/* * This file implements recording of each stage of the boot process. It is * intended to implement timing of each stage, reporting this information * to the user and passing it to the OS for logging / further analysis. * Note that it requires timer_get_boot_us() to be defined by the board * * Copyright (c) 2011 The Chromium OS Authors. * * SPDX-License-Identifier: GPL-2.0+ */ #ifndef _BOOTSTAGE_H #define _BOOTSTAGE_H /* Define this for host tools */ #ifndef CONFIG_BOOTSTAGE_USER_COUNT #define CONFIG_BOOTSTAGE_USER_COUNT 20 #endif /* Flags for each bootstage record */ enum bootstage_flags { BOOTSTAGEF_ERROR = 1 << 0, /* Error record */ BOOTSTAGEF_ALLOC = 1 << 1, /* Allocate an id */ }; /* bootstate sub-IDs used for kernel and ramdisk ranges */ enum { BOOTSTAGE_SUB_FORMAT, BOOTSTAGE_SUB_FORMAT_OK, BOOTSTAGE_SUB_NO_UNIT_NAME, BOOTSTAGE_SUB_UNIT_NAME, BOOTSTAGE_SUB_SUBNODE, BOOTSTAGE_SUB_CHECK, BOOTSTAGE_SUB_HASH = 5, BOOTSTAGE_SUB_CHECK_ARCH = 5, BOOTSTAGE_SUB_CHECK_ALL, BOOTSTAGE_SUB_GET_DATA, BOOTSTAGE_SUB_CHECK_ALL_OK = 7, BOOTSTAGE_SUB_GET_DATA_OK, BOOTSTAGE_SUB_LOAD, }; /* * A list of boot stages that we know about. Each of these indicates the * state that we are at, and the action that we are about to perform. For * errors, we issue an error for an item when it fails. Therefore the * normal sequence is: * * progress action1 * progress action2 * progress action3 * * and an error condition where action 3 failed would be: * * progress action1 * progress action2 * progress action3 * error on action3 */ enum bootstage_id { BOOTSTAGE_ID_START = 0, BOOTSTAGE_ID_CHECK_MAGIC, /* Checking image magic */ BOOTSTAGE_ID_CHECK_HEADER, /* Checking image header */ BOOTSTAGE_ID_CHECK_CHECKSUM, /* Checking image checksum */ BOOTSTAGE_ID_CHECK_ARCH, /* Checking architecture */ BOOTSTAGE_ID_CHECK_IMAGETYPE = 5,/* Checking image type */ BOOTSTAGE_ID_DECOMP_IMAGE, /* Decompressing image */ BOOTSTAGE_ID_KERNEL_LOADED, /* Kernel has been loaded */ BOOTSTAGE_ID_DECOMP_UNIMPL = 7, /* Odd decompression algorithm */ BOOTSTAGE_ID_CHECK_BOOT_OS, /* Calling OS-specific boot function */ BOOTSTAGE_ID_BOOT_OS_RETURNED, /* Tried to boot OS, but it returned */ BOOTSTAGE_ID_CHECK_RAMDISK = 9, /* Checking ram disk */ BOOTSTAGE_ID_RD_MAGIC, /* Checking ram disk magic */ BOOTSTAGE_ID_RD_HDR_CHECKSUM, /* Checking ram disk heder checksum */ BOOTSTAGE_ID_RD_CHECKSUM, /* Checking ram disk checksum */ BOOTSTAGE_ID_COPY_RAMDISK = 12, /* Copying ram disk into place */ BOOTSTAGE_ID_RAMDISK, /* Checking for valid ramdisk */ BOOTSTAGE_ID_NO_RAMDISK, /* No ram disk found (not an error) */ BOOTSTAGE_ID_RUN_OS = 15, /* Exiting U-Boot, entering OS */ BOOTSTAGE_ID_NEED_RESET = 30, BOOTSTAGE_ID_POST_FAIL, /* Post failure */ BOOTSTAGE_ID_POST_FAIL_R, /* Post failure reported after reloc */ /* * This set is reported only by x86, and the meaning is different. In * this case we are reporting completion of a particular stage. * This should probably change in the x86 code (which doesn't report * errors in any case), but discussion this can perhaps wait until we * have a generic board implementation. */ BOOTSTAGE_ID_BOARD_INIT_R, /* We have relocated */ BOOTSTAGE_ID_BOARD_GLOBAL_DATA, /* Global data is set up */ BOOTSTAGE_ID_BOARD_INIT_SEQ, /* We completed the init sequence */ BOOTSTAGE_ID_BOARD_FLASH, /* We have configured flash banks */ BOOTSTAGE_ID_BOARD_FLASH_37, /* In case you didn't hear... */ BOOTSTAGE_ID_BOARD_ENV, /* Environment is relocated & ready */ BOOTSTAGE_ID_BOARD_PCI, /* PCI is up */ BOOTSTAGE_ID_BOARD_INTERRUPTS, /* Exceptions / interrupts ready */ BOOTSTAGE_ID_BOARD_DONE, /* Board init done, off to main loop */ /* ^^^ here ends the x86 sequence */ /* Boot stages related to loading a kernel from an IDE device */ BOOTSTAGE_ID_IDE_START = 41, BOOTSTAGE_ID_IDE_ADDR, BOOTSTAGE_ID_IDE_BOOT_DEVICE, BOOTSTAGE_ID_IDE_TYPE, BOOTSTAGE_ID_IDE_PART, BOOTSTAGE_ID_IDE_PART_INFO, BOOTSTAGE_ID_IDE_PART_TYPE, BOOTSTAGE_ID_IDE_PART_READ, BOOTSTAGE_ID_IDE_FORMAT, BOOTSTAGE_ID_IDE_CHECKSUM, /* 50 */ BOOTSTAGE_ID_IDE_READ, /* Boot stages related to loading a kernel from an NAND device */ BOOTSTAGE_ID_NAND_PART, BOOTSTAGE_ID_NAND_SUFFIX, BOOTSTAGE_ID_NAND_BOOT_DEVICE, BOOTSTAGE_ID_NAND_HDR_READ = 55, BOOTSTAGE_ID_NAND_AVAILABLE = 55, BOOTSTAGE_ID_NAND_TYPE = 57, BOOTSTAGE_ID_NAND_READ, /* Boot stages related to loading a kernel from an network device */ BOOTSTAGE_ID_NET_CHECKSUM = 60, BOOTSTAGE_ID_NET_ETH_START = 64, BOOTSTAGE_ID_NET_ETH_INIT, BOOTSTAGE_ID_NET_START = 80, BOOTSTAGE_ID_NET_NETLOOP_OK, BOOTSTAGE_ID_NET_LOADED, BOOTSTAGE_ID_NET_DONE_ERR, BOOTSTAGE_ID_NET_DONE, BOOTSTAGE_ID_FIT_FDT_START = 90, /* * Boot stages related to loading a FIT image. Some of these are a * bit wonky. */ BOOTSTAGE_ID_FIT_KERNEL_START = 100, BOOTSTAGE_ID_FIT_CONFIG = 110, BOOTSTAGE_ID_FIT_TYPE, BOOTSTAGE_ID_FIT_KERNEL_INFO, BOOTSTAGE_ID_FIT_COMPRESSION, BOOTSTAGE_ID_FIT_OS, BOOTSTAGE_ID_FIT_LOADADDR, BOOTSTAGE_ID_OVERWRITTEN, /* Next 10 IDs used by BOOTSTAGE_SUB_... */ BOOTSTAGE_ID_FIT_RD_START = 120, /* Ramdisk stages */ /* Next 10 IDs used by BOOTSTAGE_SUB_... */ BOOTSTAGE_ID_FIT_SETUP_START = 130, /* x86 setup stages */ BOOTSTAGE_ID_IDE_FIT_READ = 140, BOOTSTAGE_ID_IDE_FIT_READ_OK, BOOTSTAGE_ID_NAND_FIT_READ = 150, BOOTSTAGE_ID_NAND_FIT_READ_OK, BOOTSTAGE_ID_FIT_LOADABLE_START = 160, /* for Loadable Images */ /* * These boot stages are new, higher level, and not directly related * to the old boot progress numbers. They are useful for recording * rough boot timing information. */ BOOTSTAGE_ID_AWAKE, BOOTSTAGE_ID_START_SPL, BOOTSTAGE_ID_START_UBOOT_F, BOOTSTAGE_ID_START_UBOOT_R, BOOTSTAGE_ID_USB_START, BOOTSTAGE_ID_ETH_START, BOOTSTAGE_ID_BOOTP_START, BOOTSTAGE_ID_BOOTP_STOP, BOOTSTAGE_ID_BOOTM_START, BOOTSTAGE_ID_BOOTM_HANDOFF, BOOTSTAGE_ID_MAIN_LOOP, BOOTSTAGE_KERNELREAD_START, BOOTSTAGE_KERNELREAD_STOP, BOOTSTAGE_ID_BOARD_INIT, BOOTSTAGE_ID_BOARD_INIT_DONE, BOOTSTAGE_ID_CPU_AWAKE, BOOTSTAGE_ID_MAIN_CPU_AWAKE, BOOTSTAGE_ID_MAIN_CPU_READY, BOOTSTAGE_ID_ACCUM_LCD, BOOTSTAGE_ID_ACCUM_SCSI, BOOTSTAGE_ID_ACCUM_SPI, BOOTSTAGE_ID_ACCUM_DECOMP, BOOTSTAGE_ID_FPGA_INIT, /* a few spare for the user, from here */ BOOTSTAGE_ID_USER, BOOTSTAGE_ID_COUNT = BOOTSTAGE_ID_USER + CONFIG_BOOTSTAGE_USER_COUNT, BOOTSTAGE_ID_ALLOC, }; /* * Return the time since boot in microseconds, This is needed for bootstage * and should be defined in CPU- or board-specific code. If undefined then * you will get a link error. */ ulong timer_get_boot_us(void); #if defined(USE_HOSTCC) #define show_boot_progress(val) do {} while (0) #else /* * Board code can implement show_boot_progress() if needed. * * @param val Progress state (enum bootstage_id), or -id if an error * has occurred. */ void show_boot_progress(int val); #endif #if defined(CONFIG_BOOTSTAGE) && !defined(CONFIG_SPL_BUILD) && \ !defined(USE_HOSTCC) /* This is the full bootstage implementation */ /** * Relocate existing bootstage records * * Call this after relocation has happened and after malloc has been initted. * We need to copy any pointers in bootstage records that were added pre- * relocation, since memory can be overritten later. * @return Always returns 0, to indicate success */ int bootstage_relocate(void); /** * Add a new bootstage record * * @param id Bootstage ID to use (ignored if flags & BOOTSTAGEF_ALLOC) * @param name Name of record, or NULL for none * @param flags Flags (BOOTSTAGEF_...) * @param mark Time to record in this record, in microseconds */ ulong bootstage_add_record(enum bootstage_id id, const char *name, int flags, ulong mark); /* * Mark a time stamp for the current boot stage. */ ulong bootstage_mark(enum bootstage_id id); ulong bootstage_error(enum bootstage_id id); ulong bootstage_mark_name(enum bootstage_id id, const char *name); /** * Mark a time stamp in the given function and line number * * See BOOTSTAGE_MARKER() for a convenient macro. * * @param file Filename to record (NULL if none) * @param func Function name to record * @param linenum Line number to record * @return recorded time stamp */ ulong bootstage_mark_code(const char *file, const char *func, int linenum); /** * Mark the start of a bootstage activity. The end will be marked later with * bootstage_accum() and at that point we accumulate the time taken. Calling * this function turns the given id into a accumulator rather than and * absolute mark in time. Accumulators record the total amount of time spent * in an activty during boot. * * @param id Bootstage id to record this timestamp against * @param name Textual name to display for this id in the report (maybe NULL) * @return start timestamp in microseconds */ uint32_t bootstage_start(enum bootstage_id id, const char *name); /** * Mark the end of a bootstage activity * * After previously marking the start of an activity with bootstage_start(), * call this function to mark the end. You can call these functions in pairs * as many times as you like. * * @param id Bootstage id to record this timestamp against * @return time spent in this iteration of the activity (i.e. the time now * less the start time recorded in the last bootstage_start() call * with this id. */ uint32_t bootstage_accum(enum bootstage_id id); /* Print a report about boot time */ void bootstage_report(void); /** * Add bootstage information to the device tree * * @return 0 if ok, -ve on error */ int bootstage_fdt_add_report(void); /* * Stash bootstage data into memory * * @param base Base address of memory buffer * @param size Size of memory buffer * @return 0 if stashed ok, -1 if out of space */ int bootstage_stash(void *base, int size); /** * Read bootstage data from memory * * Bootstage data is read from memory and placed in the bootstage table * in the user records. * * @param base Base address of memory buffer * @param size Size of memory buffer (-1 if unknown) * @return 0 if unstashed ok, -1 if bootstage info not found, or out of space */ int bootstage_unstash(void *base, int size); /** * bootstage_init() - Prepare bootstage for use * * @first: true if this is the first time bootstage is set up. This causes it * to add a 'reset' record with a time of 0. */ int bootstage_init(bool first); #else static inline ulong bootstage_add_record(enum bootstage_id id, const char *name, int flags, ulong mark) { return 0; } /* * This is a dummy implementation which just calls show_boot_progress(), * and won't even do that unless CONFIG_SHOW_BOOT_PROGRESS is defined */ static inline int bootstage_relocate(void) { return 0; } static inline ulong bootstage_mark(enum bootstage_id id) { show_boot_progress(id); return 0; } static inline ulong bootstage_error(enum bootstage_id id) { show_boot_progress(-id); return 0; } static inline ulong bootstage_mark_name(enum bootstage_id id, const char *name) { show_boot_progress(id); return 0; } static inline ulong bootstage_mark_code(const char *file, const char *func, int linenum) { return 0; } static inline uint32_t bootstage_start(enum bootstage_id id, const char *name) { return 0; } static inline uint32_t bootstage_accum(enum bootstage_id id) { return 0; } static inline int bootstage_stash(void *base, int size) { return 0; /* Pretend to succeed */ } static inline int bootstage_unstash(void *base, int size) { return 0; /* Pretend to succeed */ } static inline int bootstage_init(bool first) { return 0; } #endif /* CONFIG_BOOTSTAGE */ /* Helper macro for adding a bootstage to a line of code */ #define BOOTSTAGE_MARKER() \ bootstage_mark_code(__FILE__, __func__, __LINE__) #endif