aboutsummaryrefslogtreecommitdiff
path: root/doc/README.mxsimage
diff options
context:
space:
mode:
authorMarek Vasut2013-08-26 20:43:33 +0200
committerStefano Babic2013-08-31 15:26:52 +0200
commitbce8837071617a13f8e28f60400ee826b3f8a308 (patch)
treeee7433ef2100a5ade7d01b5d8f44042002bd6e54 /doc/README.mxsimage
parentb83c709e8d3f29721f32d66f19f953a2f818afbc (diff)
ARM: mxs: tools: Add mkimage support for MXS bootstream
Add mkimage support for generating and verifying MXS bootstream. The implementation here is mostly a glue code between MXSSB v0.4 and mkimage, but the long-term goal is to rectify this and merge MXSSB with mkimage more tightly. Once this code is properly in U-Boot, MXSSB shall be deprecated in favor of mkimage-mxsimage support. Note that the mxsimage generator needs libcrypto from OpenSSL, I therefore enabled the libcrypto/libssl unconditionally. MXSSB: http://git.denx.de/?p=mxssb.git;a=summary The code is based on research presented at: http://www.rockbox.org/wiki/SbFileFormat Signed-off-by: Marek Vasut <marex@denx.de> Cc: Tom Rini <trini@ti.com> Cc: Fabio Estevam <fabio.estevam@freescale.com> Cc: Stefano Babic <sbabic@denx.de> Cc: Otavio Salvador <otavio@ossystems.com.br>
Diffstat (limited to 'doc/README.mxsimage')
-rw-r--r--doc/README.mxsimage165
1 files changed, 165 insertions, 0 deletions
diff --git a/doc/README.mxsimage b/doc/README.mxsimage
new file mode 100644
index 00000000000..88a2caf3e62
--- /dev/null
+++ b/doc/README.mxsimage
@@ -0,0 +1,165 @@
+Freescale i.MX233/i.MX28 SB image generator via mkimage
+=======================================================
+
+This tool allows user to produce SB BootStream encrypted with a zero key.
+Such a BootStream is then bootable on i.MX23/i.MX28.
+
+Usage -- producing image:
+=========================
+The mxsimage tool is targeted to be a simple replacement for the elftosb2 .
+To generate an image, write an image configuration file and run:
+
+ mkimage -A arm -O u-boot -T mxsimage -n <path to configuration file> \
+ <output bootstream file>
+
+The output bootstream file is usually using the .sb file extension. Note
+that the example configuration files for producing bootable BootStream with
+the U-Boot bootloader can be found under arch/arm/boot/cpu/arm926ejs/mxs/
+directory. See the following files:
+
+ mxsimage.mx23.cfg -- This is an example configuration for i.MX23
+ mxsimage.mx28.cfg -- This is an example configuration for i.MX28
+
+Each configuration file uses very simple instruction semantics and a few
+additional rules have to be followed so that a useful image can be produced.
+These semantics and rules will be outlined now.
+
+- Each line of the configuration file contains exactly one instruction.
+- Every numeric value must be encoded in hexadecimal and in format 0xabcdef12 .
+- The configuration file is a concatenation of blocks called "sections" and
+ optionally "DCD blocks" (see below).
+ - Each "section" is started by the "SECTION" instruction.
+ - The "SECTION" instruction has the following semantics:
+
+ SECTION u32_section_number [BOOTABLE]
+ - u32_section_number :: User-selected ID of the section
+ - BOOTABLE :: Sets the section as bootable
+
+ - A bootable section is one from which the BootROM starts executing
+ subsequent instructions or code. Exactly one section must be selected
+ as bootable, usually the one containing the instructions and data to
+ load the bootloader.
+
+ - A "SECTION" must be immediatelly followed by a "TAG" instruction.
+ - The "TAG" instruction has the following semantics:
+
+ TAG [LAST]
+ - LAST :: Flag denoting the last section in the file
+
+ - After a "TAG" unstruction, any of the following instructions may follow
+ in any order and any quantity:
+
+ NOOP
+ - This instruction does nothing
+
+ LOAD u32_address string_filename
+ - Instructs the BootROM to load file pointed by "string_filename" onto
+ address "u32_address".
+
+ LOAD IVT u32_address u32_IVT_entry_point
+ - Crafts and loads IVT onto address "u32_address" with the entry point
+ of u32_IVT_entry_point.
+ - i.MX28-specific instruction!
+
+ LOAD DCD u32_address u32_DCD_block_ID
+ - Loads the DCD block with ID "u32_DCD_block_ID" onto address
+ "u32_address" and executes the contents of this DCD block
+ - i.MX28-specific instruction!
+
+ FILL u32_address u32_pattern u32_length
+ - Starts to write memory from addres "u32_address" with a pattern
+ specified by "u32_pattern". Writes exactly "u32_length" bytes of the
+ pattern.
+
+ JUMP [HAB] u32_address [u32_r0_arg]
+ - Jumps onto memory address specified by "u32_address" by setting this
+ address in PT. The BootROM will pass the "u32_r0_arg" value in ARM
+ register "r0" to the executed code if this option is specified.
+ Otherwise, ARM register "r0" will default to value 0x00000000. The
+ optional "HAB" flag is i.MX28-specific flag turning on the HAB boot.
+
+ CALL [HAB] u32_address [u32_r0_arg]
+ - See JUMP instruction above, as the operation is exactly the same with
+ one difference. The CALL instruction does allow returning into the
+ BootROM from the executed code. U-Boot makes use of this in it's SPL
+ code.
+
+ MODE string_mode
+ - Restart the CPU and start booting from device specified by the
+ "string_mode" argument. The "string_mode" differs for each CPU
+ and can be:
+ i.MX23, string_mode = USB/I2C/SPI1_FLASH/SPI2_FLASH/NAND_BCH
+ JTAG/SPI3_EEPROM/SD_SSP0/SD_SSP1
+ i.MX28, string_mode = USB/I2C/SPI2_FLASH/SPI3_FLASH/NAND_BCH
+ JTAG/SPI2_EEPROM/SD_SSP0/SD_SSP1
+
+ - An optional "DCD" blocks can be added at the begining of the configuration
+ file. Note that the DCD is only supported on i.MX28.
+ - The DCD blocks must be inserted before the first "section" in the
+ configuration file.
+ - The DCD block has the following semantics:
+
+ DCD u32_DCD_block_ID
+ - u32_DCD_block_ID :: The ID number of the DCD block, must match
+ the ID number used by "LOAD DCD" instruction.
+
+ - The DCD block must be followed by one of the following instructions. All
+ of the instructions operate either on 1, 2 or 4 bytes. This is selected by
+ the 'n' suffix of the instruction:
+
+ WRITE.n u32_address u32_value
+ - Write the "u32_value" to the "u32_address" address.
+
+ ORR.n u32_address u32_value
+ - Read the "u32_address", perform a bitwise-OR with the "u32_value" and
+ write the result back to "u32_address".
+
+ ANDC.n u32_address u32_value
+ - Read the "u32_address", perform a bitwise-AND with the complement of
+ "u32_value" and write the result back to "u32_address".
+
+ EQZ.n u32_address u32_count
+ - Read the "u32_address" at most "u32_count" times and test if the value
+ read is zero. If it is, break the loop earlier.
+
+ NEZ.n u32_address u32_count
+ - Read the "u32_address" at most "u32_count" times and test if the value
+ read is non-zero. If it is, break the loop earlier.
+
+ EQ.n u32_address u32_mask
+ - Read the "u32_address" in a loop and test if the result masked with
+ "u32_mask" equals the "u32_mask". If the values are equal, break the
+ reading loop.
+
+ NEQ.n u32_address u32_mask
+ - Read the "u32_address" in a loop and test if the result masked with
+ "u32_mask" does not equal the "u32_mask". If the values are not equal,
+ break the reading loop.
+
+ NOOP
+ - This instruction does nothing.
+
+- If the verbose output from the BootROM is enabled, the BootROM will produce a
+ letter on the Debug UART for each instruction it started processing. Here is a
+ mapping between the above instructions and the BootROM verbose output:
+
+ H -- SB Image header loaded
+ T -- TAG instruction
+ N -- NOOP instruction
+ L -- LOAD instruction
+ F -- FILL instruction
+ J -- JUMP instruction
+ C -- CALL instruction
+ M -- MODE instruction
+
+Usage -- verifying image:
+=========================
+
+The mxsimage can also verify and dump contents of an image. Use the following
+syntax to verify and dump contents of an image:
+
+ mkimage -l <input bootstream file>
+
+This will output all the information from the SB image header and all the
+instructions contained in the SB image. It will also check if the various
+checksums in the SB image are correct.