/* SPDX-License-Identifier: GPL-2.0+ */ /* * (C) Copyright 2008 Semihalf * * (C) Copyright 2000-2005 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. ******************************************************************** * NOTE: This header file defines an interface to U-Boot. Including * this (unmodified) header file in another file is considered normal * use of U-Boot, and does *not* fall under the heading of "derived * work". ******************************************************************** */ #ifndef __IMAGE_H__ #define __IMAGE_H__ #include "compiler.h" #include #include /* Define this to avoid #ifdefs later on */ struct lmb; struct fdt_region; #ifdef USE_HOSTCC #include #include #define IMAGE_INDENT_STRING "" #else #include #include #include #include #define IMAGE_INDENT_STRING " " #endif /* USE_HOSTCC */ #include #include #include #include extern ulong image_load_addr; /* Default Load Address */ extern ulong image_save_addr; /* Default Save Address */ extern ulong image_save_size; /* Default Save Size */ extern ulong image_load_offset; /* Default Load Address Offset */ /* An invalid size, meaning that the image size is not known */ #define IMAGE_SIZE_INVAL (-1UL) enum ih_category { IH_ARCH, IH_COMP, IH_OS, IH_TYPE, IH_PHASE, IH_COUNT, }; /* * Operating System Codes * * The following are exposed to uImage header. * New IDs *MUST* be appended at the end of the list and *NEVER* * inserted for backward compatibility. */ enum { IH_OS_INVALID = 0, /* Invalid OS */ IH_OS_OPENBSD, /* OpenBSD */ IH_OS_NETBSD, /* NetBSD */ IH_OS_FREEBSD, /* FreeBSD */ IH_OS_4_4BSD, /* 4.4BSD */ IH_OS_LINUX, /* Linux */ IH_OS_SVR4, /* SVR4 */ IH_OS_ESIX, /* Esix */ IH_OS_SOLARIS, /* Solaris */ IH_OS_IRIX, /* Irix */ IH_OS_SCO, /* SCO */ IH_OS_DELL, /* Dell */ IH_OS_NCR, /* NCR */ IH_OS_LYNXOS, /* LynxOS */ IH_OS_VXWORKS, /* VxWorks */ IH_OS_PSOS, /* pSOS */ IH_OS_QNX, /* QNX */ IH_OS_U_BOOT, /* Firmware */ IH_OS_RTEMS, /* RTEMS */ IH_OS_ARTOS, /* ARTOS */ IH_OS_UNITY, /* Unity OS */ IH_OS_INTEGRITY, /* INTEGRITY */ IH_OS_OSE, /* OSE */ IH_OS_PLAN9, /* Plan 9 */ IH_OS_OPENRTOS, /* OpenRTOS */ IH_OS_ARM_TRUSTED_FIRMWARE, /* ARM Trusted Firmware */ IH_OS_TEE, /* Trusted Execution Environment */ IH_OS_OPENSBI, /* RISC-V OpenSBI */ IH_OS_EFI, /* EFI Firmware (e.g. GRUB2) */ IH_OS_COUNT, }; /* * CPU Architecture Codes (supported by Linux) * * The following are exposed to uImage header. * New IDs *MUST* be appended at the end of the list and *NEVER* * inserted for backward compatibility. */ enum { IH_ARCH_INVALID = 0, /* Invalid CPU */ IH_ARCH_ALPHA, /* Alpha */ IH_ARCH_ARM, /* ARM */ IH_ARCH_I386, /* Intel x86 */ IH_ARCH_IA64, /* IA64 */ IH_ARCH_MIPS, /* MIPS */ IH_ARCH_MIPS64, /* MIPS 64 Bit */ IH_ARCH_PPC, /* PowerPC */ IH_ARCH_S390, /* IBM S390 */ IH_ARCH_SH, /* SuperH */ IH_ARCH_SPARC, /* Sparc */ IH_ARCH_SPARC64, /* Sparc 64 Bit */ IH_ARCH_M68K, /* M68K */ IH_ARCH_NIOS, /* Nios-32 */ IH_ARCH_MICROBLAZE, /* MicroBlaze */ IH_ARCH_NIOS2, /* Nios-II */ IH_ARCH_BLACKFIN, /* Blackfin */ IH_ARCH_AVR32, /* AVR32 */ IH_ARCH_ST200, /* STMicroelectronics ST200 */ IH_ARCH_SANDBOX, /* Sandbox architecture (test only) */ IH_ARCH_NDS32, /* ANDES Technology - NDS32 */ IH_ARCH_OPENRISC, /* OpenRISC 1000 */ IH_ARCH_ARM64, /* ARM64 */ IH_ARCH_ARC, /* Synopsys DesignWare ARC */ IH_ARCH_X86_64, /* AMD x86_64, Intel and Via */ IH_ARCH_XTENSA, /* Xtensa */ IH_ARCH_RISCV, /* RISC-V */ IH_ARCH_COUNT, }; /* * Image Types * * "Standalone Programs" are directly runnable in the environment * provided by U-Boot; it is expected that (if they behave * well) you can continue to work in U-Boot after return from * the Standalone Program. * "OS Kernel Images" are usually images of some Embedded OS which * will take over control completely. Usually these programs * will install their own set of exception handlers, device * drivers, set up the MMU, etc. - this means, that you cannot * expect to re-enter U-Boot except by resetting the CPU. * "RAMDisk Images" are more or less just data blocks, and their * parameters (address, size) are passed to an OS kernel that is * being started. * "Multi-File Images" contain several images, typically an OS * (Linux) kernel image and one or more data images like * RAMDisks. This construct is useful for instance when you want * to boot over the network using BOOTP etc., where the boot * server provides just a single image file, but you want to get * for instance an OS kernel and a RAMDisk image. * * "Multi-File Images" start with a list of image sizes, each * image size (in bytes) specified by an "uint32_t" in network * byte order. This list is terminated by an "(uint32_t)0". * Immediately after the terminating 0 follow the images, one by * one, all aligned on "uint32_t" boundaries (size rounded up to * a multiple of 4 bytes - except for the last file). * * "Firmware Images" are binary images containing firmware (like * U-Boot or FPGA images) which usually will be programmed to * flash memory. * * "Script files" are command sequences that will be executed by * U-Boot's command interpreter; this feature is especially * useful when you configure U-Boot to use a real shell (hush) * as command interpreter (=> Shell Scripts). * * The following are exposed to uImage header. * New IDs *MUST* be appended at the end of the list and *NEVER* * inserted for backward compatibility. */ enum image_type_t { IH_TYPE_INVALID = 0, /* Invalid Image */ IH_TYPE_STANDALONE, /* Standalone Program */ IH_TYPE_KERNEL, /* OS Kernel Image */ IH_TYPE_RAMDISK, /* RAMDisk Image */ IH_TYPE_MULTI, /* Multi-File Image */ IH_TYPE_FIRMWARE, /* Firmware Image */ IH_TYPE_SCRIPT, /* Script file */ IH_TYPE_FILESYSTEM, /* Filesystem Image (any type) */ IH_TYPE_FLATDT, /* Binary Flat Device Tree Blob */ IH_TYPE_KWBIMAGE, /* Kirkwood Boot Image */ IH_TYPE_IMXIMAGE, /* Freescale IMXBoot Image */ IH_TYPE_UBLIMAGE, /* Davinci UBL Image */ IH_TYPE_OMAPIMAGE, /* TI OMAP Config Header Image */ IH_TYPE_AISIMAGE, /* TI Davinci AIS Image */ /* OS Kernel Image, can run from any load address */ IH_TYPE_KERNEL_NOLOAD, IH_TYPE_PBLIMAGE, /* Freescale PBL Boot Image */ IH_TYPE_MXSIMAGE, /* Freescale MXSBoot Image */ IH_TYPE_GPIMAGE, /* TI Keystone GPHeader Image */ IH_TYPE_ATMELIMAGE, /* ATMEL ROM bootable Image */ IH_TYPE_SOCFPGAIMAGE, /* Altera SOCFPGA CV/AV Preloader */ IH_TYPE_X86_SETUP, /* x86 setup.bin Image */ IH_TYPE_LPC32XXIMAGE, /* x86 setup.bin Image */ IH_TYPE_LOADABLE, /* A list of typeless images */ IH_TYPE_RKIMAGE, /* Rockchip Boot Image */ IH_TYPE_RKSD, /* Rockchip SD card */ IH_TYPE_RKSPI, /* Rockchip SPI image */ IH_TYPE_ZYNQIMAGE, /* Xilinx Zynq Boot Image */ IH_TYPE_ZYNQMPIMAGE, /* Xilinx ZynqMP Boot Image */ IH_TYPE_ZYNQMPBIF, /* Xilinx ZynqMP Boot Image (bif) */ IH_TYPE_FPGA, /* FPGA Image */ IH_TYPE_VYBRIDIMAGE, /* VYBRID .vyb Image */ IH_TYPE_TEE, /* Trusted Execution Environment OS Image */ IH_TYPE_FIRMWARE_IVT, /* Firmware Image with HABv4 IVT */ IH_TYPE_PMMC, /* TI Power Management Micro-Controller Firmware */ IH_TYPE_STM32IMAGE, /* STMicroelectronics STM32 Image */ IH_TYPE_SOCFPGAIMAGE_V1, /* Altera SOCFPGA A10 Preloader */ IH_TYPE_MTKIMAGE, /* MediaTek BootROM loadable Image */ IH_TYPE_IMX8MIMAGE, /* Freescale IMX8MBoot Image */ IH_TYPE_IMX8IMAGE, /* Freescale IMX8Boot Image */ IH_TYPE_COPRO, /* Coprocessor Image for remoteproc*/ IH_TYPE_SUNXI_EGON, /* Allwinner eGON Boot Image */ IH_TYPE_SUNXI_TOC0, /* Allwinner TOC0 Boot Image */ IH_TYPE_FDT_LEGACY, /* Binary Flat Device Tree Blob in a Legacy Image */ IH_TYPE_COUNT, /* Number of image types */ }; /* * Compression Types * * The following are exposed to uImage header. * New IDs *MUST* be appended at the end of the list and *NEVER* * inserted for backward compatibility. */ enum { IH_COMP_NONE = 0, /* No Compression Used */ IH_COMP_GZIP, /* gzip Compression Used */ IH_COMP_BZIP2, /* bzip2 Compression Used */ IH_COMP_LZMA, /* lzma Compression Used */ IH_COMP_LZO, /* lzo Compression Used */ IH_COMP_LZ4, /* lz4 Compression Used */ IH_COMP_ZSTD, /* zstd Compression Used */ IH_COMP_COUNT, }; /** * Phases - images intended for particular U-Boot phases (SPL, etc.) * * @IH_PHASE_NONE: No phase information, can be loaded by any phase * @IH_PHASE_U_BOOT: Only for U-Boot proper * @IH_PHASE_SPL: Only for SPL */ enum image_phase_t { IH_PHASE_NONE = 0, IH_PHASE_U_BOOT, IH_PHASE_SPL, IH_PHASE_COUNT, }; #define IMAGE_PHASE_SHIFT 8 #define IMAGE_PHASE_MASK (0xff << IMAGE_PHASE_SHIFT) #define IMAGE_TYPE_MASK 0xff /** * image_ph() - build a composite value combining and type * * @phase: Image phase value * @type: Image type value * Returns: Composite value containing both */ static inline int image_ph(enum image_phase_t phase, enum image_type_t type) { return type | (phase << IMAGE_PHASE_SHIFT); } /** * image_ph_phase() - obtain the phase from a composite phase/type value * * @image_ph_type: Composite value to convert * Returns: Phase value taken from the composite value */ static inline int image_ph_phase(int image_ph_type) { return (image_ph_type & IMAGE_PHASE_MASK) >> IMAGE_PHASE_SHIFT; } /** * image_ph_type() - obtain the type from a composite phase/type value * * @image_ph_type: Composite value to convert * Returns: Type value taken from the composite value */ static inline int image_ph_type(int image_ph_type) { return image_ph_type & IMAGE_TYPE_MASK; } #define LZ4F_MAGIC 0x184D2204 /* LZ4 Magic Number */ #define IH_MAGIC 0x27051956 /* Image Magic Number */ #define IH_NMLEN 32 /* Image Name Length */ /* Reused from common.h */ #define ROUND(a, b) (((a) + (b) - 1) & ~((b) - 1)) /* * Legacy format image header, * all data in network byte order (aka natural aka bigendian). */ struct legacy_img_hdr { uint32_t ih_magic; /* Image Header Magic Number */ uint32_t ih_hcrc; /* Image Header CRC Checksum */ uint32_t ih_time; /* Image Creation Timestamp */ uint32_t ih_size; /* Image Data Size */ uint32_t ih_load; /* Data Load Address */ uint32_t ih_ep; /* Entry Point Address */ uint32_t ih_dcrc; /* Image Data CRC Checksum */ uint8_t ih_os; /* Operating System */ uint8_t ih_arch; /* CPU architecture */ uint8_t ih_type; /* Image Type */ uint8_t ih_comp; /* Compression Type */ uint8_t ih_name[IH_NMLEN]; /* Image Name */ }; struct image_info { ulong start, end; /* start/end of blob */ ulong image_start, image_len; /* start of image within blob, len of image */ ulong load; /* load addr for the image */ uint8_t comp, type, os; /* compression, type of image, os type */ uint8_t arch; /* CPU architecture */ }; /* * Legacy and FIT format headers used by do_bootm() and do_bootm_() * routines. */ struct bootm_headers { /* * Legacy os image header, if it is a multi component image * then boot_get_ramdisk() and get_fdt() will attempt to get * data from second and third component accordingly. */ struct legacy_img_hdr *legacy_hdr_os; /* image header pointer */ struct legacy_img_hdr legacy_hdr_os_copy; /* header copy */ ulong legacy_hdr_valid; /* * The fit_ members are only used with FIT, but it involves a lot of * #ifdefs to avoid compiling that code. Since FIT is the standard * format, even for SPL, this extra data size seems worth it. */ const char *fit_uname_cfg; /* configuration node unit name */ void *fit_hdr_os; /* os FIT image header */ const char *fit_uname_os; /* os subimage node unit name */ int fit_noffset_os; /* os subimage node offset */ void *fit_hdr_rd; /* init ramdisk FIT image header */ const char *fit_uname_rd; /* init ramdisk subimage node unit name */ int fit_noffset_rd; /* init ramdisk subimage node offset */ void *fit_hdr_fdt; /* FDT blob FIT image header */ const char *fit_uname_fdt; /* FDT blob subimage node unit name */ int fit_noffset_fdt;/* FDT blob subimage node offset */ void *fit_hdr_setup; /* x86 setup FIT image header */ const char *fit_uname_setup; /* x86 setup subimage node name */ int fit_noffset_setup;/* x86 setup subimage node offset */ #ifndef USE_HOSTCC struct image_info os; /* os image info */ ulong ep; /* entry point of OS */ ulong rd_start, rd_end;/* ramdisk start/end */ char *ft_addr; /* flat dev tree address */ ulong ft_len; /* length of flat device tree */ ulong initrd_start; ulong initrd_end; ulong cmdline_start; ulong cmdline_end; struct bd_info *kbd; #endif int verify; /* env_get("verify")[0] != 'n' */ #define BOOTM_STATE_START 0x00000001 #define BOOTM_STATE_FINDOS 0x00000002 #define BOOTM_STATE_FINDOTHER 0x00000004 #define BOOTM_STATE_LOADOS 0x00000008 #define BOOTM_STATE_RAMDISK 0x00000010 #define BOOTM_STATE_FDT 0x00000020 #define BOOTM_STATE_OS_CMDLINE 0x00000040 #define BOOTM_STATE_OS_BD_T 0x00000080 #define BOOTM_STATE_OS_PREP 0x00000100 #define BOOTM_STATE_OS_FAKE_GO 0x00000200 /* 'Almost' run the OS */ #define BOOTM_STATE_OS_GO 0x00000400 #define BOOTM_STATE_PRE_LOAD 0x00000800 int state; #if defined(CONFIG_LMB) && !defined(USE_HOSTCC) struct lmb lmb; /* for memory mgmt */ #endif }; #ifdef CONFIG_LMB #define images_lmb(_images) (&(_images)->lmb) #else #define images_lmb(_images) NULL #endif extern struct bootm_headers images; /* * Some systems (for example LWMON) have very short watchdog periods; * we must make sure to split long operations like memmove() or * checksum calculations into reasonable chunks. */ #ifndef CHUNKSZ #define CHUNKSZ (64 * 1024) #endif #ifndef CHUNKSZ_CRC32 #define CHUNKSZ_CRC32 (64 * 1024) #endif #ifndef CHUNKSZ_MD5 #define CHUNKSZ_MD5 (64 * 1024) #endif #ifndef CHUNKSZ_SHA1 #define CHUNKSZ_SHA1 (64 * 1024) #endif #define uimage_to_cpu(x) be32_to_cpu(x) #define cpu_to_uimage(x) cpu_to_be32(x) /* * Translation table for entries of a specific type; used by * get_table_entry_id() and get_table_entry_name(). */ typedef struct table_entry { int id; char *sname; /* short (input) name to find table entry */ char *lname; /* long (output) name to print for messages */ } table_entry_t; /* * Compression type and magic number mapping table. */ struct comp_magic_map { int comp_id; const char *name; unsigned char magic[2]; }; /* * get_table_entry_id() scans the translation table trying to find an * entry that matches the given short name. If a matching entry is * found, it's id is returned to the caller. */ int get_table_entry_id(const table_entry_t *table, const char *table_name, const char *name); /* * get_table_entry_name() scans the translation table trying to find * an entry that matches the given id. If a matching entry is found, * its long name is returned to the caller. */ char *get_table_entry_name(const table_entry_t *table, char *msg, int id); const char *genimg_get_os_name(uint8_t os); /** * genimg_get_os_short_name() - get the short name for an OS * * @param os OS (IH_OS_...) * Return: OS short name, or "unknown" if unknown */ const char *genimg_get_os_short_name(uint8_t comp); const char *genimg_get_arch_name(uint8_t arch); /** * genimg_get_phase_name() - Get the friendly name for a phase * * @phase: Phase value to look up * Returns: Friendly name for the phase (e.g. "U-Boot phase") */ const char *genimg_get_phase_name(enum image_phase_t phase); /** * genimg_get_phase_id() - Convert a phase name to an ID * * @name: Name to convert (e.g. "u-boot") * Returns: ID for that phase (e.g. IH_PHASE_U_BOOT) */ int genimg_get_phase_id(const char *name); /** * genimg_get_arch_short_name() - get the short name for an architecture * * @param arch Architecture type (IH_ARCH_...) * Return: architecture short name, or "unknown" if unknown */ const char *genimg_get_arch_short_name(uint8_t arch); const char *genimg_get_type_name(uint8_t type); /** * genimg_get_type_short_name() - get the short name for an image type * * @param type Image type (IH_TYPE_...) * Return: image short name, or "unknown" if unknown */ const char *genimg_get_type_short_name(uint8_t type); const char *genimg_get_comp_name(uint8_t comp); /** * genimg_get_comp_short_name() - get the short name for a compression method * * @param comp compression method (IH_COMP_...) * Return: compression method short name, or "unknown" if unknown */ const char *genimg_get_comp_short_name(uint8_t comp); /** * genimg_get_cat_name() - Get the name of an item in a category * * @category: Category of item * @id: Item ID * Return: name of item, or "Unknown ..." if unknown */ const char *genimg_get_cat_name(enum ih_category category, uint id); /** * genimg_get_cat_short_name() - Get the short name of an item in a category * * @category: Category of item * @id: Item ID * Return: short name of item, or "Unknown ..." if unknown */ const char *genimg_get_cat_short_name(enum ih_category category, uint id); /** * genimg_get_cat_count() - Get the number of items in a category * * @category: Category to check * Return: the number of items in the category (IH_xxx_COUNT) */ int genimg_get_cat_count(enum ih_category category); /** * genimg_get_cat_desc() - Get the description of a category * * @category: Category to check * Return: the description of a category, e.g. "architecture". This * effectively converts the enum to a string. */ const char *genimg_get_cat_desc(enum ih_category category); /** * genimg_cat_has_id() - Check whether a category has an item * * @category: Category to check * @id: Item ID * Return: true or false as to whether a category has an item */ bool genimg_cat_has_id(enum ih_category category, uint id); int genimg_get_os_id(const char *name); int genimg_get_arch_id(const char *name); int genimg_get_type_id(const char *name); int genimg_get_comp_id(const char *name); void genimg_print_size(uint32_t size); #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) #define IMAGE_ENABLE_TIMESTAMP 1 #else #define IMAGE_ENABLE_TIMESTAMP 0 #endif void genimg_print_time(time_t timestamp); /* What to do with a image load address ('load = <> 'in the FIT) */ enum fit_load_op { FIT_LOAD_IGNORED, /* Ignore load address */ FIT_LOAD_OPTIONAL, /* Can be provided, but optional */ FIT_LOAD_OPTIONAL_NON_ZERO, /* Optional, a value of 0 is ignored */ FIT_LOAD_REQUIRED, /* Must be provided */ }; int boot_get_setup(struct bootm_headers *images, uint8_t arch, ulong *setup_start, ulong *setup_len); /* Image format types, returned by _get_format() routine */ #define IMAGE_FORMAT_INVALID 0x00 #define IMAGE_FORMAT_LEGACY 0x01 /* legacy image_header based format */ #define IMAGE_FORMAT_FIT 0x02 /* new, libfdt based format */ #define IMAGE_FORMAT_ANDROID 0x03 /* Android boot image */ ulong genimg_get_kernel_addr_fit(char * const img_addr, const char **fit_uname_config, const char **fit_uname_kernel); ulong genimg_get_kernel_addr(char * const img_addr); int genimg_get_format(const void *img_addr); int genimg_has_config(struct bootm_headers *images); int boot_get_fpga(int argc, char *const argv[], struct bootm_headers *images, uint8_t arch, const ulong *ld_start, ulong * const ld_len); int boot_get_ramdisk(int argc, char *const argv[], struct bootm_headers *images, uint8_t arch, ulong *rd_start, ulong *rd_end); /** * boot_get_loadable - routine to load a list of binaries to memory * @argc: Ignored Argument * @argv: Ignored Argument * @images: pointer to the bootm images structure * @arch: expected architecture for the image * @ld_start: Ignored Argument * @ld_len: Ignored Argument * * boot_get_loadable() will take the given FIT configuration, and look * for a field named "loadables". Loadables, is a list of elements in * the FIT given as strings. exe: * loadables = "linux_kernel", "fdt-2"; * this function will attempt to parse each string, and load the * corresponding element from the FIT into memory. Once placed, * no aditional actions are taken. * * @return: * 0, if only valid images or no images are found * error code, if an error occurs during fit_image_load */ int boot_get_loadable(int argc, char *const argv[], struct bootm_headers *images, uint8_t arch, const ulong *ld_start, ulong *const ld_len); int boot_get_setup_fit(struct bootm_headers *images, uint8_t arch, ulong *setup_start, ulong *setup_len); /** * boot_get_fdt_fit() - load a DTB from a FIT file (applying overlays) * * This deals with all aspects of loading an DTB from a FIT. * The correct base image based on configuration will be selected, and * then any overlays specified will be applied (as present in fit_uname_configp). * * @param images Boot images structure * @param addr Address of FIT in memory * @param fit_unamep On entry this is the requested image name * (e.g. "kernel") or NULL to use the default. On exit * points to the selected image name * @param fit_uname_configp On entry this is the requested configuration * name (e.g. "conf-1") or NULL to use the default. On * exit points to the selected configuration name. * @param arch Expected architecture (IH_ARCH_...) * @param datap Returns address of loaded image * @param lenp Returns length of loaded image * * Return: node offset of base image, or -ve error code on error */ int boot_get_fdt_fit(struct bootm_headers *images, ulong addr, const char **fit_unamep, const char **fit_uname_configp, int arch, ulong *datap, ulong *lenp); /** * fit_image_load() - load an image from a FIT * * This deals with all aspects of loading an image from a FIT, including * selecting the right image based on configuration, verifying it, printing * out progress messages, checking the type/arch/os and optionally copying it * to the right load address. * * The property to look up is defined by image_type. * * @param images Boot images structure * @param addr Address of FIT in memory * @param fit_unamep On entry this is the requested image name * (e.g. "kernel") or NULL to use the default. On exit * points to the selected image name * @param fit_uname_configp On entry this is the requested configuration * name (e.g. "conf-1") or NULL to use the default. On * exit points to the selected configuration name. * @param arch Expected architecture (IH_ARCH_...) * @param image_ph_type Required image type (IH_TYPE_...). If this is * IH_TYPE_KERNEL then we allow IH_TYPE_KERNEL_NOLOAD * also. If a phase is required, this is included also, * see image_phase_and_type() * @param bootstage_id ID of starting bootstage to use for progress updates. * This will be added to the BOOTSTAGE_SUB values when * calling bootstage_mark() * @param load_op Decribes what to do with the load address * @param datap Returns address of loaded image * @param lenp Returns length of loaded image * Return: node offset of image, or -ve error code on error */ int fit_image_load(struct bootm_headers *images, ulong addr, const char **fit_unamep, const char **fit_uname_configp, int arch, int image_ph_type, int bootstage_id, enum fit_load_op load_op, ulong *datap, ulong *lenp); /** * image_source_script() - Execute a script * @addr: Address of script * @fit_uname: FIT subimage name * @confname: FIT config name. The subimage is chosen based on FIT_SCRIPT_PROP. * * Executes a U-Boot script at a particular address in memory. The script should * have a header (FIT or legacy) with the script type (IH_TYPE_SCRIPT). * * If @fit_uname is the empty string, then the default image is used. If * @confname is the empty string, the default config is used. If @confname and * @fit_uname are both non-%NULL, then @confname is ignored. If @confname and * @fit_uname are both %NULL, then first the default config is tried, and then * the default image. * * Return: result code (enum command_ret_t) */ int image_source_script(ulong addr, const char *fit_uname, const char *confname); /** * fit_get_node_from_config() - Look up an image a FIT by type * * This looks in the selected conf- node (images->fit_uname_cfg) for a * particular image type (e.g. "kernel") and then finds the image that is * referred to. * * For example, for something like: * * images { * kernel { * ... * }; * }; * configurations { * conf-1 { * kernel = "kernel"; * }; * }; * * the function will return the node offset of the kernel@1 node, assuming * that conf-1 is the chosen configuration. * * @param images Boot images structure * @param prop_name Property name to look up (FIT_..._PROP) * @param addr Address of FIT in memory */ int fit_get_node_from_config(struct bootm_headers *images, const char *prop_name, ulong addr); int boot_get_fdt(int flag, int argc, char *const argv[], uint8_t arch, struct bootm_headers *images, char **of_flat_tree, ulong *of_size); void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob); int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size); int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, ulong *initrd_start, ulong *initrd_end); int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end); int boot_get_kbd(struct lmb *lmb, struct bd_info **kbd); /*******************************************************************/ /* Legacy format specific code (prefixed with image_) */ /*******************************************************************/ static inline uint32_t image_get_header_size(void) { return sizeof(struct legacy_img_hdr); } #define image_get_hdr_l(f) \ static inline uint32_t image_get_##f(const struct legacy_img_hdr *hdr) \ { \ return uimage_to_cpu(hdr->ih_##f); \ } image_get_hdr_l(magic) /* image_get_magic */ image_get_hdr_l(hcrc) /* image_get_hcrc */ image_get_hdr_l(time) /* image_get_time */ image_get_hdr_l(size) /* image_get_size */ image_get_hdr_l(load) /* image_get_load */ image_get_hdr_l(ep) /* image_get_ep */ image_get_hdr_l(dcrc) /* image_get_dcrc */ #define image_get_hdr_b(f) \ static inline uint8_t image_get_##f(const struct legacy_img_hdr *hdr) \ { \ return hdr->ih_##f; \ } image_get_hdr_b(os) /* image_get_os */ image_get_hdr_b(arch) /* image_get_arch */ image_get_hdr_b(type) /* image_get_type */ image_get_hdr_b(comp) /* image_get_comp */ static inline char *image_get_name(const struct legacy_img_hdr *hdr) { return (char *)hdr->ih_name; } static inline uint32_t image_get_data_size(const struct legacy_img_hdr *hdr) { return image_get_size(hdr); } /** * image_get_data - get image payload start address * @hdr: image header * * image_get_data() returns address of the image payload. For single * component images it is image data start. For multi component * images it points to the null terminated table of sub-images sizes. * * returns: * image payload data start address */ static inline ulong image_get_data(const struct legacy_img_hdr *hdr) { return ((ulong)hdr + image_get_header_size()); } static inline uint32_t image_get_image_size(const struct legacy_img_hdr *hdr) { return (image_get_size(hdr) + image_get_header_size()); } static inline ulong image_get_image_end(const struct legacy_img_hdr *hdr) { return ((ulong)hdr + image_get_image_size(hdr)); } #define image_set_hdr_l(f) \ static inline void image_set_##f(struct legacy_img_hdr *hdr, uint32_t val) \ { \ hdr->ih_##f = cpu_to_uimage(val); \ } image_set_hdr_l(magic) /* image_set_magic */ image_set_hdr_l(hcrc) /* image_set_hcrc */ image_set_hdr_l(time) /* image_set_time */ image_set_hdr_l(size) /* image_set_size */ image_set_hdr_l(load) /* image_set_load */ image_set_hdr_l(ep) /* image_set_ep */ image_set_hdr_l(dcrc) /* image_set_dcrc */ #define image_set_hdr_b(f) \ static inline void image_set_##f(struct legacy_img_hdr *hdr, uint8_t val) \ { \ hdr->ih_##f = val; \ } image_set_hdr_b(os) /* image_set_os */ image_set_hdr_b(arch) /* image_set_arch */ image_set_hdr_b(type) /* image_set_type */ image_set_hdr_b(comp) /* image_set_comp */ static inline void image_set_name(struct legacy_img_hdr *hdr, const char *name) { /* * This is equivalent to: strncpy(image_get_name(hdr), name, IH_NMLEN); * * Use the tortured code below to avoid a warning with gcc 12. We do not * want to include a nul terminator if the name is of length IH_NMLEN */ memcpy(image_get_name(hdr), name, strnlen(name, IH_NMLEN)); } int image_check_hcrc(const struct legacy_img_hdr *hdr); int image_check_dcrc(const struct legacy_img_hdr *hdr); #ifndef USE_HOSTCC ulong env_get_bootm_low(void); phys_size_t env_get_bootm_size(void); phys_size_t env_get_bootm_mapsize(void); #endif void memmove_wd(void *to, void *from, size_t len, ulong chunksz); static inline int image_check_magic(const struct legacy_img_hdr *hdr) { return (image_get_magic(hdr) == IH_MAGIC); } static inline int image_check_type(const struct legacy_img_hdr *hdr, uint8_t type) { return (image_get_type(hdr) == type); } static inline int image_check_arch(const struct legacy_img_hdr *hdr, uint8_t arch) { /* Let's assume that sandbox can load any architecture */ if (!tools_build() && IS_ENABLED(CONFIG_SANDBOX)) return true; return (image_get_arch(hdr) == arch) || (image_get_arch(hdr) == IH_ARCH_ARM && arch == IH_ARCH_ARM64); } static inline int image_check_os(const struct legacy_img_hdr *hdr, uint8_t os) { return (image_get_os(hdr) == os); } ulong image_multi_count(const struct legacy_img_hdr *hdr); void image_multi_getimg(const struct legacy_img_hdr *hdr, ulong idx, ulong *data, ulong *len); void image_print_contents(const void *hdr); #ifndef USE_HOSTCC static inline int image_check_target_arch(const struct legacy_img_hdr *hdr) { #ifndef IH_ARCH_DEFAULT # error "please define IH_ARCH_DEFAULT in your arch asm/u-boot.h" #endif return image_check_arch(hdr, IH_ARCH_DEFAULT); } #endif /* USE_HOSTCC */ /** * image_decomp_type() - Find out compression type of an image * * @buf: Address in U-Boot memory where image is loaded. * @len: Length of the compressed image. * Return: compression type or IH_COMP_NONE if not compressed. * * Note: Only following compression types are supported now. * lzo, lzma, gzip, bzip2 */ int image_decomp_type(const unsigned char *buf, ulong len); /** * image_decomp() - decompress an image * * @comp: Compression algorithm that is used (IH_COMP_...) * @load: Destination load address in U-Boot memory * @image_start Image start address (where we are decompressing from) * @type: OS type (IH_OS_...) * @load_bug: Place to decompress to * @image_buf: Address to decompress from * @image_len: Number of bytes in @image_buf to decompress * @unc_len: Available space for decompression * Return: 0 if OK, -ve on error (BOOTM_ERR_...) */ int image_decomp(int comp, ulong load, ulong image_start, int type, void *load_buf, void *image_buf, ulong image_len, uint unc_len, ulong *load_end); /** * Set up properties in the FDT * * This sets up properties in the FDT that is to be passed to linux. * * @images: Images information * @blob: FDT to update * @of_size: Size of the FDT * @lmb: Points to logical memory block structure * Return: 0 if ok, <0 on failure */ int image_setup_libfdt(struct bootm_headers *images, void *blob, int of_size, struct lmb *lmb); /** * Set up the FDT to use for booting a kernel * * This performs ramdisk setup, sets up the FDT if required, and adds * paramters to the FDT if libfdt is available. * * @param images Images information * Return: 0 if ok, <0 on failure */ int image_setup_linux(struct bootm_headers *images); /** * bootz_setup() - Extract stat and size of a Linux xImage * * @image: Address of image * @start: Returns start address of image * @end : Returns end address of image * Return: 0 if OK, 1 if the image was not recognised */ int bootz_setup(ulong image, ulong *start, ulong *end); /** * Return the correct start address and size of a Linux aarch64 Image. * * @image: Address of image * @start: Returns start address of image * @size : Returns size image * @force_reloc: Ignore image->ep field, always place image to RAM start * Return: 0 if OK, 1 if the image was not recognised */ int booti_setup(ulong image, ulong *relocated_addr, ulong *size, bool force_reloc); /*******************************************************************/ /* New uImage format specific code (prefixed with fit_) */ /*******************************************************************/ #define FIT_IMAGES_PATH "/images" #define FIT_CONFS_PATH "/configurations" /* hash/signature/key node */ #define FIT_HASH_NODENAME "hash" #define FIT_ALGO_PROP "algo" #define FIT_VALUE_PROP "value" #define FIT_IGNORE_PROP "uboot-ignore" #define FIT_SIG_NODENAME "signature" #define FIT_KEY_REQUIRED "required" #define FIT_KEY_HINT "key-name-hint" /* cipher node */ #define FIT_CIPHER_NODENAME "cipher" #define FIT_ALGO_PROP "algo" /* image node */ #define FIT_DATA_PROP "data" #define FIT_DATA_POSITION_PROP "data-position" #define FIT_DATA_OFFSET_PROP "data-offset" #define FIT_DATA_SIZE_PROP "data-size" #define FIT_TIMESTAMP_PROP "timestamp" #define FIT_DESC_PROP "description" #define FIT_ARCH_PROP "arch" #define FIT_TYPE_PROP "type" #define FIT_OS_PROP "os" #define FIT_COMP_PROP "compression" #define FIT_ENTRY_PROP "entry" #define FIT_LOAD_PROP "load" /* configuration node */ #define FIT_KERNEL_PROP "kernel" #define FIT_RAMDISK_PROP "ramdisk" #define FIT_FDT_PROP "fdt" #define FIT_LOADABLE_PROP "loadables" #define FIT_DEFAULT_PROP "default" #define FIT_SETUP_PROP "setup" #define FIT_FPGA_PROP "fpga" #define FIT_FIRMWARE_PROP "firmware" #define FIT_STANDALONE_PROP "standalone" #define FIT_SCRIPT_PROP "script" #define FIT_PHASE_PROP "phase" #define FIT_MAX_HASH_LEN HASH_MAX_DIGEST_SIZE /* cmdline argument format parsing */ int fit_parse_conf(const char *spec, ulong addr_curr, ulong *addr, const char **conf_name); int fit_parse_subimage(const char *spec, ulong addr_curr, ulong *addr, const char **image_name); int fit_get_subimage_count(const void *fit, int images_noffset); void fit_print_contents(const void *fit); void fit_image_print(const void *fit, int noffset, const char *p); /** * fit_get_end - get FIT image size * @fit: pointer to the FIT format image header * * returns: * size of the FIT image (blob) in memory */ static inline ulong fit_get_size(const void *fit) { return fdt_totalsize(fit); } /** * fit_get_end - get FIT image end * @fit: pointer to the FIT format image header * * returns: * end address of the FIT image (blob) in memory */ ulong fit_get_end(const void *fit); /** * fit_get_name - get FIT node name * @fit: pointer to the FIT format image header * * returns: * NULL, on error * pointer to node name, on success */ static inline const char *fit_get_name(const void *fit_hdr, int noffset, int *len) { return fdt_get_name(fit_hdr, noffset, len); } int fit_get_desc(const void *fit, int noffset, char **desc); int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp); int fit_image_get_node(const void *fit, const char *image_uname); int fit_image_get_os(const void *fit, int noffset, uint8_t *os); int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch); int fit_image_get_type(const void *fit, int noffset, uint8_t *type); int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp); int fit_image_get_load(const void *fit, int noffset, ulong *load); int fit_image_get_entry(const void *fit, int noffset, ulong *entry); int fit_image_get_data(const void *fit, int noffset, const void **data, size_t *size); int fit_image_get_data_offset(const void *fit, int noffset, int *data_offset); int fit_image_get_data_position(const void *fit, int noffset, int *data_position); int fit_image_get_data_size(const void *fit, int noffset, int *data_size); int fit_image_get_data_size_unciphered(const void *fit, int noffset, size_t *data_size); int fit_image_get_data_and_size(const void *fit, int noffset, const void **data, size_t *size); /** * fit_get_data_node() - Get verified image data for an image * @fit: Pointer to the FIT format image header * @image_uname: The name of the image node * @data: A pointer which will be filled with the location of the image data * @size: A pointer which will be filled with the size of the image data * * This function looks up the location and size of an image specified by its * name. For example, if you had a FIT like:: * * images { * my-firmware { * ... * }; * }; * * Then you could look up the data location and size of the my-firmware image * by calling this function with @image_uname set to "my-firmware". This * function also verifies the image data (if enabled) before returning. The * image description is printed out on success. @data and @size will not be * modified on faulure. * * Return: * * 0 on success * * -EINVAL if the image could not be verified * * -ENOENT if there was a problem getting the data/size * * Another negative error if there was a problem looking up the image node. */ int fit_get_data_node(const void *fit, const char *image_uname, const void **data, size_t *size); /** * fit_get_data_conf_prop() - Get verified image data for a property in /conf * @fit: Pointer to the FIT format image header * @prop_name: The name of the property in /conf referencing the image * @data: A pointer which will be filled with the location of the image data * @size: A pointer which will be filled with the size of the image data * * This function looks up the location and size of an image specified by a * property in /conf. For example, if you had a FIT like:: * * images { * my-firmware { * ... * }; * }; * * configurations { * default = "conf-1"; * conf-1 { * some-firmware = "my-firmware"; * }; * }; * * Then you could look up the data location and size of the my-firmware image * by calling this function with @prop_name set to "some-firmware". This * function also verifies the image data (if enabled) before returning. The * image description is printed out on success. @data and @size will not be * modified on faulure. * * Return: * * 0 on success * * -EINVAL if the image could not be verified * * -ENOENT if there was a problem getting the data/size * * Another negative error if there was a problem looking up the configuration * or image node. */ int fit_get_data_conf_prop(const void *fit, const char *prop_name, const void **data, size_t *size); int fit_image_hash_get_algo(const void *fit, int noffset, const char **algo); int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value, int *value_len); int fit_set_timestamp(void *fit, int noffset, time_t timestamp); /** * fit_pre_load_data() - add public key to fdt blob * * Adds public key to the node pre load. * * @keydir: Directory containing keys * @keydest: FDT blob to write public key * @fit: Pointer to the FIT format image header * * returns: * 0, on success * < 0, on failure */ int fit_pre_load_data(const char *keydir, void *keydest, void *fit); int fit_cipher_data(const char *keydir, void *keydest, void *fit, const char *comment, int require_keys, const char *engine_id, const char *cmdname); #define NODE_MAX_NAME_LEN 80 /** * struct image_summary - Provides information about signing info added * * @sig_offset: Offset of the node in the blob devicetree where the signature * was wriiten * @sig_path: Path to @sig_offset * @keydest_offset: Offset of the node in the keydest devicetree where the * public key was written (-1 if none) * @keydest_path: Path to @keydest_offset */ struct image_summary { int sig_offset; char sig_path[NODE_MAX_NAME_LEN]; int keydest_offset; char keydest_path[NODE_MAX_NAME_LEN]; }; /** * fit_add_verification_data() - add verification data to FIT image nodes * * @keydir: Directory containing keys * @kwydest: FDT blob to write public key information to (NULL if none) * @fit: Pointer to the FIT format image header * @comment: Comment to add to signature nodes * @require_keys: Mark all keys as 'required' * @engine_id: Engine to use for signing * @cmdname: Command name used when reporting errors * @algo_name: Algorithm name, or NULL if to be read from FIT * @summary: Returns information about what data was written * * Adds hash values for all component images in the FIT blob. * Hashes are calculated for all component images which have hash subnodes * with algorithm property set to one of the supported hash algorithms. * * Also add signatures if signature nodes are present. * * returns * 0, on success * libfdt error code, on failure */ int fit_add_verification_data(const char *keydir, const char *keyfile, void *keydest, void *fit, const char *comment, int require_keys, const char *engine_id, const char *cmdname, const char *algo_name, struct image_summary *summary); /** * fit_image_verify_with_data() - Verify an image with given data * * @fit: Pointer to the FIT format image header * @image_offset: Offset in @fit of image to verify * @key_blob: FDT containing public keys * @data: Image data to verify * @size: Size of image data */ int fit_image_verify_with_data(const void *fit, int image_noffset, const void *key_blob, const void *data, size_t size); int fit_image_verify(const void *fit, int noffset); #if CONFIG_IS_ENABLED(FIT_SIGNATURE) int fit_config_verify(const void *fit, int conf_noffset); #else static inline int fit_config_verify(const void *fit, int conf_noffset) { return 0; } #endif int fit_all_image_verify(const void *fit); int fit_config_decrypt(const void *fit, int conf_noffset); int fit_image_check_os(const void *fit, int noffset, uint8_t os); int fit_image_check_arch(const void *fit, int noffset, uint8_t arch); int fit_image_check_type(const void *fit, int noffset, uint8_t type); int fit_image_check_comp(const void *fit, int noffset, uint8_t comp); /** * fit_check_format() - Check that the FIT is valid * * This performs various checks on the FIT to make sure it is suitable for * use, looking for mandatory properties, nodes, etc. * * If FIT_FULL_CHECK is enabled, it also runs it through libfdt to make * sure that there are no strange tags or broken nodes in the FIT. * * @fit: pointer to the FIT format image header * Return: 0 if OK, -ENOEXEC if not an FDT file, -EINVAL if the full FDT check * failed (e.g. due to bad structure), -ENOMSG if the description is * missing, -EBADMSG if the timestamp is missing, -ENOENT if the /images * path is missing */ int fit_check_format(const void *fit, ulong size); /** * fit_conf_find_compat() - find most compatible configuration * @fit: pointer to the FIT format image header * @fdt: pointer to the device tree to compare against * * Attempts to find the configuration whose fdt is the most compatible with the * passed in device tree * * Example:: * * / o image-tree * |-o images * | |-o fdt-1 * | |-o fdt-2 * | * |-o configurations * |-o config-1 * | |-fdt = fdt-1 * | * |-o config-2 * |-fdt = fdt-2 * * / o U-Boot fdt * |-compatible = "foo,bar", "bim,bam" * * / o kernel fdt1 * |-compatible = "foo,bar", * * / o kernel fdt2 * |-compatible = "bim,bam", "baz,biz" * * Configuration 1 would be picked because the first string in U-Boot's * compatible list, "foo,bar", matches a compatible string in the root of fdt1. * "bim,bam" in fdt2 matches the second string which isn't as good as fdt1. * * As an optimization, the compatible property from the FDT's root node can be * copied into the configuration node in the FIT image. This is required to * match configurations with compressed FDTs. * * Returns: offset to the configuration to use if one was found, -1 otherwise */ int fit_conf_find_compat(const void *fit, const void *fdt); /** * fit_conf_get_node - get node offset for configuration of a given unit name * @fit: pointer to the FIT format image header * @conf_uname: configuration node unit name (NULL to use default) * * fit_conf_get_node() finds a configuration (within the '/configurations' * parent node) of a provided unit name. If configuration is found its node * offset is returned to the caller. * * When NULL is provided in second argument fit_conf_get_node() will search * for a default configuration node instead. Default configuration node unit * name is retrieved from FIT_DEFAULT_PROP property of the '/configurations' * node. * * returns: * configuration node offset when found (>=0) * negative number on failure (FDT_ERR_* code) */ int fit_conf_get_node(const void *fit, const char *conf_uname); int fit_conf_get_prop_node_count(const void *fit, int noffset, const char *prop_name); int fit_conf_get_prop_node_index(const void *fit, int noffset, const char *prop_name, int index); /** * fit_conf_get_prop_node() - Get node refered to by a configuration * @fit: FIT to check * @noffset: Offset of conf@xxx node to check * @prop_name: Property to read from the conf node * @phase: Image phase to use, IH_PHASE_NONE for any * * The conf- nodes contain references to other nodes, using properties * like 'kernel = "kernel"'. Given such a property name (e.g. "kernel"), * return the offset of the node referred to (e.g. offset of node * "/images/kernel". */ int fit_conf_get_prop_node(const void *fit, int noffset, const char *prop_name, enum image_phase_t phase); int fit_check_ramdisk(const void *fit, int os_noffset, uint8_t arch, int verify); int calculate_hash(const void *data, int data_len, const char *algo, uint8_t *value, int *value_len); /* * At present we only support signing on the host, and verification on the * device */ #if defined(USE_HOSTCC) # if defined(CONFIG_FIT_SIGNATURE) # define IMAGE_ENABLE_SIGN 1 # define FIT_IMAGE_ENABLE_VERIFY 1 # include # else # define IMAGE_ENABLE_SIGN 0 # define FIT_IMAGE_ENABLE_VERIFY 0 # endif #else # define IMAGE_ENABLE_SIGN 0 # define FIT_IMAGE_ENABLE_VERIFY CONFIG_IS_ENABLED(FIT_SIGNATURE) #endif #ifdef USE_HOSTCC void *image_get_host_blob(void); void image_set_host_blob(void *host_blob); # define gd_fdt_blob() image_get_host_blob() #else # define gd_fdt_blob() (gd->fdt_blob) #endif /* * Information passed to the signing routines * * Either 'keydir', 'keyname', or 'keyfile' can be NULL. However, either * 'keyfile', or both 'keydir' and 'keyname' should have valid values. If * neither are valid, some operations might fail with EINVAL. */ struct image_sign_info { const char *keydir; /* Directory conaining keys */ const char *keyname; /* Name of key to use */ const char *keyfile; /* Filename of private or public key */ const void *fit; /* Pointer to FIT blob */ int node_offset; /* Offset of signature node */ const char *name; /* Algorithm name */ struct checksum_algo *checksum; /* Checksum algorithm information */ struct padding_algo *padding; /* Padding algorithm information */ struct crypto_algo *crypto; /* Crypto algorithm information */ const void *fdt_blob; /* FDT containing public keys */ int required_keynode; /* Node offset of key to use: -1=any */ const char *require_keys; /* Value for 'required' property */ const char *engine_id; /* Engine to use for signing */ /* * Note: the following two fields are always valid even w/o * RSA_VERIFY_WITH_PKEY in order to make sure this structure is * the same on target and host. Otherwise, vboot test may fail. */ const void *key; /* Pointer to public key in DER */ int keylen; /* Length of public key */ }; /* A part of an image, used for hashing */ struct image_region { const void *data; int size; }; struct checksum_algo { const char *name; const int checksum_len; const int der_len; const uint8_t *der_prefix; #if IMAGE_ENABLE_SIGN const EVP_MD *(*calculate_sign)(void); #endif int (*calculate)(const char *name, const struct image_region *region, int region_count, uint8_t *checksum); }; struct crypto_algo { const char *name; /* Name of algorithm */ const int key_len; /** * sign() - calculate and return signature for given input data * * @info: Specifies key and FIT information * @data: Pointer to the input data * @data_len: Data length * @sigp: Set to an allocated buffer holding the signature * @sig_len: Set to length of the calculated hash * * This computes input data signature according to selected algorithm. * Resulting signature value is placed in an allocated buffer, the * pointer is returned as *sigp. The length of the calculated * signature is returned via the sig_len pointer argument. The caller * should free *sigp. * * @return: 0, on success, -ve on error */ int (*sign)(struct image_sign_info *info, const struct image_region region[], int region_count, uint8_t **sigp, uint *sig_len); /** * add_verify_data() - Add verification information to FDT * * Add public key information to the FDT node, suitable for * verification at run-time. The information added depends on the * algorithm being used. * * @info: Specifies key and FIT information * @keydest: Destination FDT blob for public key data * @return: node offset within the FDT blob where the data was written, * or -ve on error */ int (*add_verify_data)(struct image_sign_info *info, void *keydest); /** * verify() - Verify a signature against some data * * @info: Specifies key and FIT information * @data: Pointer to the input data * @data_len: Data length * @sig: Signature * @sig_len: Number of bytes in signature * @return 0 if verified, -ve on error */ int (*verify)(struct image_sign_info *info, const struct image_region region[], int region_count, uint8_t *sig, uint sig_len); }; /* Declare a new U-Boot crypto algorithm handler */ #define U_BOOT_CRYPTO_ALGO(__name) \ ll_entry_declare(struct crypto_algo, __name, cryptos) struct padding_algo { const char *name; int (*verify)(struct image_sign_info *info, const uint8_t *pad, int pad_len, const uint8_t *hash, int hash_len); }; /* Declare a new U-Boot padding algorithm handler */ #define U_BOOT_PADDING_ALGO(__name) \ ll_entry_declare(struct padding_algo, __name, paddings) /** * image_get_checksum_algo() - Look up a checksum algorithm * * @param full_name Name of algorithm in the form "checksum,crypto" * Return: pointer to algorithm information, or NULL if not found */ struct checksum_algo *image_get_checksum_algo(const char *full_name); /** * image_get_crypto_algo() - Look up a cryptosystem algorithm * * @param full_name Name of algorithm in the form "checksum,crypto" * Return: pointer to algorithm information, or NULL if not found */ struct crypto_algo *image_get_crypto_algo(const char *full_name); /** * image_get_padding_algo() - Look up a padding algorithm * * @param name Name of padding algorithm * Return: pointer to algorithm information, or NULL if not found */ struct padding_algo *image_get_padding_algo(const char *name); #define IMAGE_PRE_LOAD_SIG_MAGIC 0x55425348 #define IMAGE_PRE_LOAD_SIG_OFFSET_MAGIC 0 #define IMAGE_PRE_LOAD_SIG_OFFSET_IMG_LEN 4 #define IMAGE_PRE_LOAD_SIG_OFFSET_SIG 8 #define IMAGE_PRE_LOAD_PATH "/image/pre-load/sig" #define IMAGE_PRE_LOAD_PROP_ALGO_NAME "algo-name" #define IMAGE_PRE_LOAD_PROP_PADDING_NAME "padding-name" #define IMAGE_PRE_LOAD_PROP_SIG_SIZE "signature-size" #define IMAGE_PRE_LOAD_PROP_PUBLIC_KEY "public-key" #define IMAGE_PRE_LOAD_PROP_MANDATORY "mandatory" /* * Information in the device-tree about the signature in the header */ struct image_sig_info { char *algo_name; /* Name of the algo (eg: sha256,rsa2048) */ char *padding_name; /* Name of the padding */ uint8_t *key; /* Public signature key */ int key_len; /* Length of the public key */ uint32_t sig_size; /* size of the signature (in the header) */ int mandatory; /* Set if the signature is mandatory */ struct image_sign_info sig_info; /* Signature info */ }; /* * Header of the signature header */ struct sig_header_s { uint32_t magic; uint32_t version; uint32_t header_size; uint32_t image_size; uint32_t offset_img_sig; uint32_t flags; uint32_t reserved0; uint32_t reserved1; uint8_t sha256_img_sig[SHA256_SUM_LEN]; }; #define SIG_HEADER_LEN (sizeof(struct sig_header_s)) /** * image_pre_load() - Manage pre load header * * Manage the pre-load header before launching the image. * It checks the signature of the image. It also set the * variable image_load_offset to skip this header before * launching the image. * * @param addr Address of the image * @return: 0 on success, -ve on error */ int image_pre_load(ulong addr); /** * fit_image_verify_required_sigs() - Verify signatures marked as 'required' * * @fit: FIT to check * @image_noffset: Offset of image node to check * @data: Image data to check * @size: Size of image data * @key_blob: FDT containing public keys * @no_sigsp: Returns 1 if no signatures were required, and * therefore nothing was checked. The caller may wish * to fall back to other mechanisms, or refuse to * boot. * Return: 0 if all verified ok, <0 on error */ int fit_image_verify_required_sigs(const void *fit, int image_noffset, const char *data, size_t size, const void *key_blob, int *no_sigsp); /** * fit_image_check_sig() - Check a single image signature node * * @fit: FIT to check * @noffset: Offset of signature node to check * @data: Image data to check * @size: Size of image data * @keyblob: Key blob to check (typically the control FDT) * @required_keynode: Offset in the keyblob of the required key node, * if any. If this is given, then the image wil not * pass verification unless that key is used. If this is * -1 then any signature will do. * @err_msgp: In the event of an error, this will be pointed to a * help error string to display to the user. * Return: 0 if all verified ok, <0 on error */ int fit_image_check_sig(const void *fit, int noffset, const void *data, size_t size, const void *key_blob, int required_keynode, char **err_msgp); int fit_image_decrypt_data(const void *fit, int image_noffset, int cipher_noffset, const void *data, size_t size, void **data_unciphered, size_t *size_unciphered); /** * fit_region_make_list() - Make a list of regions to hash * * Given a list of FIT regions (offset, size) provided by libfdt, create * a list of regions (void *, size) for use by the signature creationg * and verification code. * * @fit: FIT image to process * @fdt_regions: Regions as returned by libfdt * @count: Number of regions returned by libfdt * @region: Place to put list of regions (NULL to allocate it) * Return: pointer to list of regions, or NULL if out of memory */ struct image_region *fit_region_make_list(const void *fit, struct fdt_region *fdt_regions, int count, struct image_region *region); static inline int fit_image_check_target_arch(const void *fdt, int node) { #ifndef USE_HOSTCC return fit_image_check_arch(fdt, node, IH_ARCH_DEFAULT); #else return 0; #endif } /* * At present we only support ciphering on the host, and unciphering on the * device */ #if defined(USE_HOSTCC) # if defined(CONFIG_FIT_CIPHER) # define IMAGE_ENABLE_ENCRYPT 1 # define IMAGE_ENABLE_DECRYPT 1 # include # else # define IMAGE_ENABLE_ENCRYPT 0 # define IMAGE_ENABLE_DECRYPT 0 # endif #else # define IMAGE_ENABLE_ENCRYPT 0 # define IMAGE_ENABLE_DECRYPT CONFIG_IS_ENABLED(FIT_CIPHER) #endif /* Information passed to the ciphering routines */ struct image_cipher_info { const char *keydir; /* Directory containing keys */ const char *keyname; /* Name of key to use */ const char *ivname; /* Name of IV to use */ const void *fit; /* Pointer to FIT blob */ int node_noffset; /* Offset of the cipher node */ const char *name; /* Algorithm name */ struct cipher_algo *cipher; /* Cipher algorithm information */ const void *fdt_blob; /* FDT containing key and IV */ const void *key; /* Value of the key */ const void *iv; /* Value of the IV */ size_t size_unciphered; /* Size of the unciphered data */ }; struct cipher_algo { const char *name; /* Name of algorithm */ int key_len; /* Length of the key */ int iv_len; /* Length of the IV */ #if IMAGE_ENABLE_ENCRYPT const EVP_CIPHER * (*calculate_type)(void); #endif int (*encrypt)(struct image_cipher_info *info, const unsigned char *data, int data_len, unsigned char **cipher, int *cipher_len); int (*add_cipher_data)(struct image_cipher_info *info, void *keydest, void *fit, int node_noffset); int (*decrypt)(struct image_cipher_info *info, const void *cipher, size_t cipher_len, void **data, size_t *data_len); }; int fit_image_cipher_get_algo(const void *fit, int noffset, char **algo); struct cipher_algo *image_get_cipher_algo(const char *full_name); struct andr_img_hdr; int android_image_check_header(const struct andr_img_hdr *hdr); int android_image_get_kernel(const struct andr_img_hdr *hdr, int verify, ulong *os_data, ulong *os_len); int android_image_get_ramdisk(const struct andr_img_hdr *hdr, ulong *rd_data, ulong *rd_len); int android_image_get_second(const struct andr_img_hdr *hdr, ulong *second_data, ulong *second_len); bool android_image_get_dtbo(ulong hdr_addr, ulong *addr, u32 *size); bool android_image_get_dtb_by_index(ulong hdr_addr, u32 index, ulong *addr, u32 *size); ulong android_image_get_end(const struct andr_img_hdr *hdr); ulong android_image_get_kload(const struct andr_img_hdr *hdr); ulong android_image_get_kcomp(const struct andr_img_hdr *hdr); void android_print_contents(const struct andr_img_hdr *hdr); bool android_image_print_dtb_contents(ulong hdr_addr); /** * board_fit_config_name_match() - Check for a matching board name * * This is used when SPL loads a FIT containing multiple device tree files * and wants to work out which one to use. The description of each one is * passed to this function. The description comes from the 'description' field * in each (FDT) image node. * * @name: Device tree description * Return: 0 if this device tree should be used, non-zero to try the next */ int board_fit_config_name_match(const char *name); /** * board_fit_image_post_process() - Do any post-process on FIT binary data * * This is used to do any sort of image manipulation, verification, decryption * etc. in a platform or board specific way. Obviously, anything done here would * need to be comprehended in how the images were prepared before being injected * into the FIT creation (i.e. the binary blobs would have been pre-processed * before being added to the FIT image). * * @fit: pointer to fit image * @node: offset of image node * @image: pointer to the image start pointer * @size: pointer to the image size * Return: no return value (failure should be handled internally) */ void board_fit_image_post_process(const void *fit, int node, void **p_image, size_t *p_size); #define FDT_ERROR ((ulong)(-1)) ulong fdt_getprop_u32(const void *fdt, int node, const char *prop); /** * fit_find_config_node() - Find the node for the best DTB in a FIT image * * A FIT image contains one or more DTBs. This function parses the * configurations described in the FIT images and returns the node of * the first matching DTB. To check if a DTB matches a board, this function * calls board_fit_config_name_match(). If no matching DTB is found, it returns * the node described by the default configuration if it exists. * * @fdt: pointer to flat device tree * Return: the node if found, -ve otherwise */ int fit_find_config_node(const void *fdt); /** * Mapping of image types to function handlers to be invoked on the associated * loaded images * * @type: Type of image, I.E. IH_TYPE_* * @handler: Function to call on loaded image */ struct fit_loadable_tbl { int type; /** * handler() - Process a loaded image * * @data: Pointer to start of loaded image data * @size: Size of loaded image data */ void (*handler)(ulong data, size_t size); }; /* * Define a FIT loadable image type handler * * _type is a valid uimage_type ID as defined in the "Image Type" enum above * _handler is the handler function to call after this image type is loaded */ #define U_BOOT_FIT_LOADABLE_HANDLER(_type, _handler) \ ll_entry_declare(struct fit_loadable_tbl, _function, fit_loadable) = { \ .type = _type, \ .handler = _handler, \ } /** * fit_update - update storage with FIT image * @fit: Pointer to FIT image * * Update firmware on storage using FIT image as input. * The storage area to be update will be identified by the name * in FIT and matching it to "dfu_alt_info" variable. * * Return: 0 on success, non-zero otherwise */ int fit_update(const void *fit); #endif /* __IMAGE_H__ */