcd_memory_alloc(hba); if (err) { dev_err(hba->dev, "Memory allocation failed\n"); return err; } /* Configure Local data structures */ ufshcd_host_memory_configure(hba); /* * In order to avoid any spurious interrupt immediately after * registering UFS controller interrupt handler, clear any pending UFS * interrupt status and disable all the UFS interrupts. */ ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), REG_INTERRUPT_STATUS); ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); err = ufshcd_hba_enable(hba); if (err) { dev_err(hba->dev, "Host controller enable failed\n"); return err; } err = ufs_start(hba); if (err) return err; return 0; } int ufs_scsi_bind(struct udevice *ufs_dev, struct udevice **scsi_devp) { int ret = device_bind_driver(ufs_dev, "ufs_scsi", "ufs_scsi", scsi_devp); return ret; } #if IS_ENABLED(CONFIG_BOUNCE_BUFFER) static int ufs_scsi_buffer_aligned(struct udevice *scsi_dev, struct bounce_buffer *state) { #ifdef CONFIG_PHYS_64BIT struct ufs_hba *hba = dev_get_uclass_priv(scsi_dev->parent); uintptr_t ubuf = (uintptr_t)state->user_buffer; size_t len = state->len_aligned; /* Check if below 32bit boundary */ if ((hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) && ((ubuf >> 32) || (ubuf + len) >> 32)) { dev_dbg(scsi_dev, "Buffer above 32bit boundary %lx-%lx\n", ubuf, ubuf + len); return 0; } #endif return 1; } #endif /* CONFIG_BOUNCE_BUFFER */ static struct scsi_ops ufs_ops = { .exec = ufs_scsi_exec, #if IS_ENABLED(CONFIG_BOUNCE_BUFFER) .buffer_aligned = ufs_scsi_buffer_aligned, #endif /* CONFIG_BOUNCE_BUFFER */ }; int ufs_probe_dev(int index) { struct udevice *dev; return uclass_get_device(UCLASS_UFS, index, &dev); } int ufs_probe(void) { struct udevice *dev; int ret, i; for (i = 0;; i++) { ret = uclass_get_device(UCLASS_UFS, i, &dev); if (ret == -ENODEV) break; } return 0; } U_BOOT_DRIVER(ufs_scsi) = { .id = UCLASS_SCSI, .name = "ufs_scsi", .ops = &ufs_ops, };