/* SPDX-License-Identifier: GPL-2.0+ */ /* * Generic I/O functions. * * Copyright (c) 2016 Imagination Technologies Ltd. */ #ifndef __ASM_GENERIC_IO_H__ #define __ASM_GENERIC_IO_H__ /* * This file should be included at the end of each architecture-specific * asm/io.h such that we may provide generic implementations without * conflicting with architecture-specific code. */ #ifndef __ASSEMBLY__ /** * phys_to_virt() - Return a virtual address mapped to a given physical address * @paddr: the physical address * * Returns a virtual address which the CPU can access that maps to the physical * address @paddr. This should only be used where it is known that no dynamic * mapping is required. In general, map_physmem should be used instead. * * Returns: a virtual address which maps to @paddr */ #ifndef phys_to_virt static inline void *phys_to_virt(phys_addr_t paddr) { return (void *)(unsigned long)paddr; } #endif /** * virt_to_phys() - Return the physical address that a virtual address maps to * @vaddr: the virtual address * * Returns the physical address which the CPU-accessible virtual address @vaddr * maps to. * * Returns: the physical address which @vaddr maps to */ #ifndef virt_to_phys static inline phys_addr_t virt_to_phys(void *vaddr) { return (phys_addr_t)((unsigned long)vaddr); } #endif /* * Flags for use with map_physmem() & unmap_physmem(). Architectures need not * support all of these, in which case they will be defined as zero here & * ignored. Callers that may run on multiple architectures should therefore * treat them as hints rather than requirements. */ #ifndef MAP_NOCACHE # define MAP_NOCACHE 0 /* Produce an uncached mapping */ #endif #ifndef MAP_WRCOMBINE # define MAP_WRCOMBINE 0 /* Allow write-combining on the mapping */ #endif #ifndef MAP_WRBACK # define MAP_WRBACK 0 /* Map using write-back caching */ #endif #ifndef MAP_WRTHROUGH # define MAP_WRTHROUGH 0 /* Map using write-through caching */ #endif /** * map_physmem() - Return a virtual address mapped to a given physical address * @paddr: the physical address * @len: the length of the required mapping * @flags: flags affecting the type of mapping * * Return a virtual address through which the CPU may access the memory at * physical address @paddr. The mapping will be valid for at least @len bytes, * and may be affected by flags passed to the @flags argument. This function * may create new mappings, so should generally be paired with a matching call * to unmap_physmem once the caller is finished with the memory in question. * * Returns: a virtual address suitably mapped to @paddr */ #ifndef map_physmem static inline void *map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags) { return phys_to_virt(paddr); } #endif /** * unmap_physmem() - Remove mappings created by a prior call to map_physmem() * @vaddr: the virtual address which map_physmem() previously returned * @flags: flags matching those originally passed to map_physmem() * * Unmap memory which was previously mapped by a call to map_physmem(). If * map_physmem() dynamically created a mapping for the memory in question then * unmap_physmem() will remove that mapping. */ #ifndef unmap_physmem static inline void unmap_physmem(void *vaddr, unsigned long flags) { } #endif /* * __raw_{read,write}{b,w,l,q}() access memory in native endianness. * * On some architectures memory mapped IO needs to be accessed differently. * On the simple architectures, we just read/write the memory location * directly. */ #ifndef __raw_readb #define __raw_readb __raw_readb static inline u8 __raw_readb(const volatile void __iomem *addr) { return *(const volatile u8 __force *)addr; } #endif #ifndef __raw_readw #define __raw_readw __raw_readw static inline u16 __raw_readw(const volatile void __iomem *addr) { return *(const volatile u16 __force *)addr; } #endif #ifndef __raw_readl #define __raw_readl __raw_readl static inline u32 __raw_readl(const volatile void __iomem *addr) { return *(const volatile u32 __force *)addr; } #endif #ifdef CONFIG_64BIT #ifndef __raw_readq #define __raw_readq __raw_readq static inline u64 __raw_readq(const volatile void __iomem *addr) { return *(const volatile u64 __force *)addr; } #endif #endif /* CONFIG_64BIT */ #ifndef __raw_writeb #define __raw_writeb __raw_writeb static inline void __raw_writeb(u8 value, volatile void __iomem *addr) { *(volatile u8 __force *)addr = value; } #endif #ifndef __raw_writew #define __raw_writew __raw_writew static inline void __raw_writew(u16 value, volatile void __iomem *addr) { *(volatile u16 __force *)addr = value; } #endif #ifndef __raw_writel #define __raw_writel __raw_writel static inline void __raw_writel(u32 value, volatile void __iomem *addr) { *(volatile u32 __force *)addr = value; } #endif #ifdef CONFIG_64BIT #ifndef __raw_writeq #define __raw_writeq __raw_writeq static inline void __raw_writeq(u64 value, volatile void __iomem *addr) { *(volatile u64 __force *)addr = value; } #endif #endif /* CONFIG_64BIT */ /* * {read,write}s{b,w,l,q}() repeatedly access the same memory address in * native endianness in 8-, 16-, 32- or 64-bit chunks (@count times). */ #ifndef readsb #define readsb readsb static inline void readsb(const volatile void __iomem *addr, void *buffer, unsigned int count) { if (count) { u8 *buf = buffer; do { u8 x = __raw_readb(addr); *buf++ = x; } while (--count); } } #endif #ifndef readsw #define readsw readsw static inline void readsw(const volatile void __iomem *addr, void *buffer, unsigned int count) { if (count) { u16 *buf = buffer; do { u16 x = __raw_readw(addr); *buf++ = x; } while (--count); } } #endif #ifndef readsl #define readsl readsl static inline void readsl(const volatile void __iomem *addr, void *buffer, unsigned int count) { if (count) { u32 *buf = buffer; do { u32 x = __raw_readl(addr); *buf++ = x; } while (--count); } } #endif #ifdef CONFIG_64BIT #ifndef readsq #define readsq readsq static inline void readsq(const volatile void __iomem *addr, void *buffer, unsigned int count) { if (count) { u64 *buf = buffer; do { u64 x = __raw_readq(addr); *buf++ = x; } while (--count); } } #endif #endif /* CONFIG_64BIT */ #ifndef writesb #define writesb writesb static inline void writesb(volatile void __iomem *addr, const void *buffer, unsigned int count) { if (count) { const u8 *buf = buffer; do { __raw_writeb(*buf++, addr); } while (--count); } } #endif #ifndef writesw #define writesw writesw static inline void writesw(volatile void __iomem *addr, const void *buffer, unsigned int count) { if (count) { const u16 *buf = buffer; do { __raw_writew(*buf++, addr); } while (--count); } } #endif #ifndef writesl #define writesl writesl static inline void writesl(volatile void __iomem *addr, const void *buffer, unsigned int count) { if (count) { const u32 *buf = buffer; do { __raw_writel(*buf++, addr); } while (--count); } } #endif #ifdef CONFIG_64BIT #ifndef writesq #define writesq writesq static inline void writesq(volatile void __iomem *addr, const void *buffer, unsigned int count) { if (count) { const u64 *buf = buffer; do { __raw_writeq(*buf++, addr); } while (--count); } } #endif #endif /* CONFIG_64BIT */ #ifndef PCI_IOBASE #define PCI_IOBASE ((void __iomem *)0) #endif /* * {in,out}s{b,w,l}{,_p}() are variants of the above that repeatedly access a * single I/O port multiple times. */ #ifndef insb #define insb insb static inline void insb(unsigned long addr, void *buffer, unsigned int count) { readsb(PCI_IOBASE + addr, buffer, count); } #endif #ifndef insw #define insw insw static inline void insw(unsigned long addr, void *buffer, unsigned int count) { readsw(PCI_IOBASE + addr, buffer, count); } #endif #ifndef insl #define insl insl static inline void insl(unsigned long addr, void *buffer, unsigned int count) { readsl(PCI_IOBASE + addr, buffer, count); } #endif #ifndef outsb #define outsb outsb static inline void outsb(unsigned long addr, const void *buffer, unsigned int count) { writesb(PCI_IOBASE + addr, buffer, count); } #endif #ifndef outsw #define outsw outsw static inline void outsw(unsigned long addr, const void *buffer, unsigned int count) { writesw(PCI_IOBASE + addr, buffer, count); } #endif #ifndef outsl #define outsl outsl static inline void outsl(unsigned long addr, const void *buffer, unsigned int count) { writesl(PCI_IOBASE + addr, buffer, count); } #endif #ifndef ioread8_rep #define ioread8_rep ioread8_rep static inline void ioread8_rep(const volatile void __iomem *addr, void *buffer, unsigned int count) { readsb(addr, buffer, count); } #endif #ifndef ioread16_rep #define ioread16_rep ioread16_rep static inline void ioread16_rep(const volatile void __iomem *addr, void *buffer, unsigned int count) { readsw(addr, buffer, count); } #endif #ifndef ioread32_rep #define ioread32_rep ioread32_rep static inline void ioread32_rep(const volatile void __iomem *addr, void *buffer, unsigned int count) { readsl(addr, buffer, count); } #endif #ifdef CONFIG_64BIT #ifndef ioread64_rep #define ioread64_rep ioread64_rep static inline void ioread64_rep(const volatile void __iomem *addr, void *buffer, unsigned int count) { readsq(addr, buffer, count); } #endif #endif /* CONFIG_64BIT */ #ifndef iowrite8_rep #define iowrite8_rep iowrite8_rep static inline void iowrite8_rep(volatile void __iomem *addr, const void *buffer, unsigned int count) { writesb(addr, buffer, count); } #endif #ifndef iowrite16_rep #define iowrite16_rep iowrite16_rep static inline void iowrite16_rep(volatile void __iomem *addr, const void *buffer, unsigned int count) { writesw(addr, buffer, count); } #endif #ifndef iowrite32_rep #define iowrite32_rep iowrite32_rep static inline void iowrite32_rep(volatile void __iomem *addr, const void *buffer, unsigned int count) { writesl(addr, buffer, count); } #endif #ifdef CONFIG_64BIT #ifndef iowrite64_rep #define iowrite64_rep iowrite64_rep static inline void iowrite64_rep(volatile void __iomem *addr, const void *buffer, unsigned int count) { writesq(addr, buffer, count); } #endif #endif /* CONFIG_64BIT */ #endif /* !__ASSEMBLY__ */ #endif /* __ASM_GENERIC_IO_H__ */