1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
// SPDX-License-Identifier: GPL-2.0+
/*
* board.c
*
* (C) Copyright 2016
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*
* Based on:
* Board functions for TI AM335X based boards
*
* Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
*/
#include <common.h>
#include <cpu_func.h>
#include <env.h>
#include <errno.h>
#include <init.h>
#include <irq_func.h>
#include <spl.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mem.h>
#include <asm/io.h>
#include <asm/emif.h>
#include <asm/gpio.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <power/tps65217.h>
#include <env_internal.h>
#include <watchdog.h>
#include "mmc.h"
#include "board.h"
DECLARE_GLOBAL_DATA_PTR;
static struct shc_eeprom __attribute__((section(".data"))) header;
static int shc_eeprom_valid;
/*
* Read header information from EEPROM into global structure.
*/
static int read_eeprom(void)
{
/* Check if baseboard eeprom is available */
if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n");
return -ENODEV;
}
/* read the eeprom using i2c */
if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header,
sizeof(header))) {
puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n");
return -EIO;
}
if (header.magic != HDR_MAGIC) {
printf("Incorrect magic number (0x%x) in EEPROM\n",
header.magic);
return -EIO;
}
shc_eeprom_valid = 1;
return 0;
}
static void shc_request_gpio(void)
{
gpio_request(LED_PWR_BL_GPIO, "LED PWR BL");
gpio_request(LED_PWR_RD_GPIO, "LED PWR RD");
gpio_request(RESET_GPIO, "reset");
gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN");
gpio_request(WIFI_RST_GPIO, "WIFI rst");
gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst");
gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst");
gpio_request(ENOC_RST_GPIO, "ENOC rst");
#if defined CONFIG_B_SAMPLE
gpio_request(LED_PWR_GN_GPIO, "LED PWR GN");
gpio_request(LED_CONN_BL_GPIO, "LED CONN BL");
gpio_request(LED_CONN_RD_GPIO, "LED CONN RD");
gpio_request(LED_CONN_GN_GPIO, "LED CONN GN");
#else
gpio_request(LED_LAN_BL_GPIO, "LED LAN BL");
gpio_request(LED_LAN_RD_GPIO, "LED LAN RD");
gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL");
gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD");
gpio_request(LED_PWM_GPIO, "LED PWM");
gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst");
#endif
gpio_request(BACK_BUTTON_GPIO, "Back button");
gpio_request(FRONT_BUTTON_GPIO, "Front button");
}
/*
* Function which forces all installed modules into running state for ICT
* testing. Called by SPL.
*/
static void __maybe_unused force_modules_running(void)
{
/* Wi-Fi power regulator enable - high = enabled */
gpio_direction_output(WIFI_REGEN_GPIO, 1);
/*
* Wait for Wi-Fi power regulator to reach a stable voltage
* (soft-start time, max. 350 µs)
*/
__udelay(350);
/* Wi-Fi module reset - high = running */
gpio_direction_output(WIFI_RST_GPIO, 1);
/* ZigBee reset - high = running */
gpio_direction_output(ZIGBEE_RST_GPIO, 1);
/* BidCos reset - high = running */
gpio_direction_output(BIDCOS_RST_GPIO, 1);
#if !defined(CONFIG_B_SAMPLE)
/* Z-Wave reset - high = running */
gpio_direction_output(Z_WAVE_RST_GPIO, 1);
#endif
/* EnOcean reset - low = running */
gpio_direction_output(ENOC_RST_GPIO, 0);
}
/*
* Function which forces all installed modules into reset - to be released by
* the OS, called by SPL
*/
static void __maybe_unused force_modules_reset(void)
{
/* Wi-Fi module reset - low = reset */
gpio_direction_output(WIFI_RST_GPIO, 0);
/* Wi-Fi power regulator enable - low = disabled */
gpio_direction_output(WIFI_REGEN_GPIO, 0);
/* ZigBee reset - low = reset */
gpio_direction_output(ZIGBEE_RST_GPIO, 0);
/* BidCos reset - low = reset */
/*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/
#if !defined(CONFIG_B_SAMPLE)
/* Z-Wave reset - low = reset */
gpio_direction_output(Z_WAVE_RST_GPIO, 0);
#endif
/* EnOcean reset - high = reset*/
gpio_direction_output(ENOC_RST_GPIO, 1);
}
/*
* Function to set the LEDs in the state "Bootloader booting"
*/
static void __maybe_unused leds_set_booting(void)
{
#if defined(CONFIG_B_SAMPLE)
/* Turn all red LEDs on */
gpio_direction_output(LED_PWR_RD_GPIO, 1);
gpio_direction_output(LED_CONN_RD_GPIO, 1);
#else /* All other SHCs starting with B2-Sample */
/* Set the PWM GPIO */
gpio_direction_output(LED_PWM_GPIO, 1);
/* Turn all red LEDs on */
gpio_direction_output(LED_PWR_RD_GPIO, 1);
gpio_direction_output(LED_LAN_RD_GPIO, 1);
gpio_direction_output(LED_CLOUD_RD_GPIO, 1);
#endif
}
/*
* Function to set the LEDs in the state "Bootloader error"
*/
static void leds_set_failure(int state)
{
#if defined(CONFIG_B_SAMPLE)
/* Turn all blue and green LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_PWR_GN_GPIO, 0);
gpio_set_value(LED_CONN_BL_GPIO, 0);
gpio_set_value(LED_CONN_GN_GPIO, 0);
/* Turn all red LEDs to 'state' */
gpio_set_value(LED_PWR_RD_GPIO, state);
gpio_set_value(LED_CONN_RD_GPIO, state);
#else /* All other SHCs starting with B2-Sample */
/* Set the PWM GPIO */
gpio_direction_output(LED_PWM_GPIO, 1);
/* Turn all blue LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_LAN_BL_GPIO, 0);
gpio_set_value(LED_CLOUD_BL_GPIO, 0);
/* Turn all red LEDs to 'state' */
gpio_set_value(LED_PWR_RD_GPIO, state);
gpio_set_value(LED_LAN_RD_GPIO, state);
gpio_set_value(LED_CLOUD_RD_GPIO, state);
#endif
}
/*
* Function to set the LEDs in the state "Bootloader finished"
*/
static void leds_set_finish(void)
{
#if defined(CONFIG_B_SAMPLE)
/* Turn all LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_PWR_RD_GPIO, 0);
gpio_set_value(LED_PWR_GN_GPIO, 0);
gpio_set_value(LED_CONN_BL_GPIO, 0);
gpio_set_value(LED_CONN_RD_GPIO, 0);
gpio_set_value(LED_CONN_GN_GPIO, 0);
#else /* All other SHCs starting with B2-Sample */
/* Turn all LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_PWR_RD_GPIO, 0);
gpio_set_value(LED_LAN_BL_GPIO, 0);
gpio_set_value(LED_LAN_RD_GPIO, 0);
gpio_set_value(LED_CLOUD_BL_GPIO, 0);
gpio_set_value(LED_CLOUD_RD_GPIO, 0);
/* Turn off the PWM GPIO and mux it to EHRPWM */
gpio_set_value(LED_PWM_GPIO, 0);
enable_shc_board_pwm_pin_mux();
#endif
}
static void check_button_status(void)
{
ulong value;
gpio_direction_input(FRONT_BUTTON_GPIO);
value = gpio_get_value(FRONT_BUTTON_GPIO);
if (value == 0) {
printf("front button activated !\n");
env_set("harakiri", "1");
}
}
#if defined(CONFIG_SPL_BUILD)
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
return 1;
}
#endif
static void shc_board_early_init(void)
{
shc_request_gpio();
# ifdef CONFIG_SHC_ICT
/* Force all modules into enabled state for ICT testing */
force_modules_running();
# else
/* Force all modules to enter Reset state until released by the OS */
force_modules_reset();
# endif
leds_set_booting();
}
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
#define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */
#define OSC (V_OSCK/1000000)
/* Bosch: Predivider must be fixed to 4, so N = 4-1 */
#define MPUPLL_N (4-1)
/* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */
#define MPUPLL_FREF (OSC / (MPUPLL_N + 1))
const struct dpll_params dpll_ddr_shc = {
400, OSC-1, 1, -1, -1, -1, -1};
const struct dpll_params *get_dpll_ddr_params(void)
{
return &dpll_ddr_shc;
}
/*
* As we enabled downspread SSC with 1.8%, the values needed to be corrected
* such that the 20% overshoot will not lead to too high frequencies.
* In all cases, this is achieved by subtracting one from M (6 MHz less).
* Example: 600 MHz CPU
* Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz
* 600 MHz - 6 MHz (1x Fref) = 594 MHz
* SSC: 594 MHz * 1.8% = 10.7 MHz SSC
* Overshoot: 10.7 MHz * 20 % = 2.2 MHz
* --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK!
*/
const struct dpll_params dpll_mpu_shc_opp100 = {
99, MPUPLL_N, 1, -1, -1, -1, -1};
void am33xx_spl_board_init(void)
{
int sil_rev;
int mpu_vdd;
puts(BOARD_ID_STR);
/*
* Set CORE Frequency to OPP100
* Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100)
*/
do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
sil_rev = readl(&cdev->deviceid) >> 28;
if (sil_rev < 2) {
puts("We do not support Silicon Revisions below 2.0!\n");
return;
}
dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
if (i2c_probe(TPS65217_CHIP_PM))
return;
/*
* Retrieve the CPU max frequency by reading the efuse
* SHC-Default: 600 MHz
*/
switch (dpll_mpu_opp100.m) {
case MPUPLL_M_1000:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
break;
case MPUPLL_M_800:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
break;
case MPUPLL_M_720:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
break;
case MPUPLL_M_600:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
break;
case MPUPLL_M_300:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV;
break;
default:
puts("Cannot determine the frequency, failing!\n");
return;
}
if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set MPU Frequency to what we detected */
printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF);
printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF *
dpll_mpu_shc_opp100.m);
do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100);
/* Enable Spread Spectrum for this freq to be clean on EMI side */
set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE);
/*
* Using the default voltages for the PMIC (TPS65217D)
* LS1 = 1.8V (VDD_1V8)
* LS2 = 3.3V (VDD_3V3A)
* LDO1 = 1.8V (VIO and VRTC)
* LDO2 = 3.3V (VDD_3V3AUX)
*/
shc_board_early_init();
}
void set_uart_mux_conf(void)
{
enable_uart0_pin_mux();
}
void set_mux_conf_regs(void)
{
enable_shc_board_pin_mux();
}
const struct ctrl_ioregs ioregs_evmsk = {
.cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
};
static const struct ddr_data ddr3_shc_data = {
.datardsratio0 = MT41K256M16HA125E_RD_DQS,
.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
static const struct cmd_control ddr3_shc_cmd_ctrl_data = {
.cmd0csratio = MT41K256M16HA125E_RATIO,
.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd1csratio = MT41K256M16HA125E_RATIO,
.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd2csratio = MT41K256M16HA125E_RATIO,
.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
static struct emif_regs ddr3_shc_emif_reg_data = {
.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
.zq_config = MT41K256M16HA125E_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY |
PHY_EN_DYN_PWRDN,
};
void sdram_init(void)
{
/* Configure the DDR3 RAM */
config_ddr(400, &ioregs_evmsk, &ddr3_shc_data,
&ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0);
}
#endif
/*
* Basic board specific setup. Pinmux has been handled already.
*/
int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)
hw_watchdog_init();
#endif
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
if (read_eeprom() < 0)
puts("EEPROM Content Invalid.\n");
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
#if defined(CONFIG_NOR) || defined(CONFIG_MTD_RAW_NAND)
gpmc_init();
#endif
shc_request_gpio();
return 0;
}
#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
check_button_status();
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
if (shc_eeprom_valid)
if (is_valid_ethaddr(header.mac_addr))
eth_env_set_enetaddr("ethaddr", header.mac_addr);
#endif
return 0;
}
#endif
#if defined(CONFIG_USB_ETHER) && \
(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
int board_eth_init(bd_t *bis)
{
return usb_eth_initialize(bis);
}
#endif
#ifdef CONFIG_SHOW_BOOT_PROGRESS
static void bosch_check_reset_pin(void)
{
if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) {
printf("Resetting ...\n");
writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
disable_interrupts();
reset_cpu(0);
/*NOTREACHED*/
}
}
static void hang_bosch(const char *cause, int code)
{
int lv;
gpio_direction_input(RESET_GPIO);
/* Enable reset pin interrupt on falling edge */
writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT);
enable_interrupts();
puts(cause);
for (;;) {
for (lv = 0; lv < code; lv++) {
bosch_check_reset_pin();
leds_set_failure(1);
__udelay(150 * 1000);
leds_set_failure(0);
__udelay(150 * 1000);
}
#if defined(BLINK_CODE)
__udelay(300 * 1000);
#endif
}
}
void show_boot_progress(int val)
{
switch (val) {
case BOOTSTAGE_ID_NEED_RESET:
hang_bosch("need reset", 4);
break;
}
}
void arch_preboot_os(void)
{
leds_set_finish();
}
#endif
|