aboutsummaryrefslogtreecommitdiff
path: root/tools/dtoc/dtb_platdata.py
blob: 89066e6403fcc8243946eb4110d67f7195ffe6b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
#!/usr/bin/python
# SPDX-License-Identifier: GPL-2.0+
#
# Copyright (C) 2017 Google, Inc
# Written by Simon Glass <sjg@chromium.org>
#

"""Device tree to platform data class

This supports converting device tree data to C structures definitions and
static data.

See doc/driver-model/of-plat.rst for more informaiton
"""

import collections
import copy
from enum import IntEnum
import os
import re
import sys

from dtoc import fdt
from dtoc import fdt_util
from dtoc import src_scan
from dtoc.src_scan import conv_name_to_c

# When we see these properties we ignore them - i.e. do not create a structure
# member
PROP_IGNORE_LIST = [
    '#address-cells',
    '#gpio-cells',
    '#size-cells',
    'compatible',
    'linux,phandle',
    "status",
    'phandle',
    'bootph-all',
    'bootph-pre-sram',
    'bootph-pre-ram',
]

# C type declarations for the types we support
TYPE_NAMES = {
    fdt.Type.INT: 'fdt32_t',
    fdt.Type.BYTE: 'unsigned char',
    fdt.Type.STRING: 'const char *',
    fdt.Type.BOOL: 'bool',
    fdt.Type.INT64: 'fdt64_t',
}

STRUCT_PREFIX = 'dtd_'
VAL_PREFIX = 'dtv_'

# Properties which are considered to be phandles
#    key: property name
#    value: name of associated #cells property in the target node
#
# New phandle properties must be added here; otherwise they will come through as
# simple integers and finding devices by phandle will not work.
# Any property that ends with one of these (e.g. 'cd-gpios') will be considered
# a phandle property.
PHANDLE_PROPS = {
    'clocks': '#clock-cells',
    'interrupts-extended': '#interrupt-cells',
    'gpios': '#gpio-cells',
    'sandbox,emul': '#emul-cells',
    }

class Ftype(IntEnum):
    SOURCE, HEADER = range(2)


# This holds information about each type of output file dtoc can create
# ftype: Type of file (Ftype)
# fname: Filename excluding directory, e.g. 'dt-plat.c'
# hdr_comment: Comment explaining the purpose of the file
OutputFile = collections.namedtuple('OutputFile',
                                    ['ftype', 'fname', 'method', 'hdr_comment'])

# This holds information about a property which includes phandles.
#
# max_args: integer: Maximum number or arguments that any phandle uses (int).
# args: Number of args for each phandle in the property. The total number of
#     phandles is len(args). This is a list of integers.
PhandleInfo = collections.namedtuple('PhandleInfo', ['max_args', 'args'])

# Holds a single phandle link, allowing a C struct value to be assigned to point
# to a device
#
# var_node: C variable to assign (e.g. 'dtv_mmc.clocks[0].node')
# dev_name: Name of device to assign to (e.g. 'clock')
PhandleLink = collections.namedtuple('PhandleLink', ['var_node', 'dev_name'])


def tab_to(num_tabs, line):
    """Append tabs to a line of text to reach a tab stop.

    Args:
        num_tabs (int): Tab stop to obtain (0 = column 0, 1 = column 8, etc.)
        line (str): Line of text to append to

    Returns:
        str: line with the correct number of tabs appeneded. If the line already
        extends past that tab stop then a single space is appended.
    """
    if len(line) >= num_tabs * 8:
        return line + ' '
    return line + '\t' * (num_tabs - len(line) // 8)

def get_value(ftype, value):
    """Get a value as a C expression

    For integers this returns a byte-swapped (little-endian) hex string
    For bytes this returns a hex string, e.g. 0x12
    For strings this returns a literal string enclosed in quotes
    For booleans this return 'true'

    Args:
        ftype (fdt.Type): Data type (fdt_util)
        value (bytes): Data value, as a string of bytes

    Returns:
        str: String representation of the value
    """
    if ftype == fdt.Type.INT:
        val = '%#x' % fdt_util.fdt32_to_cpu(value)
    elif ftype == fdt.Type.BYTE:
        char = value[0]
        val = '%#x' % (ord(char) if isinstance(char, str) else char)
    elif ftype == fdt.Type.STRING:
        # Handle evil ACPI backslashes by adding another backslash before them.
        # So "\\_SB.GPO0" in the device tree effectively stays like that in C
        val = '"%s"' % value.replace('\\', '\\\\')
    elif ftype == fdt.Type.BOOL:
        val = 'true'
    else:  # ftype == fdt.Type.INT64:
        val = '%#x' % value
    return val


class DtbPlatdata():
    """Provide a means to convert device tree binary data to platform data

    The output of this process is C structures which can be used in space-
    constrained encvironments where the ~3KB code overhead of device tree
    code is not affordable.

    Properties:
        _scan: Scan object, for scanning and reporting on useful information
            from the U-Boot source code
        _fdt: Fdt object, referencing the device tree
        _dtb_fname: Filename of the input device tree binary file
        _valid_nodes_unsorted: A list of Node object with compatible strings,
            ordered by devicetree node order
        _valid_nodes: A list of Node object with compatible strings, ordered by
            conv_name_to_c(node.name)
        _include_disabled: true to include nodes marked status = "disabled"
        _outfile: The current output file (sys.stdout or a real file)
        _lines: Stashed list of output lines for outputting in the future
        _dirname: Directory to hold output files, or None for none (all files
            go to stdout)
        _struct_data (dict): OrderedDict of dtplat structures to output
            key (str): Node name, as a C identifier
                    value: dict containing structure fields:
                        key (str): Field name
                        value: Prop object with field information
        _basedir (str): Base directory of source tree
        _valid_uclasses (list of src_scan.Uclass): List of uclasses needed for
            the selected devices (see _valid_node), in alphabetical order
        _instantiate: Instantiate devices so they don't need to be bound at
            run-time
    """
    def __init__(self, scan, dtb_fname, include_disabled, instantiate=False):
        self._scan = scan
        self._fdt = None
        self._dtb_fname = dtb_fname
        self._valid_nodes = None
        self._valid_nodes_unsorted = None
        self._include_disabled = include_disabled
        self._outfile = None
        self._lines = []
        self._dirnames = [None] * len(Ftype)
        self._struct_data = collections.OrderedDict()
        self._basedir = None
        self._valid_uclasses = None
        self._instantiate = instantiate

    def setup_output_dirs(self, output_dirs):
        """Set up the output directories

        This should be done before setup_output() is called

        Args:
            output_dirs (tuple of str):
                Directory to use for C output files.
                    Use None to write files relative current directory
                Directory to use for H output files.
                    Defaults to the C output dir
        """
        def process_dir(ftype, dirname):
            if dirname:
                os.makedirs(dirname, exist_ok=True)
                self._dirnames[ftype] = dirname

        if output_dirs:
            c_dirname = output_dirs[0]
            h_dirname = output_dirs[1] if len(output_dirs) > 1 else c_dirname
            process_dir(Ftype.SOURCE, c_dirname)
            process_dir(Ftype.HEADER, h_dirname)

    def setup_output(self, ftype, fname):
        """Set up the output destination

        Once this is done, future calls to self.out() will output to this
        file. The file used is as follows:

        self._dirnames[ftype] is None: output to fname, or stdout if None
        self._dirnames[ftype] is not None: output to fname in that directory

        Calling this function multiple times will close the old file and open
        the new one. If they are the same file, nothing happens and output will
        continue to the same file.

        Args:
            ftype (str): Type of file to create ('c' or 'h')
            fname (str): Filename to send output to. If there is a directory in
                self._dirnames for this file type, it will be put in that
                directory
        """
        dirname = self._dirnames[ftype]
        if dirname:
            pathname = os.path.join(dirname, fname)
            if self._outfile:
                self._outfile.close()
            self._outfile = open(pathname, 'w')
        elif fname:
            if not self._outfile:
                self._outfile = open(fname, 'w')
        else:
            self._outfile = sys.stdout

    def finish_output(self):
        """Finish outputing to a file

        This closes the output file, if one is in use
        """
        if self._outfile != sys.stdout:
            self._outfile.close()
            self._outfile = None

    def out(self, line):
        """Output a string to the output file

        Args:
            line (str): String to output
        """
        self._outfile.write(line)

    def buf(self, line):
        """Buffer up a string to send later

        Args:
            line (str): String to add to our 'buffer' list
        """
        self._lines.append(line)

    def get_buf(self):
        """Get the contents of the output buffer, and clear it

        Returns:
            list(str): The output buffer, which is then cleared for future use
        """
        lines = self._lines
        self._lines = []
        return lines

    def out_header(self, outfile):
        """Output a message indicating that this is an auto-generated file

        Args:
            outfile: OutputFile describing the file being generated
        """
        self.out('''/*
 * DO NOT MODIFY
 *
 * %s.
 * This was generated by dtoc from a .dtb (device tree binary) file.
 */

''' % outfile.hdr_comment)

    def get_phandle_argc(self, prop, node_name):
        """Check if a node contains phandles

        We have no reliable way of detecting whether a node uses a phandle
        or not. As an interim measure, use a list of known property names.

        Args:
            prop (fdt.Prop): Prop object to check
            node_name (str): Node name, only used for raising an error
        Returns:
            int or None: Number of argument cells is this is a phandle,
                else None
        Raises:
            ValueError: if the phandle cannot be parsed or the required property
                is not present
        """
        cells_prop = None
        for name, cprop in PHANDLE_PROPS.items():
            if prop.name.endswith(name):
                cells_prop = cprop
        if cells_prop:
            if not isinstance(prop.value, list):
                prop.value = [prop.value]
            val = prop.value
            i = 0

            max_args = 0
            args = []
            while i < len(val):
                phandle = fdt_util.fdt32_to_cpu(val[i])
                # If we get to the end of the list, stop. This can happen
                # since some nodes have more phandles in the list than others,
                # but we allocate enough space for the largest list. So those
                # nodes with shorter lists end up with zeroes at the end.
                if not phandle:
                    break
                target = self._fdt.phandle_to_node.get(phandle)
                if not target:
                    raise ValueError("Cannot parse '%s' in node '%s'" %
                                     (prop.name, node_name))
                cells = target.props.get(cells_prop)
                if not cells:
                    raise ValueError("Node '%s' has no cells property" %
                                     target.name)
                num_args = fdt_util.fdt32_to_cpu(cells.value)
                max_args = max(max_args, num_args)
                args.append(num_args)
                i += 1 + num_args
            return PhandleInfo(max_args, args)
        return None

    def scan_dtb(self):
        """Scan the device tree to obtain a tree of nodes and properties

        Once this is done, self._fdt.GetRoot() can be called to obtain the
        device tree root node, and progress from there.
        """
        self._fdt = fdt.FdtScan(self._dtb_fname)

    def scan_node(self, node, valid_nodes):
        """Scan a node and subnodes to build a tree of node and phandle info

        This adds each subnode to self._valid_nodes if it is enabled and has a
        compatible string.

        Args:
            node (Node): Node for scan for subnodes
            valid_nodes (list of Node): List of Node objects to add to
        """
        for subnode in node.subnodes:
            if 'compatible' in subnode.props:
                status = subnode.props.get('status')
                if (not self._include_disabled and not status or
                        status.value != 'disabled'):
                    valid_nodes.append(subnode)

            # recurse to handle any subnodes
            self.scan_node(subnode, valid_nodes)

    def scan_tree(self, add_root):
        """Scan the device tree for useful information

        This fills in the following properties:
            _valid_nodes_unsorted: A list of nodes we wish to consider include
                in the platform data (in devicetree node order)
            _valid_nodes: Sorted version of _valid_nodes_unsorted

        Args:
            add_root: True to add the root node also (which wouldn't normally
                be added as it may not have a compatible string)
        """
        root = self._fdt.GetRoot()
        valid_nodes = []
        if add_root:
            valid_nodes.append(root)
        self.scan_node(root, valid_nodes)
        self._valid_nodes_unsorted = valid_nodes
        self._valid_nodes = sorted(valid_nodes,
                                   key=lambda x: conv_name_to_c(x.name))

    def prepare_nodes(self):
        """Add extra properties to the nodes we are using

        The following properties are added for use by dtoc:
            idx: Index number of this node (0=first, etc.)
            struct_name: Name of the struct dtd used by this node
            var_name: C name for this node
            child_devs: List of child devices for this node, each a None
            child_refs: Dict of references for each child:
                key: Position in child list (-1=head, 0=first, 1=second, ...
                                             n-1=last, n=head)
            seq: Sequence number of the device (unique within its uclass), or
                -1 not not known yet
            dev_ref: Reference to this device, e.g. 'DM_DEVICE_REF(serial)'
            driver: Driver record for this node, or None if not known
            uclass: Uclass record for this node, or None if not known
            uclass_seq: Position of this device within the uclass list (0=first,
                n-1=last)
            parent_seq: Position of this device within it siblings (0=first,
                n-1=last)
            parent_driver: Driver record of the node's parent, or None if none.
                We don't use node.parent.driver since node.parent may not be in
                the list of valid nodes
        """
        for idx, node in enumerate(self._valid_nodes):
            node.idx = idx
            node.struct_name, _ = self._scan.get_normalized_compat_name(node)
            node.var_name = conv_name_to_c(node.name)
            node.child_devs = []
            node.child_refs = {}
            node.seq = -1
            node.dev_ref = None
            node.driver = None
            node.uclass = None
            node.uclass_seq = None
            node.parent_seq = None
            node.parent_driver = None

    @staticmethod
    def get_num_cells(node):
        """Get the number of cells in addresses and sizes for this node

        Args:
            node (fdt.None): Node to check

        Returns:
            Tuple:
                Number of address cells for this node
                Number of size cells for this node
        """
        parent = node.parent
        if parent and not parent.props:
            raise ValueError("Parent node '%s' has no properties - do you need bootph-pre-ram or similar?" %
                             parent.path)
        num_addr, num_size = 2, 2
        if parent:
            addr_prop = parent.props.get('#address-cells')
            size_prop = parent.props.get('#size-cells')
            if addr_prop:
                num_addr = fdt_util.fdt32_to_cpu(addr_prop.value)
            if size_prop:
                num_size = fdt_util.fdt32_to_cpu(size_prop.value)
        return num_addr, num_size

    def scan_reg_sizes(self):
        """Scan for 64-bit 'reg' properties and update the values

        This finds 'reg' properties with 64-bit data and converts the value to
        an array of 64-values. This allows it to be output in a way that the
        C code can read.
        """
        for node in self._valid_nodes:
            reg = node.props.get('reg')
            if not reg:
                continue
            num_addr, num_size = self.get_num_cells(node)
            total = num_addr + num_size

            if reg.type != fdt.Type.INT:
                raise ValueError("Node '%s' reg property is not an int" %
                                 node.name)
            if not isinstance(reg.value, list):
                reg.value = [reg.value]
            if len(reg.value) % total:
                raise ValueError(
                    "Node '%s' (parent '%s') reg property has %d cells "
                    'which is not a multiple of na + ns = %d + %d)' %
                    (node.name, node.parent.name, len(reg.value), num_addr,
                     num_size))
            reg.num_addr = num_addr
            reg.num_size = num_size
            if num_addr > 1 or num_size > 1:
                reg.type = fdt.Type.INT64
                i = 0
                new_value = []
                val = reg.value
                while i < len(val):
                    addr = fdt_util.fdt_cells_to_cpu(val[i:], reg.num_addr)
                    i += num_addr
                    size = fdt_util.fdt_cells_to_cpu(val[i:], reg.num_size)
                    i += num_size
                    new_value += [addr, size]
                reg.value = new_value

    def scan_structs(self):
        """Scan the device tree building up the C structures we will use.

        Build a dict keyed by C struct name containing a dict of Prop
        object for each struct field (keyed by property name). Where the
        same struct appears multiple times, try to use the 'widest'
        property, i.e. the one with a type which can express all others.

        Once the widest property is determined, all other properties are
        updated to match that width.

        The results are written to self._struct_data
        """
        structs = self._struct_data
        for node in self._valid_nodes:
            fields = {}

            # Get a list of all the valid properties in this node.
            for name, prop in node.props.items():
                if name not in PROP_IGNORE_LIST and name[0] != '#':
                    fields[name] = copy.deepcopy(prop)

            # If we've seen this struct_name before, update the existing struct
            if node.struct_name in structs:
                struct = structs[node.struct_name]
                for name, prop in fields.items():
                    oldprop = struct.get(name)
                    if oldprop:
                        oldprop.Widen(prop)
                    else:
                        struct[name] = prop

            # Otherwise store this as a new struct.
            else:
                structs[node.struct_name] = fields

        for node in self._valid_nodes:
            struct = structs[node.struct_name]
            for name, prop in node.props.items():
                if name not in PROP_IGNORE_LIST and name[0] != '#':
                    prop.Widen(struct[name])

    def scan_phandles(self):
        """Figure out what phandles each node uses

        We need to be careful when outputing nodes that use phandles since
        they must come after the declaration of the phandles in the C file.
        Otherwise we get a compiler error since the phandle struct is not yet
        declared.

        This function adds to each node a list of phandle nodes that the node
        depends on. This allows us to output things in the right order.
        """
        for node in self._valid_nodes:
            node.phandles = set()
            for pname, prop in node.props.items():
                if pname in PROP_IGNORE_LIST or pname[0] == '#':
                    continue
                info = self.get_phandle_argc(prop, node.name)
                if info:
                    # Process the list as pairs of (phandle, id)
                    pos = 0
                    for args in info.args:
                        phandle_cell = prop.value[pos]
                        phandle = fdt_util.fdt32_to_cpu(phandle_cell)
                        target_node = self._fdt.phandle_to_node[phandle]
                        node.phandles.add(target_node)
                        pos += 1 + args


    def generate_structs(self):
        """Generate struct defintions for the platform data

        This writes out the body of a header file consisting of structure
        definitions for node in self._valid_nodes. See the documentation in
        doc/driver-model/of-plat.rst for more information.
        """
        structs = self._struct_data
        self.out('#include <stdbool.h>\n')
        self.out('#include <linux/libfdt.h>\n')

        # Output the struct definition
        for name in sorted(structs):
            self.out('struct %s%s {\n' % (STRUCT_PREFIX, name))
            for pname in sorted(structs[name]):
                prop = structs[name][pname]
                info = self.get_phandle_argc(prop, structs[name])
                if info:
                    # For phandles, include a reference to the target
                    struct_name = 'struct phandle_%d_arg' % info.max_args
                    self.out('\t%s%s[%d]' % (tab_to(2, struct_name),
                                             conv_name_to_c(prop.name),
                                             len(info.args)))
                else:
                    ptype = TYPE_NAMES[prop.type]
                    self.out('\t%s%s' % (tab_to(2, ptype),
                                         conv_name_to_c(prop.name)))
                    if isinstance(prop.value, list):
                        self.out('[%d]' % len(prop.value))
                self.out(';\n')
            self.out('};\n')

    def _output_list(self, node, prop):
        """Output the C code for a devicetree property that holds a list

        Args:
            node (fdt.Node): Node to output
            prop (fdt.Prop): Prop to output
        """
        self.buf('{')
        vals = []
        # For phandles, output a reference to the platform data
        # of the target node.
        info = self.get_phandle_argc(prop, node.name)
        if info:
            # Process the list as pairs of (phandle, id)
            pos = 0
            for args in info.args:
                phandle_cell = prop.value[pos]
                phandle = fdt_util.fdt32_to_cpu(phandle_cell)
                target_node = self._fdt.phandle_to_node[phandle]
                arg_values = []
                for i in range(args):
                    arg_values.append(
                        str(fdt_util.fdt32_to_cpu(prop.value[pos + 1 + i])))
                pos += 1 + args
                vals.append('\t{%d, {%s}}' % (target_node.idx,
                                              ', '.join(arg_values)))
            for val in vals:
                self.buf('\n\t\t%s,' % val)
        else:
            for val in prop.value:
                vals.append(get_value(prop.type, val))

            # Put 8 values per line to avoid very long lines.
            for i in range(0, len(vals), 8):
                if i:
                    self.buf(',\n\t\t')
                self.buf(', '.join(vals[i:i + 8]))
        self.buf('}')

    def _declare_device(self, node):
        """Add a device declaration to the output

        This declares a U_BOOT_DRVINFO() for the device being processed

        Args:
            node: Node to process
        """
        self.buf('U_BOOT_DRVINFO(%s) = {\n' % node.var_name)
        self.buf('\t.name\t\t= "%s",\n' % node.struct_name)
        self.buf('\t.plat\t\t= &%s%s,\n' % (VAL_PREFIX, node.var_name))
        self.buf('\t.plat_size\t= sizeof(%s%s),\n' %
                 (VAL_PREFIX, node.var_name))
        idx = -1
        if node.parent and node.parent in self._valid_nodes:
            idx = node.parent.idx
        self.buf('\t.parent_idx\t= %d,\n' % idx)
        self.buf('};\n')
        self.buf('\n')

    def prep_priv(self, struc, name, suffix, section='.priv_data'):
        if not struc:
            return None
        var_name = '_%s%s' % (name, suffix)
        hdr = self._scan._structs.get(struc)
        if hdr:
            self.buf('#include <%s>\n' % hdr.fname)
        else:
            print('Warning: Cannot find header file for struct %s' % struc)
        attr = '__attribute__ ((section ("%s")))' % section
        return var_name, struc, attr

    def alloc_priv(self, info, name, extra, suffix='_priv'):
        result = self.prep_priv(info, name, suffix)
        if not result:
            return None
        var_name, struc, section = result
        self.buf('u8 %s_%s[sizeof(struct %s)]\n\t%s;\n' %
                 (var_name, extra, struc.strip(), section))
        return '%s_%s' % (var_name, extra)

    def alloc_plat(self, info, name, extra, node):
        result = self.prep_priv(info, name, '_plat')
        if not result:
            return None
        var_name, struc, section = result
        self.buf('struct %s %s\n\t%s_%s = {\n' %
                 (struc.strip(), section, var_name, extra))
        self.buf('\t.dtplat = {\n')
        for pname in sorted(node.props):
            self._output_prop(node, node.props[pname], 2)
        self.buf('\t},\n')
        self.buf('};\n')
        return '&%s_%s' % (var_name, extra)

    def _declare_device_inst(self, node, parent_driver):
        """Add a device instance declaration to the output

        This declares a DM_DEVICE_INST() for the device being processed

        Args:
            node: Node to output
        """
        driver = node.driver
        uclass = node.uclass
        self.buf('\n')
        num_lines = len(self._lines)
        plat_name = self.alloc_plat(driver.plat, driver.name, node.var_name,
                                    node)
        priv_name = self.alloc_priv(driver.priv, driver.name, node.var_name)
        parent_plat_name = None
        parent_priv_name = None
        if parent_driver:
            # TODO: deal with uclass providing these values
            parent_plat_name = self.alloc_priv(
                parent_driver.child_plat, driver.name, node.var_name,
                '_parent_plat')
            parent_priv_name = self.alloc_priv(
                parent_driver.child_priv, driver.name, node.var_name,
                '_parent_priv')
        uclass_plat_name = self.alloc_priv(
            uclass.per_dev_plat, driver.name + '_uc', node.var_name, 'plat')
        uclass_priv_name = self.alloc_priv(uclass.per_dev_priv,
                                           driver.name + '_uc', node.var_name)
        for hdr in driver.headers:
            self.buf('#include %s\n' % hdr)

        # Add a blank line if we emitted any stuff above, for readability
        if num_lines != len(self._lines):
            self.buf('\n')

        self.buf('DM_DEVICE_INST(%s) = {\n' % node.var_name)
        self.buf('\t.driver\t\t= DM_DRIVER_REF(%s),\n' % node.struct_name)
        self.buf('\t.name\t\t= "%s",\n' % node.struct_name)
        if plat_name:
            self.buf('\t.plat_\t\t= %s,\n' % plat_name)
        else:
            self.buf('\t.plat_\t\t= &%s%s,\n' % (VAL_PREFIX, node.var_name))
        if parent_plat_name:
            self.buf('\t.parent_plat_\t= %s,\n' % parent_plat_name)
        if uclass_plat_name:
            self.buf('\t.uclass_plat_\t= %s,\n' % uclass_plat_name)
        driver_date = None

        if node != self._fdt.GetRoot():
            compat_list = node.props['compatible'].value
            if not isinstance(compat_list, list):
                compat_list = [compat_list]
            for compat in compat_list:
                driver_data = driver.compat.get(compat)
                if driver_data:
                    self.buf('\t.driver_data\t= %s,\n' % driver_data)
                    break

        if node.parent and node.parent.parent:
            if node.parent not in self._valid_nodes:
                # This might indicate that the parent node is not in the
                # SPL/TPL devicetree but the child is. For example if we are
                # dealing with of-platdata in TPL, the parent has a
                # bootph-pre-sram tag but the child has bootph-all. In
                # this case the child node exists in TPL but the parent does
                # not.
                raise ValueError("Node '%s' requires parent node '%s' but it is not in the valid list" %
                                 (node.path, node.parent.path))
            self.buf('\t.parent\t\t= DM_DEVICE_REF(%s),\n' %
                     node.parent.var_name)
        if priv_name:
            self.buf('\t.priv_\t\t= %s,\n' % priv_name)
        self.buf('\t.uclass\t\t= DM_UCLASS_REF(%s),\n' % uclass.name)

        if uclass_priv_name:
            self.buf('\t.uclass_priv_ = %s,\n' % uclass_priv_name)
        if parent_priv_name:
            self.buf('\t.parent_priv_\t= %s,\n' % parent_priv_name)
        self.list_node('uclass_node', uclass.node_refs, node.uclass_seq)
        self.list_head('child_head', 'sibling_node', node.child_devs, node.var_name)
        if node.parent in self._valid_nodes:
            self.list_node('sibling_node', node.parent.child_refs,
                           node.parent_seq)
        # flags is left as 0

        self.buf('\t.seq_ = %d,\n' % node.seq)

        self.buf('};\n')
        self.buf('\n')
        return parent_plat_name

    def _output_prop(self, node, prop, tabs=1):
        """Output a line containing the value of a struct member

        Args:
            node (Node): Node being output
            prop (Prop): Prop object to output
        """
        if prop.name in PROP_IGNORE_LIST or prop.name[0] == '#':
            return
        member_name = conv_name_to_c(prop.name)
        self.buf('%s%s= ' % ('\t' * tabs, tab_to(3, '.' + member_name)))

        # Special handling for lists
        if isinstance(prop.value, list):
            self._output_list(node, prop)
        else:
            self.buf(get_value(prop.type, prop.value))
        self.buf(',\n')

    def _output_values(self, node):
        """Output the definition of a device's struct values

        Args:
            node (Node): Node to output
        """
        self.buf('static struct %s%s %s%s = {\n' %
                 (STRUCT_PREFIX, node.struct_name, VAL_PREFIX, node.var_name))
        for pname in sorted(node.props):
            self._output_prop(node, node.props[pname])
        self.buf('};\n')

    def list_head(self, head_member, node_member, node_refs, var_name):
        self.buf('\t.%s\t= {\n' % head_member)
        if node_refs:
            last = node_refs[-1].dev_ref
            first = node_refs[0].dev_ref
            member = node_member
        else:
            last = 'DM_DEVICE_REF(%s)' % var_name
            first = last
            member = head_member
        self.buf('\t\t.prev = &%s->%s,\n' % (last, member))
        self.buf('\t\t.next = &%s->%s,\n' % (first, member))
        self.buf('\t},\n')

    def list_node(self, member, node_refs, seq):
        self.buf('\t.%s\t= {\n' % member)
        self.buf('\t\t.prev = %s,\n' % node_refs[seq - 1])
        self.buf('\t\t.next = %s,\n' % node_refs[seq + 1])
        self.buf('\t},\n')

    def generate_uclasses(self):
        self.out('\n')
        self.out('#include <dm.h>\n')
        self.out('#include <dt-structs.h>\n')
        self.out('\n')
        self.buf('/*\n')
        self.buf(
            " * uclass declarations, ordered by 'struct uclass' linker_list idx:\n")
        uclass_list = self._valid_uclasses
        for seq, uclass in enumerate(uclass_list):
            self.buf(' * %3d: %s\n' % (seq, uclass.name))
        self.buf(' *\n')
        self.buf(' * Sequence numbers allocated in each uclass:\n')
        for uclass in uclass_list:
            if uclass.alias_num_to_node:
                self.buf(' * %s: %s\n' % (uclass.name, uclass.uclass_id))
                for seq, node in uclass.alias_num_to_node.items():
                    self.buf(' *    %d: %s\n' % (seq, node.path))
        self.buf(' */\n')

        uclass_node = {}
        for seq, uclass in enumerate(uclass_list):
            uclass_node[seq] = ('&DM_UCLASS_REF(%s)->sibling_node' %
                                uclass.name)
        uclass_node[-1] = '&uclass_head'
        uclass_node[len(uclass_list)] = '&uclass_head'
        self.buf('\n')
        self.buf('struct list_head %s = {\n' % 'uclass_head')
        self.buf('\t.prev = %s,\n' % uclass_node[len(uclass_list) -1])
        self.buf('\t.next = %s,\n' % uclass_node[0])
        self.buf('};\n')
        self.buf('\n')

        for seq, uclass in enumerate(uclass_list):
            uc_drv = self._scan._uclass.get(uclass.uclass_id)

            priv_name = self.alloc_priv(uc_drv.priv, uc_drv.name, '')

            self.buf('DM_UCLASS_INST(%s) = {\n' % uclass.name)
            if priv_name:
                self.buf('\t.priv_\t\t= %s,\n' % priv_name)
            self.buf('\t.uc_drv\t\t= DM_UCLASS_DRIVER_REF(%s),\n' % uclass.name)
            self.list_node('sibling_node', uclass_node, seq)
            self.list_head('dev_head', 'uclass_node', uc_drv.devs, None)
            self.buf('};\n')
            self.buf('\n')
        self.out(''.join(self.get_buf()))

    def read_aliases(self):
        """Read the aliases and attach the information to self._alias

        Raises:
            ValueError: The alias path is not found
        """
        alias_node = self._fdt.GetNode('/aliases')
        if not alias_node:
            return
        re_num = re.compile('(^[a-z0-9-]+[a-z]+)([0-9]+)$')
        for prop in alias_node.props.values():
            m_alias = re_num.match(prop.name)
            if not m_alias:
                raise ValueError("Cannot decode alias '%s'" % prop.name)
            name, num = m_alias.groups()
            node = self._fdt.GetNode(prop.value)
            result = self._scan.add_uclass_alias(name, num, node)
            if result is None:
                raise ValueError("Alias '%s' path '%s' not found" %
                                 (prop.name, prop.value))
            elif result is False:
                print("Could not find uclass for alias '%s'" % prop.name)

    def generate_decl(self):
        nodes_to_output = list(self._valid_nodes)

        self.buf('#include <dm/device-internal.h>\n')
        self.buf('#include <dm/uclass-internal.h>\n')
        self.buf('\n')
        self.buf(
            '/* driver declarations - these allow DM_DRIVER_GET() to be used */\n')
        for node in nodes_to_output:
            self.buf('extern U_BOOT_DRIVER(%s);\n' % node.struct_name);
        self.buf('\n')

        if self._instantiate:
            self.buf(
                '/* device declarations - these allow DM_DEVICE_REF() to be used */\n')
            for node in nodes_to_output:
                self.buf('extern DM_DEVICE_INST(%s);\n' % node.var_name)
            self.buf('\n')

        uclass_list = self._valid_uclasses

        self.buf(
            '/* uclass driver declarations - needed for DM_UCLASS_DRIVER_REF() */\n')
        for uclass in uclass_list:
            self.buf('extern UCLASS_DRIVER(%s);\n' % uclass.name)

        if self._instantiate:
            self.buf('\n')
            self.buf('/* uclass declarations - needed for DM_UCLASS_REF() */\n')
            for uclass in uclass_list:
                self.buf('extern DM_UCLASS_INST(%s);\n' % uclass.name)
        self.out(''.join(self.get_buf()))

    def assign_seqs(self):
        """Assign a sequence number to each node"""
        for node in self._valid_nodes_unsorted:
            seq = self._scan.assign_seq(node)
            if seq is not None:
                node.seq = seq

    def process_nodes(self, need_drivers):
        nodes_to_output = list(self._valid_nodes)

        # Figure out which drivers we actually use
        self._scan.mark_used(nodes_to_output)

        for node in nodes_to_output:
            node.dev_ref = 'DM_DEVICE_REF(%s)' % node.var_name
            driver = self._scan.get_driver(node.struct_name)
            if not driver:
                if not need_drivers:
                    continue
                raise ValueError("Cannot parse/find driver for '%s'" %
                                 node.struct_name)
            node.driver = driver
            uclass = self._scan._uclass.get(driver.uclass_id)
            if not uclass:
                raise ValueError("Cannot parse/find uclass '%s' for driver '%s'" %
                                (driver.uclass_id, node.struct_name))
            node.uclass = uclass
            node.uclass_seq = len(node.uclass.devs)
            node.uclass.devs.append(node)
            uclass.node_refs[node.uclass_seq] = \
                '&%s->uclass_node' % node.dev_ref

            parent_driver = None
            if node.parent in self._valid_nodes:
                parent_driver = self._scan.get_driver(node.parent.struct_name)
                if not parent_driver:
                    if not need_drivers:
                        continue
                    raise ValueError(
                        "Cannot parse/find parent driver '%s' for '%s'" %
                        (node.parent.struct_name, node.struct_name))
                node.parent_seq = len(node.parent.child_devs)
                node.parent.child_devs.append(node)
                node.parent.child_refs[node.parent_seq] = \
                    '&%s->sibling_node' % node.dev_ref
                node.parent_driver = parent_driver

        for node in nodes_to_output:
            ref = '&%s->child_head' % node.dev_ref
            node.child_refs[-1] = ref
            node.child_refs[len(node.child_devs)] = ref

        uclass_set = set()
        for driver in self._scan._drivers.values():
            if driver.used and driver.uclass:
                uclass_set.add(driver.uclass)
        self._valid_uclasses = sorted(list(uclass_set),
                                      key=lambda uc: uc.uclass_id)

        for seq, uclass in enumerate(uclass_set):
            ref = '&DM_UCLASS_REF(%s)->dev_head' % uclass.name
            uclass.node_refs[-1] = ref
            uclass.node_refs[len(uclass.devs)] = ref

    def output_node_plat(self, node):
        """Output the C code for a node

        Args:
            node (fdt.Node): node to output
        """
        driver = node.driver
        parent_driver = node.parent_driver

        line1 = 'Node %s index %d' % (node.path, node.idx)
        if driver:
            self.buf('/*\n')
            self.buf(' * %s\n' % line1)
            self.buf(' * driver %s parent %s\n' % (driver.name,
                parent_driver.name if parent_driver else 'None'))
            self.buf(' */\n')
        else:
            self.buf('/* %s */\n' % line1)

        self._output_values(node)
        self._declare_device(node)

        self.out(''.join(self.get_buf()))

    def output_node_instance(self, node):
        """Output the C code for a node

        Args:
            node (fdt.Node): node to output
        """
        parent_driver = node.parent_driver

        self.buf('/*\n')
        self.buf(' * Node %s index %d\n' % (node.path, node.idx))
        self.buf(' * driver %s parent %s\n' % (node.driver.name,
                 parent_driver.name if parent_driver else 'None'))
        self.buf('*/\n')

        if not node.driver.plat:
            self._output_values(node)
        self._declare_device_inst(node, parent_driver)

        self.out(''.join(self.get_buf()))

    def generate_plat(self):
        """Generate device defintions for the platform data

        This writes out C platform data initialisation data and
        U_BOOT_DRVINFO() declarations for each valid node. Where a node has
        multiple compatible strings, a #define is used to make them equivalent.

        See the documentation in doc/driver-model/of-plat.rst for more
        information.
        """
        self.out('/* Allow use of U_BOOT_DRVINFO() in this file */\n')
        self.out('#define DT_PLAT_C\n')
        self.out('\n')
        self.out('#include <dm.h>\n')
        self.out('#include <dt-structs.h>\n')
        self.out('\n')

        if self._valid_nodes:
            self.out('/*\n')
            self.out(
                " * driver_info declarations, ordered by 'struct driver_info' linker_list idx:\n")
            self.out(' *\n')
            self.out(' * idx  %-20s %-s\n' % ('driver_info', 'driver'))
            self.out(' * ---  %-20s %-s\n' % ('-' * 20, '-' * 20))
            for node in self._valid_nodes:
                self.out(' * %3d: %-20s %-s\n' %
                        (node.idx, node.var_name, node.struct_name))
            self.out(' * ---  %-20s %-s\n' % ('-' * 20, '-' * 20))
            self.out(' */\n')
            self.out('\n')

            for node in self._valid_nodes:
                self.output_node_plat(node)

        self.out(''.join(self.get_buf()))

    def generate_device(self):
        """Generate device instances

        This writes out DM_DEVICE_INST() records for each device in the
        build.

        See the documentation in doc/driver-model/of-plat.rst for more
        information.
        """
        self.out('#include <dm.h>\n')
        self.out('#include <dt-structs.h>\n')
        self.out('\n')

        if self._valid_nodes:
            self.out('/*\n')
            self.out(
                " * udevice declarations, ordered by 'struct udevice' linker_list position:\n")
            self.out(' *\n')
            self.out(' * idx  %-20s %-s\n' % ('udevice', 'driver'))
            self.out(' * ---  %-20s %-s\n' % ('-' * 20, '-' * 20))
            for node in self._valid_nodes:
                self.out(' * %3d: %-20s %-s\n' %
                        (node.idx, node.var_name, node.struct_name))
            self.out(' * ---  %-20s %-s\n' % ('-' * 20, '-' * 20))
            self.out(' */\n')
            self.out('\n')

            for node in self._valid_nodes:
                self.output_node_instance(node)

        self.out(''.join(self.get_buf()))


# Types of output file we understand
# key: Command used to generate this file
# value: OutputFile for this command
OUTPUT_FILES_COMMON = {
    'decl':
        OutputFile(Ftype.HEADER, 'dt-decl.h', DtbPlatdata.generate_decl,
                   'Declares externs for all device/uclass instances'),
    'struct':
        OutputFile(Ftype.HEADER, 'dt-structs-gen.h',
                   DtbPlatdata.generate_structs,
                   'Defines the structs used to hold devicetree data'),
    }

# File generated without instantiate
OUTPUT_FILES_NOINST = {
    'platdata':
        OutputFile(Ftype.SOURCE, 'dt-plat.c', DtbPlatdata.generate_plat,
                   'Declares the U_BOOT_DRIVER() records and platform data'),
    }

# File generated with instantiate
OUTPUT_FILES_INST = {
    'device':
        OutputFile(Ftype.SOURCE, 'dt-device.c', DtbPlatdata.generate_device,
                   'Declares the DM_DEVICE_INST() records'),
    'uclass':
        OutputFile(Ftype.SOURCE, 'dt-uclass.c', DtbPlatdata.generate_uclasses,
                   'Declares the uclass instances (struct uclass)'),
    }


def run_steps(args, dtb_file, include_disabled, output, output_dirs, phase,
              instantiate, warning_disabled=False, drivers_additional=None,
              basedir=None, scan=None):
    """Run all the steps of the dtoc tool

    Args:
        args (list): List of non-option arguments provided to the problem
        dtb_file (str): Filename of dtb file to process
        include_disabled (bool): True to include disabled nodes
        output (str): Name of output file (None for stdout)
        output_dirs (tuple of str):
            Directory to put C output files
            Directory to put H output files
        phase: The phase of U-Boot that we are generating data for, e.g. 'spl'
             or 'tpl'. None if not known
        instantiate: Instantiate devices so they don't need to be bound at
            run-time
        warning_disabled (bool): True to avoid showing warnings about missing
            drivers
        drivers_additional (list): List of additional drivers to use during
            scanning
        basedir (str): Base directory of U-Boot source code. Defaults to the
            grandparent of this file's directory
        scan (src_src.Scanner): Scanner from a previous run. This can help speed
            up tests. Use None for normal operation

    Returns:
        DtbPlatdata object

    Raises:
        ValueError: if args has no command, or an unknown command
    """
    if not args:
        raise ValueError('Please specify a command: struct, platdata, all')
    if output and output_dirs and any(output_dirs):
        raise ValueError('Must specify either output or output_dirs, not both')

    if not scan:
        scan = src_scan.Scanner(basedir, drivers_additional, phase)
        scan.scan_drivers()
        do_process = True
    else:
        do_process = False
    plat = DtbPlatdata(scan, dtb_file, include_disabled, instantiate)
    plat.scan_dtb()
    plat.scan_tree(add_root=instantiate)
    plat.prepare_nodes()
    plat.scan_reg_sizes()
    plat.setup_output_dirs(output_dirs)
    plat.scan_structs()
    plat.scan_phandles()
    plat.process_nodes(instantiate)
    plat.read_aliases()
    plat.assign_seqs()

    # Figure out what output files we plan to generate
    output_files = dict(OUTPUT_FILES_COMMON)
    if instantiate:
        output_files.update(OUTPUT_FILES_INST)
    else:
        output_files.update(OUTPUT_FILES_NOINST)

    cmds = args[0].split(',')
    if 'all' in cmds:
        cmds = sorted(output_files.keys())
    for cmd in cmds:
        outfile = output_files.get(cmd)
        if not outfile:
            raise ValueError("Unknown command '%s': (use: %s)" %
                             (cmd, ', '.join(sorted(output_files.keys()))))
        plat.setup_output(outfile.ftype,
                          outfile.fname if output_dirs else output)
        plat.out_header(outfile)
        outfile.method(plat)
    plat.finish_output()

    if not warning_disabled:
        scan.show_warnings()
    return plat