aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/cpu/armv8/fsl-layerscape/cpu.c
blob: d93990036bc67802abc3274f22f03d82f34f3a58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
 * Copyright 2014-2015 Freescale Semiconductor, Inc.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include <asm/arch/cpu.h>
#include <asm/arch/speed.h>
#ifdef CONFIG_MP
#include <asm/arch/mp.h>
#endif
#include <fm_eth.h>
#include <fsl_debug_server.h>
#include <fsl-mc/fsl_mc.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif

DECLARE_GLOBAL_DATA_PTR;

static struct mm_region layerscape_mem_map[] = {
	{
		/* List terminator */
		0,
	}
};
struct mm_region *mem_map = layerscape_mem_map;

void cpu_name(char *name)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	unsigned int i, svr, ver;

	svr = gur_in32(&gur->svr);
	ver = SVR_SOC_VER(svr);

	for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
		if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
			strcpy(name, cpu_type_list[i].name);

			if (IS_E_PROCESSOR(svr))
				strcat(name, "E");
			break;
		}

	if (i == ARRAY_SIZE(cpu_type_list))
		strcpy(name, "unknown");
}

#ifndef CONFIG_SYS_DCACHE_OFF
static void set_pgtable_section(u64 *page_table, u64 index, u64 section,
			u64 memory_type, u64 attribute)
{
       u64 value;

       value = section | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
       value |= PMD_ATTRINDX(memory_type);
       value |= attribute;
       page_table[index] = value;
}

static void set_pgtable_table(u64 *page_table, u64 index, u64 *table_addr)
{
       u64 value;

       value = (u64)table_addr | PTE_TYPE_TABLE;
       page_table[index] = value;
}

/*
 * Set the block entries according to the information of the table.
 */
static int set_block_entry(const struct sys_mmu_table *list,
			   struct table_info *table)
{
	u64 block_size = 0, block_shift = 0;
	u64 block_addr, index;
	int j;

	if (table->entry_size == BLOCK_SIZE_L1) {
		block_size = BLOCK_SIZE_L1;
		block_shift = SECTION_SHIFT_L1;
	} else if (table->entry_size == BLOCK_SIZE_L2) {
		block_size = BLOCK_SIZE_L2;
		block_shift = SECTION_SHIFT_L2;
	} else {
		return -EINVAL;
	}

	block_addr = list->phys_addr;
	index = (list->virt_addr - table->table_base) >> block_shift;

	for (j = 0; j < (list->size >> block_shift); j++) {
		set_pgtable_section(table->ptr,
				    index,
				    block_addr,
				    list->memory_type,
				    list->attribute);
		block_addr += block_size;
		index++;
	}

	return 0;
}

/*
 * Find the corresponding table entry for the list.
 */
static int find_table(const struct sys_mmu_table *list,
		      struct table_info *table, u64 *level0_table)
{
	u64 index = 0, level = 0;
	u64 *level_table = level0_table;
	u64 temp_base = 0, block_size = 0, block_shift = 0;

	while (level < 3) {
		if (level == 0) {
			block_size = BLOCK_SIZE_L0;
			block_shift = SECTION_SHIFT_L0;
		} else if (level == 1) {
			block_size = BLOCK_SIZE_L1;
			block_shift = SECTION_SHIFT_L1;
		} else if (level == 2) {
			block_size = BLOCK_SIZE_L2;
			block_shift = SECTION_SHIFT_L2;
		}

		index = 0;
		while (list->virt_addr >= temp_base) {
			index++;
			temp_base += block_size;
		}

		temp_base -= block_size;

		if ((level_table[index - 1] & PTE_TYPE_MASK) ==
		    PTE_TYPE_TABLE) {
			level_table = (u64 *)(level_table[index - 1] &
				      ~PTE_TYPE_MASK);
			level++;
			continue;
		} else {
			if (level == 0)
				return -EINVAL;

			if ((list->phys_addr + list->size) >
			    (temp_base + block_size * NUM_OF_ENTRY))
				return -EINVAL;

			/*
			 * Check the address and size of the list member is
			 * aligned with the block size.
			 */
			if (((list->phys_addr & (block_size - 1)) != 0) ||
			    ((list->size & (block_size - 1)) != 0))
				return -EINVAL;

			table->ptr = level_table;
			table->table_base = temp_base -
					    ((index - 1) << block_shift);
			table->entry_size = block_size;

			return 0;
		}
	}
	return -EINVAL;
}

/*
 * To start MMU before DDR is available, we create MMU table in SRAM.
 * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
 * levels of translation tables here to cover 40-bit address space.
 * We use 4KB granule size, with 40 bits physical address, T0SZ=24
 * Level 0 IA[39], table address @0
 * Level 1 IA[38:30], table address @0x1000, 0x2000
 * Level 2 IA[29:21], table address @0x3000, 0x4000
 * Address above 0x5000 is free for other purpose.
 */
static inline void early_mmu_setup(void)
{
	unsigned int el, i;
	u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
	u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
	u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
	u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
	u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);

	struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};

	/* Invalidate all table entries */
	memset(level0_table, 0, 0x5000);

	/* Fill in the table entries */
	set_pgtable_table(level0_table, 0, level1_table0);
	set_pgtable_table(level0_table, 1, level1_table1);
	set_pgtable_table(level1_table0, 0, level2_table0);

#ifdef CONFIG_FSL_LSCH3
	set_pgtable_table(level1_table0,
			  CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
			  level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
	set_pgtable_table(level1_table0, 1, level2_table1);
#endif
	/* Find the table and fill in the block entries */
	for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
		if (find_table(&early_mmu_table[i],
			       &table, level0_table) == 0) {
			/*
			 * If find_table() returns error, it cannot be dealt
			 * with here. Breakpoint can be added for debugging.
			 */
			set_block_entry(&early_mmu_table[i], &table);
			/*
			 * If set_block_entry() returns error, it cannot be
			 * dealt with here too.
			 */
		}
	}

	el = current_el();

	set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
			  MEMORY_ATTRIBUTES);
	set_sctlr(get_sctlr() | CR_M);
}

#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
/*
 * Called from final mmu setup. The phys_addr is new, non-existing
 * address. A new sub table is created @level2_table_secure to cover
 * size of CONFIG_SYS_MEM_RESERVE_SECURE memory.
 */
static inline int final_secure_ddr(u64 *level0_table,
				   u64 *level2_table_secure,
				   phys_addr_t phys_addr)
{
	int ret = -EINVAL;
	struct table_info table = {};
	struct sys_mmu_table ddr_entry = {
		0, 0, BLOCK_SIZE_L1, MT_NORMAL,
		PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
	};
	u64 index;

	/* Need to create a new table */
	ddr_entry.virt_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1);
	ddr_entry.phys_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1);
	ret = find_table(&ddr_entry, &table, level0_table);
	if (ret)
		return ret;
	index = (ddr_entry.virt_addr - table.table_base) >> SECTION_SHIFT_L1;
	set_pgtable_table(table.ptr, index, level2_table_secure);
	table.ptr = level2_table_secure;
	table.table_base = ddr_entry.virt_addr;
	table.entry_size = BLOCK_SIZE_L2;
	ret = set_block_entry(&ddr_entry, &table);
	if (ret) {
		printf("MMU error: could not fill non-secure ddr block entries\n");
		return ret;
	}
	ddr_entry.virt_addr = phys_addr;
	ddr_entry.phys_addr = phys_addr;
	ddr_entry.size = CONFIG_SYS_MEM_RESERVE_SECURE;
	ddr_entry.attribute = PTE_BLOCK_OUTER_SHARE;
	ret = find_table(&ddr_entry, &table, level0_table);
	if (ret) {
		printf("MMU error: could not find secure ddr table\n");
		return ret;
	}
	ret = set_block_entry(&ddr_entry, &table);
	if (ret)
		printf("MMU error: could not set secure ddr block entry\n");

	return ret;
}
#endif

/*
 * The final tables look similar to early tables, but different in detail.
 * These tables are in DRAM. Sub tables are added to enable cache for
 * QBMan and OCRAM.
 *
 * Put the MMU table in secure memory if gd->secure_ram is valid.
 * OCRAM will be not used for this purpose so gd->secure_ram can't be 0.
 *
 * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
 * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
 * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
 *
 * For LSCH3:
 * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
 * For LSCH2:
 * Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB.
 * Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB.
 */
static inline void final_mmu_setup(void)
{
	unsigned int el = current_el();
	unsigned int i;
	u64 *level0_table = (u64 *)gd->arch.tlb_addr;
	u64 *level1_table0;
	u64 *level1_table1;
	u64 *level2_table0;
	u64 *level2_table1;
#ifdef CONFIG_FSL_LSCH2
	u64 *level2_table2;
#endif
	struct table_info table = {NULL, 0, BLOCK_SIZE_L0};

#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
	u64 *level2_table_secure;

	if (el == 3) {
		/*
		 * Only use gd->secure_ram if the address is recalculated
		 * Align to 4KB for MMU table
		 */
		if (gd->secure_ram & MEM_RESERVE_SECURE_MAINTAINED)
			level0_table = (u64 *)(gd->secure_ram & ~0xfff);
		else
			printf("MMU warning: gd->secure_ram is not maintained, disabled.\n");
	}
#endif
	level1_table0 = level0_table + 512;
	level1_table1 = level1_table0 + 512;
	level2_table0 = level1_table1 + 512;
	level2_table1 = level2_table0 + 512;
#ifdef CONFIG_FSL_LSCH2
	level2_table2 = level2_table1 + 512;
#endif
	table.ptr = level0_table;

	/* Invalidate all table entries */
	memset(level0_table, 0, PGTABLE_SIZE);

	/* Fill in the table entries */
	set_pgtable_table(level0_table, 0, level1_table0);
	set_pgtable_table(level0_table, 1, level1_table1);
	set_pgtable_table(level1_table0, 0, level2_table0);
#ifdef CONFIG_FSL_LSCH3
	set_pgtable_table(level1_table0,
			  CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
			  level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
	set_pgtable_table(level1_table0, 1, level2_table1);
	set_pgtable_table(level1_table0,
			  CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
			  level2_table2);
#endif

	/* Find the table and fill in the block entries */
	for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
		if (find_table(&final_mmu_table[i],
			       &table, level0_table) == 0) {
			if (set_block_entry(&final_mmu_table[i],
					    &table) != 0) {
				printf("MMU error: could not set block entry for %p\n",
				       &final_mmu_table[i]);
			}

		} else {
			printf("MMU error: could not find the table for %p\n",
			       &final_mmu_table[i]);
		}
	}
	/* Set the secure memory to secure in MMU */
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
	if (el == 3 && gd->secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
#ifdef CONFIG_FSL_LSCH3
		level2_table_secure = level2_table1 + 512;
#elif defined(CONFIG_FSL_LSCH2)
		level2_table_secure = level2_table2 + 512;
#endif
		if (!final_secure_ddr(level0_table,
				      level2_table_secure,
				      gd->secure_ram & ~0x3)) {
			gd->secure_ram |= MEM_RESERVE_SECURE_SECURED;
			debug("Now MMU table is in secured memory at 0x%llx\n",
			      gd->secure_ram & ~0x3);
		} else {
			printf("MMU warning: Failed to secure DDR\n");
		}
	}
#endif

	/* flush new MMU table */
	flush_dcache_range((ulong)level0_table,
			   (ulong)level0_table + gd->arch.tlb_size);

#ifdef CONFIG_SYS_DPAA_FMAN
	flush_dcache_all();
#endif
	/* point TTBR to the new table */
	set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
			  MEMORY_ATTRIBUTES);
	/*
	 * MMU is already enabled, just need to invalidate TLB to load the
	 * new table. The new table is compatible with the current table, if
	 * MMU somehow walks through the new table before invalidation TLB,
	 * it still works. So we don't need to turn off MMU here.
	 */
}

u64 get_page_table_size(void)
{
	return 0x10000;
}

int arch_cpu_init(void)
{
	icache_enable();
	__asm_invalidate_dcache_all();
	__asm_invalidate_tlb_all();
	early_mmu_setup();
	set_sctlr(get_sctlr() | CR_C);
	return 0;
}

/*
 * This function is called from lib/board.c.
 * It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
 * There is no need to disable d-cache for this operation.
 */
void enable_caches(void)
{
	final_mmu_setup();
	__asm_invalidate_tlb_all();
}
#endif

static inline u32 initiator_type(u32 cluster, int init_id)
{
	struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
	u32 type = 0;

	type = gur_in32(&gur->tp_ityp[idx]);
	if (type & TP_ITYP_AV)
		return type;

	return 0;
}

u32 cpu_mask(void)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	int i = 0, count = 0;
	u32 cluster, type, mask = 0;

	do {
		int j;

		cluster = gur_in32(&gur->tp_cluster[i].lower);
		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
			type = initiator_type(cluster, j);
			if (type) {
				if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
					mask |= 1 << count;
				count++;
			}
		}
		i++;
	} while ((cluster & TP_CLUSTER_EOC) == 0x0);

	return mask;
}

/*
 * Return the number of cores on this SOC.
 */
int cpu_numcores(void)
{
	return hweight32(cpu_mask());
}

int fsl_qoriq_core_to_cluster(unsigned int core)
{
	struct ccsr_gur __iomem *gur =
		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
	int i = 0, count = 0;
	u32 cluster;

	do {
		int j;

		cluster = gur_in32(&gur->tp_cluster[i].lower);
		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
			if (initiator_type(cluster, j)) {
				if (count == core)
					return i;
				count++;
			}
		}
		i++;
	} while ((cluster & TP_CLUSTER_EOC) == 0x0);

	return -1;      /* cannot identify the cluster */
}

u32 fsl_qoriq_core_to_type(unsigned int core)
{
	struct ccsr_gur __iomem *gur =
		(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
	int i = 0, count = 0;
	u32 cluster, type;

	do {
		int j;

		cluster = gur_in32(&gur->tp_cluster[i].lower);
		for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
			type = initiator_type(cluster, j);
			if (type) {
				if (count == core)
					return type;
				count++;
			}
		}
		i++;
	} while ((cluster & TP_CLUSTER_EOC) == 0x0);

	return -1;      /* cannot identify the cluster */
}

#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	struct sys_info sysinfo;
	char buf[32];
	unsigned int i, core;
	u32 type, rcw, svr = gur_in32(&gur->svr);

	puts("SoC: ");

	cpu_name(buf);
	printf(" %s (0x%x)\n", buf, svr);
	memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
	get_sys_info(&sysinfo);
	puts("Clock Configuration:");
	for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
		if (!(i % 3))
			puts("\n       ");
		type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
		printf("CPU%d(%s):%-4s MHz  ", core,
		       type == TY_ITYP_VER_A7 ? "A7 " :
		       (type == TY_ITYP_VER_A53 ? "A53" :
			(type == TY_ITYP_VER_A57 ? "A57" : "   ")),
		       strmhz(buf, sysinfo.freq_processor[core]));
	}
	printf("\n       Bus:      %-4s MHz  ",
	       strmhz(buf, sysinfo.freq_systembus));
	printf("DDR:      %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
#ifdef CONFIG_SYS_DPAA_FMAN
	printf("  FMAN:     %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
#endif
#ifdef CONFIG_SYS_FSL_HAS_DP_DDR
	if (soc_has_dp_ddr()) {
		printf("     DP-DDR:   %-4s MT/s",
		       strmhz(buf, sysinfo.freq_ddrbus2));
	}
#endif
	puts("\n");

	/*
	 * Display the RCW, so that no one gets confused as to what RCW
	 * we're actually using for this boot.
	 */
	puts("Reset Configuration Word (RCW):");
	for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
		rcw = gur_in32(&gur->rcwsr[i]);
		if ((i % 4) == 0)
			printf("\n       %08x:", i * 4);
		printf(" %08x", rcw);
	}
	puts("\n");

	return 0;
}
#endif

#ifdef CONFIG_FSL_ESDHC
int cpu_mmc_init(bd_t *bis)
{
	return fsl_esdhc_mmc_init(bis);
}
#endif

int cpu_eth_init(bd_t *bis)
{
	int error = 0;

#ifdef CONFIG_FSL_MC_ENET
	error = fsl_mc_ldpaa_init(bis);
#endif
#ifdef CONFIG_FMAN_ENET
	fm_standard_init(bis);
#endif
	return error;
}

int arch_early_init_r(void)
{
#ifdef CONFIG_MP
	int rv = 1;
#endif

#ifdef CONFIG_SYS_FSL_ERRATUM_A009635
	erratum_a009635();
#endif

#ifdef CONFIG_MP
	rv = fsl_layerscape_wake_seconday_cores();
	if (rv)
		printf("Did not wake secondary cores\n");
#endif

#ifdef CONFIG_SYS_HAS_SERDES
	fsl_serdes_init();
#endif
#ifdef CONFIG_FMAN_ENET
	fman_enet_init();
#endif
	return 0;
}

int timer_init(void)
{
	u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
#ifdef CONFIG_FSL_LSCH3
	u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
#endif
#ifdef COUNTER_FREQUENCY_REAL
	unsigned long cntfrq = COUNTER_FREQUENCY_REAL;

	/* Update with accurate clock frequency */
	asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
#endif

#ifdef CONFIG_FSL_LSCH3
	/* Enable timebase for all clusters.
	 * It is safe to do so even some clusters are not enabled.
	 */
	out_le32(cltbenr, 0xf);
#endif

	/* Enable clock for timer
	 * This is a global setting.
	 */
	out_le32(cntcr, 0x1);

	return 0;
}

void reset_cpu(ulong addr)
{
	u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
	u32 val;

	/* Raise RESET_REQ_B */
	val = scfg_in32(rstcr);
	val |= 0x02;
	scfg_out32(rstcr, val);
}

phys_size_t board_reserve_ram_top(phys_size_t ram_size)
{
	phys_size_t ram_top = ram_size;

#ifdef CONFIG_SYS_MEM_TOP_HIDE
#error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function
#endif
/* Carve the Debug Server private DRAM block from the end of DRAM */
#ifdef CONFIG_FSL_DEBUG_SERVER
	ram_top -= debug_server_get_dram_block_size();
#endif

/* Carve the MC private DRAM block from the end of DRAM */
#ifdef CONFIG_FSL_MC_ENET
	ram_top -= mc_get_dram_block_size();
	ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1);
#endif

	return ram_top;
}