// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2020, Linaro Limited */ #define LOG_CATEGORY LOGC_EFI #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_CMD_EFIDEBUG) || defined(CONFIG_EFI_LOAD_FILE2_INITRD) /* GUID used by Linux to identify the LoadFile2 protocol with the initrd */ const efi_guid_t efi_lf2_initrd_guid = EFI_INITRD_MEDIA_GUID; #endif /** * efi_create_current_boot_var() - Return Boot#### name were #### is replaced by * the value of BootCurrent * * @var_name: variable name * @var_name_size: size of var_name * * Return: Status code */ static efi_status_t efi_create_current_boot_var(u16 var_name[], size_t var_name_size) { efi_uintn_t boot_current_size; efi_status_t ret; u16 boot_current; u16 *pos; boot_current_size = sizeof(boot_current); ret = efi_get_variable_int(u"BootCurrent", &efi_global_variable_guid, NULL, &boot_current_size, &boot_current, NULL); if (ret != EFI_SUCCESS) goto out; pos = efi_create_indexed_name(var_name, var_name_size, "Boot", boot_current); if (!pos) { ret = EFI_OUT_OF_RESOURCES; goto out; } out: return ret; } /** * efi_get_dp_from_boot() - Retrieve and return a device path from an EFI * Boot### variable. * A boot option may contain an array of device paths. * We use a VenMedia() with a specific GUID to identify * the usage of the array members. This function is * used to extract a specific device path * * @guid: vendor GUID of the VenMedia() device path node identifying the * device path * * Return: device path or NULL. Caller must free the returned value */ struct efi_device_path *efi_get_dp_from_boot(const efi_guid_t guid) { struct efi_load_option lo; void *var_value; efi_uintn_t size; efi_status_t ret; u16 var_name[16]; ret = efi_create_current_boot_var(var_name, sizeof(var_name)); if (ret != EFI_SUCCESS) return NULL; var_value = efi_get_var(var_name, &efi_global_variable_guid, &size); if (!var_value) return NULL; ret = efi_deserialize_load_option(&lo, var_value, &size); if (ret != EFI_SUCCESS) goto err; return efi_dp_from_lo(&lo, &guid); err: free(var_value); return NULL; } const struct guid_to_hash_map { efi_guid_t guid; const char algo[32]; u32 bits; } guid_to_hash[] = { { EFI_CERT_X509_SHA256_GUID, "sha256", SHA256_SUM_LEN * 8, }, { EFI_CERT_SHA256_GUID, "sha256", SHA256_SUM_LEN * 8, }, { EFI_CERT_X509_SHA384_GUID, "sha384", SHA384_SUM_LEN * 8, }, { EFI_CERT_X509_SHA512_GUID, "sha512", SHA512_SUM_LEN * 8, }, }; #define MAX_GUID_TO_HASH_COUNT ARRAY_SIZE(guid_to_hash) /** guid_to_sha_str - return the sha string e.g "sha256" for a given guid * used on EFI security databases * * @guid: guid to check * * Return: len or 0 if no match is found */ const char *guid_to_sha_str(const efi_guid_t *guid) { size_t i; for (i = 0; i < MAX_GUID_TO_HASH_COUNT; i++) { if (!guidcmp(guid, &guid_to_hash[i].guid)) return guid_to_hash[i].algo; } return NULL; } /** algo_to_len - return the sha size in bytes for a given string * * @algo: string indicating hashing algorithm to check * * Return: length of hash in bytes or 0 if no match is found */ int algo_to_len(const char *algo) { size_t i; for (i = 0; i < MAX_GUID_TO_HASH_COUNT; i++) { if (!strcmp(algo, guid_to_hash[i].algo)) return guid_to_hash[i].bits / 8; } return 0; } /** efi_link_dev - link the efi_handle_t and udevice * * @handle: efi handle to associate with udevice * @dev: udevice to associate with efi handle * * Return: 0 on success, negative on failure */ int efi_link_dev(efi_handle_t handle, struct udevice *dev) { handle->dev = dev; return dev_tag_set_ptr(dev, DM_TAG_EFI, handle); } /** * efi_unlink_dev() - unlink udevice and handle * * @handle: EFI handle to unlink * * Return: 0 on success, negative on failure */ int efi_unlink_dev(efi_handle_t handle) { int ret; ret = dev_tag_del(handle->dev, DM_TAG_EFI); if (ret) return ret; handle->dev = NULL; return 0; } static int u16_tohex(u16 c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'A' && c <= 'F') return c - 'A' + 10; /* not hexadecimal */ return -1; } bool efi_varname_is_load_option(u16 *var_name16, int *index) { int id, i, digit; if (memcmp(var_name16, u"Boot", 8)) return false; for (id = 0, i = 0; i < 4; i++) { digit = u16_tohex(var_name16[4 + i]); if (digit < 0) break; id = (id << 4) + digit; } if (i == 4 && !var_name16[8]) { if (index) *index = id; return true; } return false; } /** * efi_next_variable_name() - get next variable name * * This function is a wrapper of efi_get_next_variable_name_int(). * If efi_get_next_variable_name_int() returns EFI_BUFFER_TOO_SMALL, * @size and @buf are updated by new buffer size and realloced buffer. * * @size: pointer to the buffer size * @buf: pointer to the buffer * @guid: pointer to the guid * Return: status code */ efi_status_t efi_next_variable_name(efi_uintn_t *size, u16 **buf, efi_guid_t *guid) { u16 *p; efi_status_t ret; efi_uintn_t buf_size = *size; ret = efi_get_next_variable_name_int(&buf_size, *buf, guid); if (ret == EFI_NOT_FOUND) return ret; if (ret == EFI_BUFFER_TOO_SMALL) { p = realloc(*buf, buf_size); if (!p) return EFI_OUT_OF_RESOURCES; *buf = p; *size = buf_size; ret = efi_get_next_variable_name_int(&buf_size, *buf, guid); } return ret; } /** * efi_search_bootorder() - search the boot option index in BootOrder * * @bootorder: pointer to the BootOrder variable * @num: number of BootOrder entry * @target: target boot option index to search * @index: pointer to store the index of BootOrder variable * Return: true if exists, false otherwise */ bool efi_search_bootorder(u16 *bootorder, efi_uintn_t num, u32 target, u32 *index) { u32 i; for (i = 0; i < num; i++) { if (target == bootorder[i]) { if (index) *index = i; return true; } } return false; } /** * efi_env_set_load_options() - set load options from environment variable * * @handle: the image handle * @env_var: name of the environment variable * @load_options: pointer to load options (output) * Return: status code */ efi_status_t efi_env_set_load_options(efi_handle_t handle, const char *env_var, u16 **load_options) { const char *env = env_get(env_var); size_t size; u16 *pos; efi_status_t ret; *load_options = NULL; if (!env) return EFI_SUCCESS; size = sizeof(u16) * (utf8_utf16_strlen(env) + 1); pos = calloc(size, 1); if (!pos) return EFI_OUT_OF_RESOURCES; *load_options = pos; utf8_utf16_strcpy(&pos, env); ret = efi_set_load_options(handle, size, *load_options); if (ret != EFI_SUCCESS) { free(*load_options); *load_options = NULL; } return ret; } /** * copy_fdt() - Copy the device tree to a new location available to EFI * * The FDT is copied to a suitable location within the EFI memory map. * Additional 12 KiB are added to the space in case the device tree needs to be * expanded later with fdt_open_into(). * * @fdtp: On entry a pointer to the flattened device tree. * On exit a pointer to the copy of the flattened device tree. * FDT start * Return: status code */ static efi_status_t copy_fdt(void **fdtp) { unsigned long fdt_ram_start = -1L, fdt_pages; efi_status_t ret = 0; void *fdt, *new_fdt; u64 new_fdt_addr; uint fdt_size; int i; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { u64 ram_start = gd->bd->bi_dram[i].start; u64 ram_size = gd->bd->bi_dram[i].size; if (!ram_size) continue; if (ram_start < fdt_ram_start) fdt_ram_start = ram_start; } /* * Give us at least 12 KiB of breathing room in case the device tree * needs to be expanded later. */ fdt = *fdtp; fdt_pages = efi_size_in_pages(fdt_totalsize(fdt) + 0x3000); fdt_size = fdt_pages << EFI_PAGE_SHIFT; ret = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, EFI_ACPI_RECLAIM_MEMORY, fdt_pages, &new_fdt_addr); if (ret != EFI_SUCCESS) { log_err("ERROR: Failed to reserve space for FDT\n"); goto done; } new_fdt = (void *)(uintptr_t)new_fdt_addr; memcpy(new_fdt, fdt, fdt_totalsize(fdt)); fdt_set_totalsize(new_fdt, fdt_size); *fdtp = (void *)(uintptr_t)new_fdt_addr; done: return ret; } /** * efi_get_configuration_table() - get configuration table * * @guid: GUID of the configuration table * Return: pointer to configuration table or NULL */ void *efi_get_configuration_table(const efi_guid_t *guid) { size_t i; for (i = 0; i < systab.nr_tables; i++) { if (!guidcmp(guid, &systab.tables[i].guid)) return systab.tables[i].table; } return NULL; } /** * efi_install_fdt() - install device tree * * If fdt is not EFI_FDT_USE_INTERNAL, the device tree located at that memory * address will be installed as configuration table, otherwise the device * tree located at the address indicated by environment variable fdt_addr or as * fallback fdtcontroladdr will be used. * * On architectures using ACPI tables device trees shall not be installed as * configuration table. * * @fdt: address of device tree or EFI_FDT_USE_INTERNAL to use * the hardware device tree as indicated by environment variable * fdt_addr or as fallback the internal device tree as indicated by * the environment variable fdtcontroladdr * Return: status code */ efi_status_t efi_install_fdt(void *fdt) { struct bootm_headers img = { 0 }; efi_status_t ret; /* * The EBBR spec requires that we have either an FDT or an ACPI table * but not both. */ if (CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE) && fdt) log_warning("WARNING: Can't have ACPI table and device tree - ignoring DT.\n"); if (fdt == EFI_FDT_USE_INTERNAL) { const char *fdt_opt; uintptr_t fdt_addr; /* Look for device tree that is already installed */ if (efi_get_configuration_table(&efi_guid_fdt)) return EFI_SUCCESS; /* Check if there is a hardware device tree */ fdt_opt = env_get("fdt_addr"); /* Use our own device tree as fallback */ if (!fdt_opt) { fdt_opt = env_get("fdtcontroladdr"); if (!fdt_opt) { log_err("ERROR: need device tree\n"); return EFI_NOT_FOUND; } } fdt_addr = hextoul(fdt_opt, NULL); if (!fdt_addr) { log_err("ERROR: invalid $fdt_addr or $fdtcontroladdr\n"); return EFI_LOAD_ERROR; } fdt = map_sysmem(fdt_addr, 0); } /* Install device tree */ if (fdt_check_header(fdt)) { log_err("ERROR: invalid device tree\n"); return EFI_LOAD_ERROR; } if (CONFIG_IS_ENABLED(GENERATE_ACPI_TABLE)) { /* Create memory reservations as indicated by the device tree */ efi_carve_out_dt_rsv(fdt); return EFI_SUCCESS; } /* Prepare device tree for payload */ ret = copy_fdt(&fdt); if (ret) { log_err("ERROR: out of memory\n"); return EFI_OUT_OF_RESOURCES; } if (image_setup_libfdt(&img, fdt, NULL)) { log_err("ERROR: failed to process device tree\n"); return EFI_LOAD_ERROR; } /* Create memory reservations as indicated by the device tree */ efi_carve_out_dt_rsv(fdt); efi_try_purge_kaslr_seed(fdt); if (CONFIG_IS_ENABLED(EFI_TCG2_PROTOCOL_MEASURE_DTB)) { ret = efi_tcg2_measure_dtb(fdt); if (ret == EFI_SECURITY_VIOLATION) { log_err("ERROR: failed to measure DTB\n"); return ret; } } /* Install device tree as UEFI table */ ret = efi_install_configuration_table(&efi_guid_fdt, fdt); if (ret != EFI_SUCCESS) { log_err("ERROR: failed to install device tree\n"); return ret; } return EFI_SUCCESS; } /** * do_bootefi_exec() - execute EFI binary * * The image indicated by @handle is started. When it returns the allocated * memory for the @load_options is freed. * * @handle: handle of loaded image * @load_options: load options * Return: status code * * Load the EFI binary into a newly assigned memory unwinding the relocation * information, install the loaded image protocol, and call the binary. */ efi_status_t do_bootefi_exec(efi_handle_t handle, void *load_options) { efi_status_t ret; efi_uintn_t exit_data_size = 0; u16 *exit_data = NULL; struct efi_event *evt; /* On ARM switch from EL3 or secure mode to EL2 or non-secure mode */ switch_to_non_secure_mode(); /* * The UEFI standard requires that the watchdog timer is set to five * minutes when invoking an EFI boot option. * * Unified Extensible Firmware Interface (UEFI), version 2.7 Errata A * 7.5. Miscellaneous Boot Services - EFI_BOOT_SERVICES.SetWatchdogTimer */ ret = efi_set_watchdog(300); if (ret != EFI_SUCCESS) { log_err("ERROR: Failed to set watchdog timer\n"); goto out; } /* Call our payload! */ ret = EFI_CALL(efi_start_image(handle, &exit_data_size, &exit_data)); if (ret != EFI_SUCCESS) { log_err("## Application failed, r = %lu\n", ret & ~EFI_ERROR_MASK); if (exit_data) { log_err("## %ls\n", exit_data); efi_free_pool(exit_data); } } efi_restore_gd(); out: free(load_options); /* Notify EFI_EVENT_GROUP_RETURN_TO_EFIBOOTMGR event group. */ list_for_each_entry(evt, &efi_events, link) { if (evt->group && !guidcmp(evt->group, &efi_guid_event_group_return_to_efibootmgr)) { efi_signal_event(evt); EFI_CALL(systab.boottime->close_event(evt)); break; } } /* Control is returned to U-Boot, disable EFI watchdog */ efi_set_watchdog(0); return ret; }