// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2015 Google, Inc */ #include #include #include #include #include #include /* Test that sandbox PCI works correctly */ static int dm_test_pci_base(struct unit_test_state *uts) { struct udevice *bus; ut_assertok(uclass_get_device(UCLASS_PCI, 0, &bus)); return 0; } DM_TEST(dm_test_pci_base, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test that sandbox PCI bus numbering and device works correctly */ static int dm_test_pci_busdev(struct unit_test_state *uts) { struct udevice *bus; struct udevice *swap; u16 vendor, device; /* Test bus#0 and its devices */ ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap)); vendor = 0; ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor)); ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap)); device = 0; ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device)); ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device); /* Test bus#1 and its devices */ ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap)); vendor = 0; ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor)); ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap)); device = 0; ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device)); ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device); return 0; } DM_TEST(dm_test_pci_busdev, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test that we can use the swapcase device correctly */ static int dm_test_pci_swapcase(struct unit_test_state *uts) { struct udevice *swap; ulong io_addr, mem_addr; char *ptr; /* Check that asking for the device 0 automatically fires up PCI */ ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x00, 0), &swap)); /* First test I/O */ io_addr = dm_pci_read_bar32(swap, 0); outb(2, io_addr); ut_asserteq(2, inb(io_addr)); /* * Now test memory mapping - note we must unmap and remap to cause * the swapcase emulation to see our data and response. */ mem_addr = dm_pci_read_bar32(swap, 1); ptr = map_sysmem(mem_addr, 20); strcpy(ptr, "This is a TesT"); unmap_sysmem(ptr); ptr = map_sysmem(mem_addr, 20); ut_asserteq_str("tHIS IS A tESt", ptr); unmap_sysmem(ptr); /* Check that asking for the device 1 automatically fires up PCI */ ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap)); /* First test I/O */ io_addr = dm_pci_read_bar32(swap, 0); outb(2, io_addr); ut_asserteq(2, inb(io_addr)); /* * Now test memory mapping - note we must unmap and remap to cause * the swapcase emulation to see our data and response. */ mem_addr = dm_pci_read_bar32(swap, 1); ptr = map_sysmem(mem_addr, 20); strcpy(ptr, "This is a TesT"); unmap_sysmem(ptr); ptr = map_sysmem(mem_addr, 20); ut_asserteq_str("tHIS IS A tESt", ptr); unmap_sysmem(ptr); return 0; } DM_TEST(dm_test_pci_swapcase, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test that we can dynamically bind the device driver correctly */ static int dm_test_pci_drvdata(struct unit_test_state *uts) { struct udevice *bus, *swap; /* Check that asking for the device automatically fires up PCI */ ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap)); ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data); ut_assertok(dev_has_ofnode(swap)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x0c, 0), &swap)); ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data); ut_assertok(dev_has_ofnode(swap)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x10, 0), &swap)); ut_asserteq(SWAP_CASE_DRV_DATA, swap->driver_data); ut_assertok(!dev_has_ofnode(swap)); return 0; } DM_TEST(dm_test_pci_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test that devices on PCI bus#2 can be accessed correctly */ static int dm_test_pci_mixed(struct unit_test_state *uts) { /* PCI bus#2 has both statically and dynamic declared devices */ struct udevice *bus, *swap; u16 vendor, device; ulong io_addr, mem_addr; char *ptr; ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 2, &bus)); /* Test the dynamic device */ ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x08, 0), &swap)); vendor = 0; ut_assertok(dm_pci_read_config16(swap, PCI_VENDOR_ID, &vendor)); ut_asserteq(SANDBOX_PCI_VENDOR_ID, vendor); /* First test I/O */ io_addr = dm_pci_read_bar32(swap, 0); outb(2, io_addr); ut_asserteq(2, inb(io_addr)); /* * Now test memory mapping - note we must unmap and remap to cause * the swapcase emulation to see our data and response. */ mem_addr = dm_pci_read_bar32(swap, 1); ptr = map_sysmem(mem_addr, 30); strcpy(ptr, "This is a TesT oN dYNAMIc"); unmap_sysmem(ptr); ptr = map_sysmem(mem_addr, 30); ut_asserteq_str("tHIS IS A tESt On DynamiC", ptr); unmap_sysmem(ptr); /* Test the static device */ ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(2, 0x1f, 0), &swap)); device = 0; ut_assertok(dm_pci_read_config16(swap, PCI_DEVICE_ID, &device)); ut_asserteq(SANDBOX_PCI_SWAP_CASE_EMUL_ID, device); /* First test I/O */ io_addr = dm_pci_read_bar32(swap, 0); outb(2, io_addr); ut_asserteq(2, inb(io_addr)); /* * Now test memory mapping - note we must unmap and remap to cause * the swapcase emulation to see our data and response. */ mem_addr = dm_pci_read_bar32(swap, 1); ptr = map_sysmem(mem_addr, 30); strcpy(ptr, "This is a TesT oN sTATIc"); unmap_sysmem(ptr); ptr = map_sysmem(mem_addr, 30); ut_asserteq_str("tHIS IS A tESt On StatiC", ptr); unmap_sysmem(ptr); return 0; } DM_TEST(dm_test_pci_mixed, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test looking up PCI capability and extended capability */ static int dm_test_pci_cap(struct unit_test_state *uts) { struct udevice *bus, *swap; int cap; ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap)); /* look up PCI_CAP_ID_EXP */ cap = dm_pci_find_capability(swap, PCI_CAP_ID_EXP); ut_asserteq(PCI_CAP_ID_EXP_OFFSET, cap); /* look up PCI_CAP_ID_PCIX */ cap = dm_pci_find_capability(swap, PCI_CAP_ID_PCIX); ut_asserteq(0, cap); /* look up PCI_CAP_ID_MSIX starting from PCI_CAP_ID_PM_OFFSET */ cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_PM_OFFSET, PCI_CAP_ID_MSIX); ut_asserteq(PCI_CAP_ID_MSIX_OFFSET, cap); /* look up PCI_CAP_ID_VNDR starting from PCI_CAP_ID_EXP_OFFSET */ cap = dm_pci_find_next_capability(swap, PCI_CAP_ID_EXP_OFFSET, PCI_CAP_ID_VNDR); ut_asserteq(0, cap); ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 1, &bus)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &swap)); /* look up PCI_EXT_CAP_ID_DSN */ cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_DSN); ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap); /* look up PCI_EXT_CAP_ID_SRIOV */ cap = dm_pci_find_ext_capability(swap, PCI_EXT_CAP_ID_SRIOV); ut_asserteq(0, cap); /* look up PCI_EXT_CAP_ID_DSN starting from PCI_EXT_CAP_ID_ERR_OFFSET */ cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_ERR_OFFSET, PCI_EXT_CAP_ID_DSN); ut_asserteq(PCI_EXT_CAP_ID_DSN_OFFSET, cap); /* look up PCI_EXT_CAP_ID_RCRB starting from PCI_EXT_CAP_ID_VC_OFFSET */ cap = dm_pci_find_next_ext_capability(swap, PCI_EXT_CAP_ID_VC_OFFSET, PCI_EXT_CAP_ID_RCRB); ut_asserteq(0, cap); return 0; } DM_TEST(dm_test_pci_cap, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test looking up BARs in EA capability structure */ static int dm_test_pci_ea(struct unit_test_state *uts) { struct udevice *bus, *swap; void *bar; int cap; /* * use emulated device mapping function, we're not using real physical * addresses in this test */ sandbox_set_enable_pci_map(true); ut_assertok(uclass_get_device_by_seq(UCLASS_PCI, 0, &bus)); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x01, 0), &swap)); /* look up PCI_CAP_ID_EA */ cap = dm_pci_find_capability(swap, PCI_CAP_ID_EA); ut_asserteq(PCI_CAP_ID_EA_OFFSET, cap); /* test swap case in BAR 1 */ bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_0, 0, 0, PCI_REGION_TYPE, 0); ut_assertnonnull(bar); *(int *)bar = 2; /* swap upper/lower */ bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0, 0, PCI_REGION_TYPE, 0); ut_assertnonnull(bar); strcpy(bar, "ea TEST"); unmap_sysmem(bar); bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_1, 0, 0, PCI_REGION_TYPE, 0); ut_assertnonnull(bar); ut_asserteq_str("EA test", bar); /* test magic values in BARs2, 4; BAR 3 is n/a */ bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_2, 0, 0, PCI_REGION_TYPE, 0); ut_assertnonnull(bar); ut_asserteq(PCI_EA_BAR2_MAGIC, *(u32 *)bar); bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_3, 0, 0, PCI_REGION_TYPE, 0); ut_assertnull(bar); bar = dm_pci_map_bar(swap, PCI_BASE_ADDRESS_4, 0, 0, PCI_REGION_TYPE, 0); ut_assertnonnull(bar); ut_asserteq(PCI_EA_BAR4_MAGIC, *(u32 *)bar); return 0; } DM_TEST(dm_test_pci_ea, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test the dev_read_addr_pci() function */ static int dm_test_pci_addr_flat(struct unit_test_state *uts) { struct udevice *swap1f, *swap1; ulong io_addr, mem_addr; fdt_addr_t size; ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f)); io_addr = dm_pci_read_bar32(swap1f, 0); ut_asserteq(io_addr, dev_read_addr_pci(swap1f, &size)); ut_asserteq(0, size); /* * This device has both I/O and MEM spaces but the MEM space appears * first */ ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1)); mem_addr = dm_pci_read_bar32(swap1, 1); ut_asserteq(mem_addr, dev_read_addr_pci(swap1, &size)); ut_asserteq(0, size); return 0; } DM_TEST(dm_test_pci_addr_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); /* * Test the dev_read_addr_pci() function with livetree. That function is * not currently fully implemented, in that it fails to return the BAR address. * Once that is implemented this test can be removed and dm_test_pci_addr_flat() * can be used for both flattree and livetree by removing the UT_TESTF_FLAT_TREE * flag above. */ static int dm_test_pci_addr_live(struct unit_test_state *uts) { struct udevice *swap1f, *swap1; fdt_size_t size; ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &swap1f)); ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1f, &size)); ut_asserteq(0, size); ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1, 0), &swap1)); ut_asserteq_64(FDT_ADDR_T_NONE, dev_read_addr_pci(swap1, &size)); ut_asserteq(0, size); return 0; } DM_TEST(dm_test_pci_addr_live, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_LIVE_TREE); /* Test device_is_on_pci_bus() */ static int dm_test_pci_on_bus(struct unit_test_state *uts) { struct udevice *dev; ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(0, 0x1f, 0), &dev)); ut_asserteq(true, device_is_on_pci_bus(dev)); ut_asserteq(false, device_is_on_pci_bus(dev_get_parent(dev))); ut_asserteq(true, device_is_on_pci_bus(dev)); return 0; } DM_TEST(dm_test_pci_on_bus, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* * Test support for multiple memory regions enabled via * CONFIG_PCI_REGION_MULTI_ENTRY. When this feature is not enabled, * only the last region of one type is stored. In this test-case, * we have 2 memory regions, the first at 0x3000.0000 and the 2nd * at 0x3100.0000. A correct test results now in BAR1 located at * 0x3000.0000. */ static int dm_test_pci_region_multi(struct unit_test_state *uts) { struct udevice *dev; ulong mem_addr; /* Test memory BAR1 on bus#1 */ ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev)); mem_addr = dm_pci_read_bar32(dev, 1); ut_asserteq(mem_addr, 0x30000000); return 0; } DM_TEST(dm_test_pci_region_multi, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* * Test the translation of PCI bus addresses to physical addresses using the * ranges from bus#1. */ static int dm_test_pci_bus_to_phys(struct unit_test_state *uts) { unsigned long mask = PCI_REGION_TYPE; unsigned long flags = PCI_REGION_MEM; struct udevice *dev; phys_addr_t phys_addr; ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev)); /* Before any of the ranges. */ phys_addr = dm_pci_bus_to_phys(dev, 0x20000000, 0x400, mask, flags); ut_asserteq(0, phys_addr); /* Identity range: whole, start, mid, end */ phys_addr = dm_pci_bus_to_phys(dev, 0x2ffff000, 0x2000, mask, flags); ut_asserteq(0, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x30000000, 0x2000, mask, flags); ut_asserteq(0x30000000, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x30000000, 0x1000, mask, flags); ut_asserteq(0x30000000, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x30000abc, 0x12, mask, flags); ut_asserteq(0x30000abc, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x30000800, 0x1800, mask, flags); ut_asserteq(0x30000800, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x30008000, 0x1801, mask, flags); ut_asserteq(0, phys_addr); /* Translated range: whole, start, mid, end */ phys_addr = dm_pci_bus_to_phys(dev, 0x30fff000, 0x2000, mask, flags); ut_asserteq(0, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x31000000, 0x2000, mask, flags); ut_asserteq(0x3e000000, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x31000000, 0x1000, mask, flags); ut_asserteq(0x3e000000, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x31000abc, 0x12, mask, flags); ut_asserteq(0x3e000abc, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x31000800, 0x1800, mask, flags); ut_asserteq(0x3e000800, phys_addr); phys_addr = dm_pci_bus_to_phys(dev, 0x31008000, 0x1801, mask, flags); ut_asserteq(0, phys_addr); /* Beyond all of the ranges. */ phys_addr = dm_pci_bus_to_phys(dev, 0x32000000, 0x400, mask, flags); ut_asserteq(0, phys_addr); return 0; } DM_TEST(dm_test_pci_bus_to_phys, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* * Test the translation of physical addresses to PCI bus addresses using the * ranges from bus#1. */ static int dm_test_pci_phys_to_bus(struct unit_test_state *uts) { unsigned long mask = PCI_REGION_TYPE; unsigned long flags = PCI_REGION_MEM; struct udevice *dev; pci_addr_t pci_addr; ut_assertok(dm_pci_bus_find_bdf(PCI_BDF(1, 0x08, 0), &dev)); /* Before any of the ranges. */ pci_addr = dm_pci_phys_to_bus(dev, 0x20000000, 0x400, mask, flags); ut_asserteq(0, pci_addr); /* Identity range: partial overlap, whole, start, mid, end */ pci_addr = dm_pci_phys_to_bus(dev, 0x2ffff000, 0x2000, mask, flags); ut_asserteq(0, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x30000000, 0x2000, mask, flags); ut_asserteq(0x30000000, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x30000000, 0x1000, mask, flags); ut_asserteq(0x30000000, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x30000abc, 0x12, mask, flags); ut_asserteq(0x30000abc, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x30000800, 0x1800, mask, flags); ut_asserteq(0x30000800, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x30008000, 0x1801, mask, flags); ut_asserteq(0, pci_addr); /* Translated range: partial overlap, whole, start, mid, end */ pci_addr = dm_pci_phys_to_bus(dev, 0x3dfff000, 0x2000, mask, flags); ut_asserteq(0, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x3e000000, 0x2000, mask, flags); ut_asserteq(0x31000000, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x3e000000, 0x1000, mask, flags); ut_asserteq(0x31000000, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x3e000abc, 0x12, mask, flags); ut_asserteq(0x31000abc, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x3e000800, 0x1800, mask, flags); ut_asserteq(0x31000800, pci_addr); pci_addr = dm_pci_phys_to_bus(dev, 0x3e008000, 0x1801, mask, flags); ut_asserteq(0, pci_addr); /* Beyond all of the ranges. */ pci_addr = dm_pci_phys_to_bus(dev, 0x3f000000, 0x400, mask, flags); ut_asserteq(0, pci_addr); return 0; } DM_TEST(dm_test_pci_phys_to_bus, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);