// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2013, Google Inc. */ #ifndef USE_HOSTCC #include #include #include #include #include #include #include #else #include "fdt_host.h" #include "mkimage.h" #include #endif #include #include #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby))) #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a) #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a)) static inline uint64_t fdt64_to_cpup(const void *p) { fdt64_t w; memcpy(&w, p, sizeof(w)); return fdt64_to_cpu(w); } /* Default public exponent for backward compatibility */ #define RSA_DEFAULT_PUBEXP 65537 /** * subtract_modulus() - subtract modulus from the given value * * @key: Key containing modulus to subtract * @num: Number to subtract modulus from, as little endian word array */ static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[]) { int64_t acc = 0; uint i; for (i = 0; i < key->len; i++) { acc += (uint64_t)num[i] - key->modulus[i]; num[i] = (uint32_t)acc; acc >>= 32; } } /** * greater_equal_modulus() - check if a value is >= modulus * * @key: Key containing modulus to check * @num: Number to check against modulus, as little endian word array * Return: 0 if num < modulus, 1 if num >= modulus */ static int greater_equal_modulus(const struct rsa_public_key *key, uint32_t num[]) { int i; for (i = (int)key->len - 1; i >= 0; i--) { if (num[i] < key->modulus[i]) return 0; if (num[i] > key->modulus[i]) return 1; } return 1; /* equal */ } /** * montgomery_mul_add_step() - Perform montgomery multiply-add step * * Operation: montgomery result[] += a * b[] / n0inv % modulus * * @key: RSA key * @result: Place to put result, as little endian word array * @a: Multiplier * @b: Multiplicand, as little endian word array */ static void montgomery_mul_add_step(const struct rsa_public_key *key, uint32_t result[], const uint32_t a, const uint32_t b[]) { uint64_t acc_a, acc_b; uint32_t d0; uint i; acc_a = (uint64_t)a * b[0] + result[0]; d0 = (uint32_t)acc_a * key->n0inv; acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a; for (i = 1; i < key->len; i++) { acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i]; acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] + (uint32_t)acc_a; result[i - 1] = (uint32_t)acc_b; } acc_a = (acc_a >> 32) + (acc_b >> 32); result[i - 1] = (uint32_t)acc_a; if (acc_a >> 32) subtract_modulus(key, result); } /** * montgomery_mul() - Perform montgomery mutitply * * Operation: montgomery result[] = a[] * b[] / n0inv % modulus * * @key: RSA key * @result: Place to put result, as little endian word array * @a: Multiplier, as little endian word array * @b: Multiplicand, as little endian word array */ static void montgomery_mul(const struct rsa_public_key *key, uint32_t result[], uint32_t a[], const uint32_t b[]) { uint i; for (i = 0; i < key->len; ++i) result[i] = 0; for (i = 0; i < key->len; ++i) montgomery_mul_add_step(key, result, a[i], b); } /** * num_pub_exponent_bits() - Number of bits in the public exponent * * @key: RSA key * @num_bits: Storage for the number of public exponent bits */ static int num_public_exponent_bits(const struct rsa_public_key *key, int *num_bits) { uint64_t exponent; int exponent_bits; const uint max_bits = (sizeof(exponent) * 8); exponent = key->exponent; exponent_bits = 0; if (!exponent) { *num_bits = exponent_bits; return 0; } for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits) if (!(exponent >>= 1)) { *num_bits = exponent_bits; return 0; } return -EINVAL; } /** * is_public_exponent_bit_set() - Check if a bit in the public exponent is set * * @key: RSA key * @pos: The bit position to check */ static int is_public_exponent_bit_set(const struct rsa_public_key *key, int pos) { return key->exponent & (1ULL << pos); } /** * pow_mod() - in-place public exponentiation * * @key: RSA key * @inout: Big-endian word array containing value and result */ static int pow_mod(const struct rsa_public_key *key, uint32_t *inout) { uint32_t *result, *ptr; uint i; int j, k; /* Sanity check for stack size - key->len is in 32-bit words */ if (key->len > RSA_MAX_KEY_BITS / 32) { debug("RSA key words %u exceeds maximum %d\n", key->len, RSA_MAX_KEY_BITS / 32); return -EINVAL; } uint32_t val[key->len], acc[key->len], tmp[key->len]; uint32_t a_scaled[key->len]; result = tmp; /* Re-use location. */ /* Convert from big endian byte array to little endian word array. */ for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--) val[i] = get_unaligned_be32(ptr); if (0 != num_public_exponent_bits(key, &k)) return -EINVAL; if (k < 2) { debug("Public exponent is too short (%d bits, minimum 2)\n", k); return -EINVAL; } if (!is_public_exponent_bit_set(key, 0)) { debug("LSB of RSA public exponent must be set.\n"); return -EINVAL; } /* the bit at e[k-1] is 1 by definition, so start with: C := M */ montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */ /* retain scaled version for intermediate use */ memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0])); for (j = k - 2; j > 0; --j) { montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ if (is_public_exponent_bit_set(key, j)) { /* acc = tmp * val / R mod n */ montgomery_mul(key, acc, tmp, a_scaled); } else { /* e[j] == 0, copy tmp back to acc for next operation */ memcpy(acc, tmp, key->len * sizeof(acc[0])); } } /* the bit at e[0] is always 1 */ montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */ montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */ memcpy(result, acc, key->len * sizeof(result[0])); /* Make sure result < mod; result is at most 1x mod too large. */ if (greater_equal_modulus(key, result)) subtract_modulus(key, result); /* Convert to bigendian byte array */ for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++) put_unaligned_be32(result[i], ptr); return 0; } static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len) { int i; for (i = 0; i < len; i++) dst[i] = fdt32_to_cpu(src[len - 1 - i]); } int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len, struct key_prop *prop, uint8_t *out) { struct rsa_public_key key; int ret; if (!prop) { debug("%s: Skipping invalid prop", __func__); return -EBADF; } key.n0inv = prop->n0inv; key.len = prop->num_bits; if (!prop->public_exponent) key.exponent = RSA_DEFAULT_PUBEXP; else key.exponent = fdt64_to_cpup(prop->public_exponent); if (!key.len || !prop->modulus || !prop->rr) { debug("%s: Missing RSA key info", __func__); return -EFAULT; } /* Sanity check for stack size */ if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) { debug("RSA key bits %u outside allowed range %d..%d\n", key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS); return -EFAULT; } key.len /= sizeof(uint32_t) * 8; uint32_t key1[key.len], key2[key.len]; key.modulus = key1; key.rr = key2; rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len); rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len); if (!key.modulus || !key.rr) { debug("%s: Out of memory", __func__); return -ENOMEM; } uint32_t buf[sig_len / sizeof(uint32_t)]; memcpy(buf, sig, sig_len); ret = pow_mod(&key, buf); if (ret) return ret; memcpy(out, buf, sig_len); return 0; } #if defined(CONFIG_CMD_ZYNQ_RSA) /** * zynq_pow_mod - in-place public exponentiation * * @keyptr: RSA key * @inout: Big-endian word array containing value and result * Return: 0 on successful calculation, otherwise failure error code * * FIXME: Use pow_mod() instead of zynq_pow_mod() * pow_mod calculation required for zynq is bit different from * pw_mod above here, hence defined zynq specific routine. */ int zynq_pow_mod(uint32_t *keyptr, uint32_t *inout) { u32 *result, *ptr; uint i; struct rsa_public_key *key; u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES]; key = (struct rsa_public_key *)keyptr; /* Sanity check for stack size - key->len is in 32-bit words */ if (key->len > RSA_MAX_KEY_BITS / 32) { debug("RSA key words %u exceeds maximum %d\n", key->len, RSA_MAX_KEY_BITS / 32); return -EINVAL; } result = tmp; /* Re-use location. */ for (i = 0, ptr = inout; i < key->len; i++, ptr++) val[i] = *(ptr); montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */ for (i = 0; i < 16; i += 2) { montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */ montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */ } montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */ /* Make sure result < mod; result is at most 1x mod too large. */ if (greater_equal_modulus(key, result)) subtract_modulus(key, result); for (i = 0, ptr = inout; i < key->len; i++, ptr++) *ptr = result[i]; return 0; } #endif