aboutsummaryrefslogtreecommitdiff
path: root/doc/usage
diff options
context:
space:
mode:
authorSimon Glass2023-06-23 13:22:06 +0100
committerHeinrich Schuchardt2023-06-23 16:28:13 +0200
commitad29e08b79fd779a758b24106c8148a9c140f025 (patch)
tree0ae339446184561cad75e873a128593c3a376b3b /doc/usage
parent3c1e2c3261ce2b00455ad18a0e6ea10ed7af96eb (diff)
doc: Bring in FIT signature files
Bring these files into the documentation. Fix 'wtih' and 'it' typos and repeated 'could' while we are here. Signed-off-by: Simon Glass <sjg@chromium.org>
Diffstat (limited to 'doc/usage')
-rw-r--r--doc/usage/cmd/source.rst2
-rw-r--r--doc/usage/fit/beaglebone_vboot.rst612
-rw-r--r--doc/usage/fit/index.rst3
-rw-r--r--doc/usage/fit/signature.rst760
-rw-r--r--doc/usage/fit/verified-boot.rst107
5 files changed, 1483 insertions, 1 deletions
diff --git a/doc/usage/cmd/source.rst b/doc/usage/cmd/source.rst
index 61a45059096..6f5fa285134 100644
--- a/doc/usage/cmd/source.rst
+++ b/doc/usage/cmd/source.rst
@@ -22,7 +22,7 @@ Two formats for script files exist:
* Flat Image Tree (FIT)
The benefit of the FIT images is that they can be signed and verifed as
-decribed in :download:`signature.txt <../../uImage.FIT/signature.txt>`.
+described in :doc:`../fit/signature`.
Both formats can be created with the mkimage tool.
diff --git a/doc/usage/fit/beaglebone_vboot.rst b/doc/usage/fit/beaglebone_vboot.rst
new file mode 100644
index 00000000000..0580ee10bdc
--- /dev/null
+++ b/doc/usage/fit/beaglebone_vboot.rst
@@ -0,0 +1,612 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+Verified Boot on the Beaglebone Black
+=====================================
+
+Introduction
+------------
+
+Before reading this, please read :doc:`verified-boot` and :doc:`signature`.
+These instructions are for mainline U-Boot from v2014.07 onwards.
+
+There is quite a bit of documentation in this directory describing how
+verified boot works in U-Boot. There is also a test which runs through the
+entire process of signing an image and running U-Boot (sandbox) to check it.
+However, it might be useful to also have an example on a real board.
+
+Beaglebone Black is a fairly common board so seems to be a reasonable choice
+for an example of how to enable verified boot using U-Boot.
+
+First a note that may to help avoid confusion. U-Boot and Linux both use
+device tree. They may use the same device tree source, but it is seldom useful
+for them to use the exact same binary from the same place. More typically,
+U-Boot has its device tree packaged with it, and the kernel's device tree is
+packaged with the kernel. In particular this is important with verified boot,
+since U-Boot's device tree must be immutable. If it can be changed then the
+public keys can be changed and verified boot is useless. An attacker can
+simply generate a new key and put his public key into U-Boot so that
+everything verifies. On the other hand the kernel's device tree typically
+changes when the kernel changes, so it is useful to package an updated device
+tree with the kernel binary. U-Boot supports the latter with its flexible FIT
+format (Flat Image Tree).
+
+
+Overview
+--------
+
+The steps are roughly as follows:
+
+#. Build U-Boot for the board, with the verified boot options enabled.
+
+#. Obtain a suitable Linux kernel
+
+#. Create a Image Tree Source file (ITS) file describing how you want the
+ kernel to be packaged, compressed and signed.
+
+#. Create a key pair
+
+#. Sign the kernel
+
+#. Put the public key into U-Boot's image
+
+#. Put U-Boot and the kernel onto the board
+
+#. Try it
+
+
+Step 1: Build U-Boot
+--------------------
+
+a. Set up the environment variable to point to your toolchain. You will need
+ this for U-Boot and also for the kernel if you build it. For example if you
+ installed a Linaro version manually it might be something like::
+
+ export CROSS_COMPILE=/opt/linaro/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux/bin/arm-linux-gnueabihf-
+
+ or if you just installed gcc-arm-linux-gnueabi then it might be::
+
+ export CROSS_COMPILE=arm-linux-gnueabi-
+
+b. Configure and build U-Boot with verified boot enabled::
+
+ export UBOOT=/path/to/u-boot
+ cd $UBOOT
+ # You can add -j10 if you have 10 CPUs to make it faster
+ make O=b/am335x_boneblack_vboot am335x_boneblack_vboot_config all
+ export UOUT=$UBOOT/b/am335x_boneblack_vboot
+
+c. You will now have a U-Boot image::
+
+ file b/am335x_boneblack_vboot/u-boot-dtb.img
+ b/am335x_boneblack_vboot/u-boot-dtb.img: u-boot legacy uImage,
+ U-Boot 2014.07-rc2-00065-g2f69f8, Firmware/ARM, Firmware Image
+ (Not compressed), 395375 bytes, Sat May 31 16:19:04 2014,
+ Load Address: 0x80800000, Entry Point: 0x00000000,
+ Header CRC: 0x0ABD6ACA, Data CRC: 0x36DEF7E4
+
+
+Step 2: Build Linux
+--------------------
+
+a. Find the kernel image ('Image') and device tree (.dtb) file you plan to
+ use. In our case it is am335x-boneblack.dtb and it is built with the kernel.
+ At the time of writing an SD Boot image can be obtained from here::
+
+ http://www.elinux.org/Beagleboard:Updating_The_Software#Image_For_Booting_From_microSD
+
+ You can write this to an SD card and then mount it to extract the kernel and
+ device tree files.
+
+ You can also build a kernel. Instructions for this are are here::
+
+ http://elinux.org/Building_BBB_Kernel
+
+ or you can use your favourite search engine. Following these instructions
+ produces a kernel Image and device tree files. For the record the steps
+ were::
+
+ export KERNEL=/path/to/kernel
+ cd $KERNEL
+ git clone git://github.com/beagleboard/kernel.git .
+ git checkout v3.14
+ ./patch.sh
+ cp configs/beaglebone kernel/arch/arm/configs/beaglebone_defconfig
+ cd kernel
+ make beaglebone_defconfig
+ make uImage dtbs # -j10 if you have 10 CPUs
+ export OKERNEL=$KERNEL/kernel/arch/arm/boot
+
+b. You now have the 'Image' and 'am335x-boneblack.dtb' files needed to boot.
+
+
+Step 3: Create the ITS
+----------------------
+
+Set up a directory for your work::
+
+ export WORK=/path/to/dir
+ cd $WORK
+
+Put this into a file in that directory called sign.its::
+
+ /dts-v1/;
+
+ / {
+ description = "Beaglebone black";
+ #address-cells = <1>;
+
+ images {
+ kernel {
+ data = /incbin/("Image.lzo");
+ type = "kernel";
+ arch = "arm";
+ os = "linux";
+ compression = "lzo";
+ load = <0x80008000>;
+ entry = <0x80008000>;
+ hash-1 {
+ algo = "sha1";
+ };
+ };
+ fdt-1 {
+ description = "beaglebone-black";
+ data = /incbin/("am335x-boneblack.dtb");
+ type = "flat_dt";
+ arch = "arm";
+ compression = "none";
+ hash-1 {
+ algo = "sha1";
+ };
+ };
+ };
+ configurations {
+ default = "conf-1";
+ conf-1 {
+ kernel = "kernel";
+ fdt = "fdt-1";
+ signature-1 {
+ algo = "sha1,rsa2048";
+ key-name-hint = "dev";
+ sign-images = "fdt", "kernel";
+ };
+ };
+ };
+ };
+
+
+The explanation for this is all in the documentation you have already read.
+But briefly it packages a kernel and device tree, and provides a single
+configuration to be signed with a key named 'dev'. The kernel is compressed
+with LZO to make it smaller.
+
+
+Step 4: Create a key pair
+-------------------------
+
+See :doc:`signature` for details on this step::
+
+ cd $WORK
+ mkdir keys
+ openssl genrsa -F4 -out keys/dev.key 2048
+ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
+
+Note: keys/dev.key contains your private key and is very secret. If anyone
+gets access to that file they can sign kernels with it. Keep it secure.
+
+
+Step 5: Sign the kernel
+-----------------------
+
+We need to use mkimage (which was built when you built U-Boot) to package the
+Linux kernel into a FIT (Flat Image Tree, a flexible file format that U-Boot
+can load) using the ITS file you just created.
+
+At the same time we must put the public key into U-Boot device tree, with the
+'required' property, which tells U-Boot that this key must be verified for the
+image to be valid. You will make this key available to U-Boot for booting in
+step 6::
+
+ ln -s $OKERNEL/dts/am335x-boneblack.dtb
+ ln -s $OKERNEL/Image
+ ln -s $UOUT/u-boot-dtb.img
+ cp $UOUT/arch/arm/dts/am335x-boneblack.dtb am335x-boneblack-pubkey.dtb
+ lzop Image
+ $UOUT/tools/mkimage -f sign.its -K am335x-boneblack-pubkey.dtb -k keys -r image.fit
+
+You should see something like this::
+
+ FIT description: Beaglebone black
+ Created: Sun Jun 1 12:50:30 2014
+ Image 0 (kernel)
+ Description: unavailable
+ Created: Sun Jun 1 12:50:30 2014
+ Type: Kernel Image
+ Compression: lzo compressed
+ Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
+ Architecture: ARM
+ OS: Linux
+ Load Address: 0x80008000
+ Entry Point: 0x80008000
+ Hash algo: sha1
+ Hash value: c94364646427e10f423837e559898ef02c97b988
+ Image 1 (fdt-1)
+ Description: beaglebone-black
+ Created: Sun Jun 1 12:50:30 2014
+ Type: Flat Device Tree
+ Compression: uncompressed
+ Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
+ Architecture: ARM
+ Hash algo: sha1
+ Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
+ Default Configuration: 'conf-1'
+ Configuration 0 (conf-1)
+ Description: unavailable
+ Kernel: kernel
+ FDT: fdt-1
+
+
+Now am335x-boneblack-pubkey.dtb contains the public key and image.fit contains
+the signed kernel. Jump to step 6 if you like, or continue reading to increase
+your understanding.
+
+You can also run fit_check_sign to check it::
+
+ $UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
+
+which results in::
+
+ Verifying Hash Integrity ... sha1,rsa2048:dev+
+ ## Loading kernel from FIT Image at 7fc6ee469000 ...
+ Using 'conf-1' configuration
+ Verifying Hash Integrity ...
+ sha1,rsa2048:dev+
+ OK
+
+ Trying 'kernel' kernel subimage
+ Description: unavailable
+ Created: Sun Jun 1 12:50:30 2014
+ Type: Kernel Image
+ Compression: lzo compressed
+ Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
+ Architecture: ARM
+ OS: Linux
+ Load Address: 0x80008000
+ Entry Point: 0x80008000
+ Hash algo: sha1
+ Hash value: c94364646427e10f423837e559898ef02c97b988
+ Verifying Hash Integrity ...
+ sha1+
+ OK
+
+ Unimplemented compression type 4
+ ## Loading fdt from FIT Image at 7fc6ee469000 ...
+ Using 'conf-1' configuration
+ Trying 'fdt-1' fdt subimage
+ Description: beaglebone-black
+ Created: Sun Jun 1 12:50:30 2014
+ Type: Flat Device Tree
+ Compression: uncompressed
+ Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
+ Architecture: ARM
+ Hash algo: sha1
+ Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
+ Verifying Hash Integrity ...
+ sha1+
+ OK
+
+ Loading Flat Device Tree ... OK
+
+ ## Loading ramdisk from FIT Image at 7fc6ee469000 ...
+ Using 'conf-1' configuration
+ Could not find subimage node
+
+ Signature check OK
+
+
+At the top, you see "sha1,rsa2048:dev+". This means that it checked an RSA key
+of size 2048 bits using SHA1 as the hash algorithm. The key name checked was
+'dev' and the '+' means that it verified. If it showed '-' that would be bad.
+
+Once the configuration is verified it is then possible to rely on the hashes
+in each image referenced by that configuration. So fit_check_sign goes on to
+load each of the images. We have a kernel and an FDT but no ramkdisk. In each
+case fit_check_sign checks the hash and prints sha1+ meaning that the SHA1
+hash verified. This means that none of the images has been tampered with.
+
+There is a test in test/vboot which uses U-Boot's sandbox build to verify that
+the above flow works.
+
+But it is fun to do this by hand, so you can load image.fit into a hex editor
+like ghex, and change a byte in the kernel::
+
+ $UOUT/tools/fit_info -f image.fit -n /images/kernel -p data
+ NAME: kernel
+ LEN: 7790938
+ OFF: 168
+
+This tells us that the kernel starts at byte offset 168 (decimal) in image.fit
+and extends for about 7MB. Try changing a byte at 0x2000 (say) and run
+fit_check_sign again. You should see something like::
+
+ Verifying Hash Integrity ... sha1,rsa2048:dev+
+ ## Loading kernel from FIT Image at 7f5a39571000 ...
+ Using 'conf-1' configuration
+ Verifying Hash Integrity ...
+ sha1,rsa2048:dev+
+ OK
+
+ Trying 'kernel' kernel subimage
+ Description: unavailable
+ Created: Sun Jun 1 13:09:21 2014
+ Type: Kernel Image
+ Compression: lzo compressed
+ Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
+ Architecture: ARM
+ OS: Linux
+ Load Address: 0x80008000
+ Entry Point: 0x80008000
+ Hash algo: sha1
+ Hash value: c94364646427e10f423837e559898ef02c97b988
+ Verifying Hash Integrity ...
+ sha1 error
+ Bad hash value for 'hash-1' hash node in 'kernel' image node
+ Bad Data Hash
+
+ ## Loading fdt from FIT Image at 7f5a39571000 ...
+ Using 'conf-1' configuration
+ Trying 'fdt-1' fdt subimage
+ Description: beaglebone-black
+ Created: Sun Jun 1 13:09:21 2014
+ Type: Flat Device Tree
+ Compression: uncompressed
+ Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
+ Architecture: ARM
+ Hash algo: sha1
+ Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
+ Verifying Hash Integrity ...
+ sha1+
+ OK
+
+ Loading Flat Device Tree ... OK
+
+ ## Loading ramdisk from FIT Image at 7f5a39571000 ...
+ Using 'conf-1' configuration
+ Could not find subimage node
+
+ Signature check Bad (error 1)
+
+
+It has detected the change in the kernel.
+
+You can also be sneaky and try to switch images, using the libfdt utilities
+that come with dtc (package name is device-tree-compiler but you will need a
+recent version like 1.4::
+
+ dtc -v
+ Version: DTC 1.4.0
+
+First we can check which nodes are actually hashed by the configuration::
+
+ $ fdtget -l image.fit /
+ images
+ configurations
+
+ $ fdtget -l image.fit /configurations
+ conf-1
+ fdtget -l image.fit /configurations/conf-1
+ signature-1
+
+ $ fdtget -p image.fit /configurations/conf-1/signature-1
+ hashed-strings
+ hashed-nodes
+ timestamp
+ signer-version
+ signer-name
+ value
+ algo
+ key-name-hint
+ sign-images
+
+ $ fdtget image.fit /configurations/conf-1/signature-1 hashed-nodes
+ / /configurations/conf-1 /images/fdt-1 /images/fdt-1/hash /images/kernel /images/kernel/hash-1
+
+This gives us a bit of a look into the signature that mkimage added. Note you
+can also use fdtdump to list the entire device tree.
+
+Say we want to change the kernel that this configuration uses
+(/images/kernel). We could just put a new kernel in the image, but we will
+need to change the hash to match. Let's simulate that by changing a byte of
+the hash::
+
+ fdtget -tx image.fit /images/kernel/hash-1 value
+ c9436464 6427e10f 423837e5 59898ef0 2c97b988
+ fdtput -tx image.fit /images/kernel/hash-1 value c9436464 6427e10f 423837e5 59898ef0 2c97b981
+
+Now check it again::
+
+ $UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
+ Verifying Hash Integrity ... sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
+ rsa_verify_with_keynode: RSA failed to verify: -13
+ -
+ Failed to verify required signature 'key-dev'
+ Signature check Bad (error 1)
+
+This time we don't even get as far as checking the images, since the
+configuration signature doesn't match. We can't change any hashes without the
+signature check noticing. The configuration is essentially locked. U-Boot has
+a public key for which it requires a match, and will not permit the use of any
+configuration that does not match that public key. The only way the
+configuration will match is if it was signed by the matching private key.
+
+It would also be possible to add a new signature node that does match your new
+configuration. But that won't work since you are not allowed to change the
+configuration in any way. Try it with a fresh (valid) image if you like by
+running the mkimage link again. Then::
+
+ fdtput -p image.fit /configurations/conf-1/signature-1 value fred
+ $UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
+ Verifying Hash Integrity ... -
+ sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
+ rsa_verify_with_keynode: RSA failed to verify: -13
+ -
+ Failed to verify required signature 'key-dev'
+ Signature check Bad (error 1)
+
+
+Of course it would be possible to add an entirely new configuration and boot
+with that, but it still needs to be signed, so it won't help.
+
+
+6. Put the public key into U-Boot's image
+-----------------------------------------
+
+Having confirmed that the signature is doing its job, let's try it out in
+U-Boot on the board. U-Boot needs access to the public key corresponding to
+the private key that you signed with so that it can verify any kernels that
+you sign::
+
+ cd $UBOOT
+ make O=b/am335x_boneblack_vboot EXT_DTB=${WORK}/am335x-boneblack-pubkey.dtb
+
+Here we are overriding the normal device tree file with our one, which
+contains the public key.
+
+Now you have a special U-Boot image with the public key. It can verify can
+kernel that you sign with the private key as in step 5.
+
+If you like you can take a look at the public key information that mkimage
+added to U-Boot's device tree::
+
+ fdtget -p am335x-boneblack-pubkey.dtb /signature/key-dev
+ required
+ algo
+ rsa,r-squared
+ rsa,modulus
+ rsa,n0-inverse
+ rsa,num-bits
+ key-name-hint
+
+This has information about the key and some pre-processed values which U-Boot
+can use to verify against it. These values are obtained from the public key
+certificate by mkimage, but require quite a bit of code to generate. To save
+code space in U-Boot, the information is extracted and written in raw form for
+U-Boot to easily use. The same mechanism is used in Google's Chrome OS.
+
+Notice the 'required' property. This marks the key as required - U-Boot will
+not boot any image that does not verify against this key.
+
+
+7. Put U-Boot and the kernel onto the board
+-------------------------------------------
+
+The method here varies depending on how you are booting. For this example we
+are booting from an micro-SD card with two partitions, one for U-Boot and one
+for Linux. Put it into your machine and write U-Boot and the kernel to it.
+Here the card is /dev/sde::
+
+ cd $WORK
+ export UDEV=/dev/sde1 # Change thes two lines to the correct device
+ export KDEV=/dev/sde2
+ sudo mount $UDEV /mnt/tmp && sudo cp $UOUT/u-boot-dtb.img /mnt/tmp/u-boot.img && sleep 1 && sudo umount $UDEV
+ sudo mount $KDEV /mnt/tmp && sudo cp $WORK/image.fit /mnt/tmp/boot/image.fit && sleep 1 && sudo umount $KDEV
+
+
+8. Try it
+---------
+
+Boot the board using the commands below::
+
+ setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
+ ext2load mmc 0:2 82000000 /boot/image.fit
+ bootm 82000000
+
+You should then see something like this::
+
+ U-Boot# setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
+ U-Boot# ext2load mmc 0:2 82000000 /boot/image.fit
+ 7824930 bytes read in 589 ms (12.7 MiB/s)
+ U-Boot# bootm 82000000
+ ## Loading kernel from FIT Image at 82000000 ...
+ Using 'conf-1' configuration
+ Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
+ Trying 'kernel' kernel subimage
+ Description: unavailable
+ Created: 2014-06-01 19:32:54 UTC
+ Type: Kernel Image
+ Compression: lzo compressed
+ Data Start: 0x820000a8
+ Data Size: 7790938 Bytes = 7.4 MiB
+ Architecture: ARM
+ OS: Linux
+ Load Address: 0x80008000
+ Entry Point: 0x80008000
+ Hash algo: sha1
+ Hash value: c94364646427e10f423837e559898ef02c97b988
+ Verifying Hash Integrity ... sha1+ OK
+ ## Loading fdt from FIT Image at 82000000 ...
+ Using 'conf-1' configuration
+ Trying 'fdt-1' fdt subimage
+ Description: beaglebone-black
+ Created: 2014-06-01 19:32:54 UTC
+ Type: Flat Device Tree
+ Compression: uncompressed
+ Data Start: 0x8276e2ec
+ Data Size: 31547 Bytes = 30.8 KiB
+ Architecture: ARM
+ Hash algo: sha1
+ Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
+ Verifying Hash Integrity ... sha1+ OK
+ Booting using the fdt blob at 0x8276e2ec
+ Uncompressing Kernel Image ... OK
+ Loading Device Tree to 8fff5000, end 8ffffb3a ... OK
+
+ Starting kernel ...
+
+ [ 0.582377] omap_init_mbox: hwmod doesn't have valid attrs
+ [ 2.589651] musb-hdrc musb-hdrc.0.auto: Failed to request rx1.
+ [ 2.595830] musb-hdrc musb-hdrc.0.auto: musb_init_controller failed with status -517
+ [ 2.606470] musb-hdrc musb-hdrc.1.auto: Failed to request rx1.
+ [ 2.612723] musb-hdrc musb-hdrc.1.auto: musb_init_controller failed with status -517
+ [ 2.940808] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
+ [ 7.248889] libphy: PHY 4a101000.mdio:01 not found
+ [ 7.253995] net eth0: phy 4a101000.mdio:01 not found on slave 1
+ systemd-fsck[83]: Angstrom: clean, 50607/218160 files, 306348/872448 blocks
+
+ .---O---.
+ | | .-. o o
+ | | |-----.-----.-----.| | .----..-----.-----.
+ | | | __ | ---'| '--.| .-'| | |
+ | | | | | |--- || --'| | | ' | | | |
+ '---'---'--'--'--. |-----''----''--' '-----'-'-'-'
+ -' |
+ '---'
+
+ The Angstrom Distribution beaglebone ttyO0
+
+ Angstrom v2012.12 - Kernel 3.14.1+
+
+ beaglebone login:
+
+At this point your kernel has been verified and you can be sure that it is one
+that you signed. As an exercise, try changing image.fit as in step 5 and see
+what happens.
+
+
+Further Improvements
+--------------------
+
+Several of the steps here can be easily automated. In particular it would be
+capital if signing and packaging a kernel were easy, perhaps a simple make
+target in the kernel.
+
+Some mention of how to use multiple .dtb files in a FIT might be useful.
+
+U-Boot's verified boot mechanism has not had a robust and independent security
+review. Such a review should look at the implementation and its resistance to
+attacks.
+
+Perhaps the verified boot feature could be integrated into the Amstrom
+distribution.
+
+
+.. sectionauthor:: Simon Glass <sjg@chromium.org>, 2-June-14
diff --git a/doc/usage/fit/index.rst b/doc/usage/fit/index.rst
index 0635d06b811..0576675ec00 100644
--- a/doc/usage/fit/index.rst
+++ b/doc/usage/fit/index.rst
@@ -12,3 +12,6 @@ doc/uImage.FIT
source_file_format
x86-fit-boot
+ signature
+ verified-boot
+ beaglebone_vboot
diff --git a/doc/usage/fit/signature.rst b/doc/usage/fit/signature.rst
new file mode 100644
index 00000000000..7d8292ece86
--- /dev/null
+++ b/doc/usage/fit/signature.rst
@@ -0,0 +1,760 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+U-Boot FIT Signature Verification
+=================================
+
+Introduction
+------------
+
+FIT supports hashing of images so that these hashes can be checked on
+loading. This protects against corruption of the image. However it does not
+prevent the substitution of one image for another.
+
+The signature feature allows the hash to be signed with a private key such
+that it can be verified using a public key later. Provided that the private
+key is kept secret and the public key is stored in a non-volatile place,
+any image can be verified in this way.
+
+See verified-boot.txt for more general information on verified boot.
+
+
+Concepts
+--------
+
+Some familiarity with public key cryptography is assumed in this section.
+
+The procedure for signing is as follows:
+
+ - hash an image in the FIT
+ - sign the hash with a private key to produce a signature
+ - store the resulting signature in the FIT
+
+The procedure for verification is:
+
+ - read the FIT
+ - obtain the public key
+ - extract the signature from the FIT
+ - hash the image from the FIT
+ - verify (with the public key) that the extracted signature matches the
+ hash
+
+The signing is generally performed by mkimage, as part of making a firmware
+image for the device. The verification is normally done in U-Boot on the
+device.
+
+
+Algorithms
+----------
+In principle any suitable algorithm can be used to sign and verify a hash.
+U-Boot supports a few hashing and verification algorithms. See below for
+details.
+
+While it is acceptable to bring in large cryptographic libraries such as
+openssl on the host side (e.g. mkimage), it is not desirable for U-Boot.
+For the run-time verification side, it is important to keep code and data
+size as small as possible.
+
+For this reason the RSA image verification uses pre-processed public keys
+which can be used with a very small amount of code - just some extraction
+of data from the FDT and exponentiation mod n. Code size impact is a little
+under 5KB on Tegra Seaboard, for example.
+
+It is relatively straightforward to add new algorithms if required. If
+another RSA variant is needed, then it can be added with the
+U_BOOT_CRYPTO_ALGO() macro. If another algorithm is needed (such as DSA) then
+it can be placed in a directory alongside lib/rsa/, and its functions added
+using U_BOOT_CRYPTO_ALGO().
+
+
+Creating an RSA key pair and certificate
+----------------------------------------
+To create a new public/private key pair, size 2048 bits::
+
+ $ openssl genpkey -algorithm RSA -out keys/dev.key \
+ -pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537
+
+To create a certificate for this containing the public key::
+
+ $ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
+
+If you like you can look at the public key also::
+
+ $ openssl rsa -in keys/dev.key -pubout
+
+
+Device Tree Bindings
+--------------------
+The following properties are required in the FIT's signature node(s) to
+allow the signer to operate. These should be added to the .its file.
+Signature nodes sit at the same level as hash nodes and are called
+signature-1, signature-2, etc.
+
+algo
+ Algorithm name (e.g. "sha1,rsa2048")
+
+key-name-hint
+ Name of key to use for signing. The keys will normally be in
+ a single directory (parameter -k to mkimage). For a given key <name>, its
+ private key is stored in <name>.key and the certificate is stored in
+ <name>.crt.
+
+When the image is signed, the following properties are added (mandatory):
+
+value
+ The signature data (e.g. 256 bytes for 2048-bit RSA)
+
+When the image is signed, the following properties are optional:
+
+timestamp
+ Time when image was signed (standard Unix time_t format)
+
+signer-name
+ Name of the signer (e.g. "mkimage")
+
+signer-version
+ Version string of the signer (e.g. "2013.01")
+
+comment
+ Additional information about the signer or image
+
+padding
+ The padding algorithm, it may be pkcs-1.5 or pss,
+ if no value is provided we assume pkcs-1.5
+
+For config bindings (see Signed Configurations below), the following
+additional properties are optional:
+
+sign-images
+ A list of images to sign, each being a property of the conf
+ node that contains then. The default is "kernel,fdt" which means that these
+ two images will be looked up in the config and signed if present.
+
+For config bindings, these properties are added by the signer:
+
+hashed-nodes
+ A list of nodes which were hashed by the signer. Each is
+ a string - the full path to node. A typical value might be::
+
+ hashed-nodes = "/", "/configurations/conf-1", "/images/kernel",
+ "/images/kernel/hash-1", "/images/fdt-1",
+ "/images/fdt-1/hash-1";
+
+hashed-strings
+ The start and size of the string region of the FIT that was hashed
+
+Example: See :doc:`sign-images` for an example image tree source file and
+sign-configs.its for config signing.
+
+
+Public Key Storage
+------------------
+In order to verify an image that has been signed with a public key we need to
+have a trusted public key. This cannot be stored in the signed image, since
+it would be easy to alter. For this implementation we choose to store the
+public key in U-Boot's control FDT (using CONFIG_OF_CONTROL).
+
+Public keys should be stored as sub-nodes in a /signature node. Required
+properties are:
+
+algo
+ Algorithm name (e.g. "sha1,rsa2048" or "sha256,ecdsa256")
+
+Optional properties are:
+
+key-name-hint
+ Name of key used for signing. This is only a hint since it
+ is possible for the name to be changed. Verification can proceed by checking
+ all available signing keys until one matches.
+
+required
+ If present this indicates that the key must be verified for the
+ image / configuration to be considered valid. Only required keys are
+ normally verified by the FIT image booting algorithm. Valid values are
+ "image" to force verification of all images, and "conf" to force verification
+ of the selected configuration (which then relies on hashes in the images to
+ verify those).
+
+Each signing algorithm has its own additional properties.
+
+For RSA the following are mandatory:
+
+rsa,num-bits
+ Number of key bits (e.g. 2048)
+
+rsa,modulus
+ Modulus (N) as a big-endian multi-word integer
+
+rsa,exponent
+ Public exponent (E) as a 64 bit unsigned integer
+
+rsa,r-squared
+ (2^num-bits)^2 as a big-endian multi-word integer
+
+rsa,n0-inverse
+ -1 / modulus[0] mod 2^32
+
+For ECDSA the following are mandatory:
+
+ecdsa,curve
+ Name of ECDSA curve (e.g. "prime256v1")
+
+ecdsa,x-point
+ Public key X coordinate as a big-endian multi-word integer
+
+ecdsa,y-point
+ Public key Y coordinate as a big-endian multi-word integer
+
+These parameters can be added to a binary device tree using parameter -K of the
+mkimage command::
+
+ tools/mkimage -f fit.its -K control.dtb -k keys -r image.fit
+
+Here is an example of a generated device tree node::
+
+ signature {
+ key-dev {
+ required = "conf";
+ algo = "sha256,rsa2048";
+ rsa,r-squared = <0xb76d1acf 0xa1763ca5 0xeb2f126
+ 0x742edc80 0xd3f42177 0x9741d9d9
+ 0x35bb476e 0xff41c718 0xd3801430
+ 0xf22537cb 0xa7e79960 0xae32a043
+ 0x7da1427a 0x341d6492 0x3c2762f5
+ 0xaac04726 0x5b262d96 0xf984e86d
+ 0xb99443c7 0x17080c33 0x940f6892
+ 0xd57a95d1 0x6ea7b691 0xc5038fa8
+ 0x6bb48a6e 0x73f1b1ea 0x37160841
+ 0xe05715ce 0xa7c45bbd 0x690d82d5
+ 0x99c2454c 0x6ff117b3 0xd830683b
+ 0x3f81c9cf 0x1ca38a91 0x0c3392e4
+ 0xd817c625 0x7b8e9a24 0x175b89ea
+ 0xad79f3dc 0x4d50d7b4 0x9d4e90f8
+ 0xad9e2939 0xc165d6a4 0x0ada7e1b
+ 0xfb1bf495 0xfc3131c2 0xb8c6e604
+ 0xc2761124 0xf63de4a6 0x0e9565f9
+ 0xc8e53761 0x7e7a37a5 0xe99dcdae
+ 0x9aff7e1e 0xbd44b13d 0x6b0e6aa4
+ 0x038907e4 0x8e0d6850 0xef51bc20
+ 0xf73c94af 0x88bea7b1 0xcbbb1b30
+ 0xd024b7f3>;
+ rsa,modulus = <0xc0711d6cb 0x9e86db7f 0x45986dbe
+ 0x023f1e8c9 0xe1a4c4d0 0x8a0dfdc9
+ 0x023ba0c48 0x06815f6a 0x5caa0654
+ 0x07078c4b7 0x3d154853 0x40729023
+ 0x0b007c8fe 0x5a3647e5 0x23b41e20
+ 0x024720591 0x66915305 0x0e0b29b0
+ 0x0de2ad30d 0x8589430f 0xb1590325
+ 0x0fb9f5d5e 0x9eba752a 0xd88e6de9
+ 0x056b3dcc6 0x9a6b8e61 0x6784f61f
+ 0x000f39c21 0x5eec6b33 0xd78e4f78
+ 0x0921a305f 0xaa2cc27e 0x1ca917af
+ 0x06e1134f4 0xd48cac77 0x4e914d07
+ 0x0f707aa5a 0x0d141f41 0x84677f1d
+ 0x0ad47a049 0x028aedb6 0xd5536fcf
+ 0x03fef1e4f 0x133a03d2 0xfd7a750a
+ 0x0f9159732 0xd207812e 0x6a807375
+ 0x06434230d 0xc8e22dad 0x9f29b3d6
+ 0x07c44ac2b 0xfa2aad88 0xe2429504
+ 0x041febd41 0x85d0d142 0x7b194d65
+ 0x06e5d55ea 0x41116961 0xf3181dde
+ 0x068bf5fbc 0x3dd82047 0x00ee647e
+ 0x0d7a44ab3>;
+ rsa,exponent = <0x00 0x10001>;
+ rsa,n0-inverse = <0xb3928b85>;
+ rsa,num-bits = <0x800>;
+ key-name-hint = "dev";
+ };
+ };
+
+
+Signed Configurations
+---------------------
+While signing images is useful, it does not provide complete protection
+against several types of attack. For example, it is possible to create a
+FIT with the same signed images, but with the configuration changed such
+that a different one is selected (mix and match attack). It is also possible
+to substitute a signed image from an older FIT version into a newer FIT
+(roll-back attack).
+
+As an example, consider this FIT::
+
+ / {
+ images {
+ kernel-1 {
+ data = <data for kernel1>
+ signature-1 {
+ algo = "sha1,rsa2048";
+ value = <...kernel signature 1...>
+ };
+ };
+ kernel-2 {
+ data = <data for kernel2>
+ signature-1 {
+ algo = "sha1,rsa2048";
+ value = <...kernel signature 2...>
+ };
+ };
+ fdt-1 {
+ data = <data for fdt1>;
+ signature-1 {
+ algo = "sha1,rsa2048";
+ value = <...fdt signature 1...>
+ };
+ };
+ fdt-2 {
+ data = <data for fdt2>;
+ signature-1 {
+ algo = "sha1,rsa2048";
+ value = <...fdt signature 2...>
+ };
+ };
+ };
+ configurations {
+ default = "conf-1";
+ conf-1 {
+ kernel = "kernel-1";
+ fdt = "fdt-1";
+ };
+ conf-2 {
+ kernel = "kernel-2";
+ fdt = "fdt-2";
+ };
+ };
+ };
+
+Since both kernels are signed it is easy for an attacker to add a new
+configuration 3 with kernel 1 and fdt 2::
+
+ configurations {
+ default = "conf-1";
+ conf-1 {
+ kernel = "kernel-1";
+ fdt = "fdt-1";
+ };
+ conf-2 {
+ kernel = "kernel-2";
+ fdt = "fdt-2";
+ };
+ conf-3 {
+ kernel = "kernel-1";
+ fdt = "fdt-2";
+ };
+ };
+
+With signed images, nothing protects against this. Whether it gains an
+advantage for the attacker is debatable, but it is not secure.
+
+To solve this problem, we support signed configurations. In this case it
+is the configurations that are signed, not the image. Each image has its
+own hash, and we include the hash in the configuration signature.
+
+So the above example is adjusted to look like this::
+
+ / {
+ images {
+ kernel-1 {
+ data = <data for kernel1>
+ hash-1 {
+ algo = "sha1";
+ value = <...kernel hash 1...>
+ };
+ };
+ kernel-2 {
+ data = <data for kernel2>
+ hash-1 {
+ algo = "sha1";
+ value = <...kernel hash 2...>
+ };
+ };
+ fdt-1 {
+ data = <data for fdt1>;
+ hash-1 {
+ algo = "sha1";
+ value = <...fdt hash 1...>
+ };
+ };
+ fdt-2 {
+ data = <data for fdt2>;
+ hash-1 {
+ algo = "sha1";
+ value = <...fdt hash 2...>
+ };
+ };
+ };
+ configurations {
+ default = "conf-1";
+ conf-1 {
+ kernel = "kernel-1";
+ fdt = "fdt-1";
+ signature-1 {
+ algo = "sha1,rsa2048";
+ value = <...conf 1 signature...>;
+ };
+ };
+ conf-2 {
+ kernel = "kernel-2";
+ fdt = "fdt-2";
+ signature-1 {
+ algo = "sha1,rsa2048";
+ value = <...conf 1 signature...>;
+ };
+ };
+ };
+ };
+
+
+You can see that we have added hashes for all images (since they are no
+longer signed), and a signature to each configuration. In the above example,
+mkimage will sign configurations/conf-1, the kernel and fdt that are
+pointed to by the configuration (/images/kernel-1, /images/kernel-1/hash-1,
+/images/fdt-1, /images/fdt-1/hash-1) and the root structure of the image
+(so that it isn't possible to add or remove root nodes). The signature is
+written into /configurations/conf-1/signature-1/value. It can easily be
+verified later even if the FIT has been signed with other keys in the
+meantime.
+
+
+Details
+-------
+The signature node contains a property ('hashed-nodes') which lists all the
+nodes that the signature was made over. The image is walked in order and each
+tag processed as follows:
+
+DTB_BEGIN_NODE
+ The tag and the following name are included in the signature
+ if the node or its parent are present in 'hashed-nodes'
+
+DTB_END_NODE
+ The tag is included in the signature if the node or its parent
+ are present in 'hashed-nodes'
+
+DTB_PROPERTY
+ The tag, the length word, the offset in the string table, and
+ the data are all included if the current node is present in 'hashed-nodes'
+ and the property name is not 'data'.
+
+DTB_END
+ The tag is always included in the signature.
+
+DTB_NOP
+ The tag is included in the signature if the current node is present
+ in 'hashed-nodes'
+
+In addition, the signature contains a property 'hashed-strings' which contains
+the offset and length in the string table of the strings that are to be
+included in the signature (this is done last).
+
+IMPORTANT: To verify the signature outside u-boot, it is vital to not only
+calculate the hash of the image and verify the signature with that, but also to
+calculate the hashes of the kernel, fdt, and ramdisk images and check those
+match the hash values in the corresponding 'hash*' subnodes.
+
+
+Verification
+------------
+FITs are verified when loaded. After the configuration is selected a list
+of required images is produced. If there are 'required' public keys, then
+each image must be verified against those keys. This means that every image
+that might be used by the target needs to be signed with 'required' keys.
+
+This happens automatically as part of a bootm command when FITs are used.
+
+For Signed Configurations, the default verification behavior can be changed by
+the following optional property in /signature node in U-Boot's control FDT.
+
+required-mode
+ Valid values are "any" to allow verified boot to succeed if
+ the selected configuration is signed by any of the 'required' keys, and "all"
+ to allow verified boot to succeed if the selected configuration is signed by
+ all of the 'required' keys.
+
+This property can be added to a binary device tree using fdtput as shown in
+below examples::
+
+ fdtput -t s control.dtb /signature required-mode any
+ fdtput -t s control.dtb /signature required-mode all
+
+
+Enabling FIT Verification
+-------------------------
+In addition to the options to enable FIT itself, the following CONFIGs must
+be enabled:
+
+CONFIG_FIT_SIGNATURE
+ enable signing and verification in FITs
+
+CONFIG_RSA
+ enable RSA algorithm for signing
+
+CONFIG_ECDSA
+ enable ECDSA algorithm for signing
+
+WARNING: When relying on signed FIT images with required signature check
+the legacy image format is default disabled by not defining
+CONFIG_LEGACY_IMAGE_FORMAT
+
+
+Testing
+-------
+
+An easy way to test signing and verification is to use the test script
+provided in test/vboot/vboot_test.sh. This uses sandbox (a special version
+of U-Boot which runs under Linux) to show the operation of a 'bootm'
+command loading and verifying images.
+
+A sample run is show below::
+
+ $ make O=sandbox sandbox_config
+ $ make O=sandbox
+ $ O=sandbox ./test/vboot/vboot_test.sh
+
+
+Simple Verified Boot Test
+-------------------------
+
+Please see :doc:`verified-boot` for more information::
+
+ /home/hs/ids/u-boot/sandbox/tools/mkimage -D -I dts -O dtb -p 2000
+ Build keys
+ do sha1 test
+ Build FIT with signed images
+ Test Verified Boot Run: unsigned signatures:: OK
+ Sign images
+ Test Verified Boot Run: signed images: OK
+ Build FIT with signed configuration
+ Test Verified Boot Run: unsigned config: OK
+ Sign images
+ Test Verified Boot Run: signed config: OK
+ check signed config on the host
+ Signature check OK
+ OK
+ Test Verified Boot Run: signed config: OK
+ Test Verified Boot Run: signed config with bad hash: OK
+ do sha256 test
+ Build FIT with signed images
+ Test Verified Boot Run: unsigned signatures:: OK
+ Sign images
+ Test Verified Boot Run: signed images: OK
+ Build FIT with signed configuration
+ Test Verified Boot Run: unsigned config: OK
+ Sign images
+ Test Verified Boot Run: signed config: OK
+ check signed config on the host
+ Signature check OK
+ OK
+ Test Verified Boot Run: signed config: OK
+ Test Verified Boot Run: signed config with bad hash: OK
+
+ Test passed
+
+
+Software signing: keydir vs keyfile
+-----------------------------------
+
+In the simplest case, signing is done by giving mkimage the 'keyfile'. This is
+the path to a file containing the signing key.
+
+The alternative is to pass the 'keydir' argument. In this case the filename of
+the key is derived from the 'keydir' and the "key-name-hint" property in the
+FIT. In this case the "key-name-hint" property is mandatory, and the key must
+exist in "<keydir>/<key-name-hint>.<ext>" Here the extension "ext" is
+specific to the signing algorithm.
+
+
+Hardware Signing with PKCS#11 or with HSM
+-----------------------------------------
+
+Securely managing private signing keys can challenging, especially when the
+keys are stored on the file system of a computer that is connected to the
+Internet. If an attacker is able to steal the key, they can sign malicious FIT
+images which will appear genuine to your devices.
+
+An alternative solution is to keep your signing key securely stored on hardware
+device like a smartcard, USB token or Hardware Security Module (HSM) and have
+them perform the signing. PKCS#11 is standard for interfacing with these crypto
+device.
+
+Requirements:
+ - Smartcard/USB token/HSM which can work with some openssl engine
+ - openssl
+
+For pkcs11 engine usage:
+ - libp11 (provides pkcs11 engine)
+ - p11-kit (recommended to simplify setup)
+ - opensc (for smartcards and smartcard like USB devices)
+ - gnutls (recommended for key generation, p11tool)
+
+For generic HSMs respective openssl engine must be installed and locateable by
+openssl. This may require setting up LD_LIBRARY_PATH if engine is not installed
+to openssl's default search paths.
+
+PKCS11 engine support forms "key id" based on "keydir" and with
+"key-name-hint". "key-name-hint" is used as "object" name (if not defined in
+keydir). "keydir" (if defined) is used to define (prefix for) which PKCS11 source
+is being used for lookup up for the key.
+
+PKCS11 engine key ids
+ "pkcs11:<keydir>;object=<key-name-hint>;type=<public|private>"
+
+or, if keydir contains "object="
+ "pkcs11:<keydir>;type=<public|private>"
+
+or
+ "pkcs11:object=<key-name-hint>;type=<public|private>",
+
+Generic HSM engine support forms "key id" based on "keydir" and with
+"key-name-hint". If "keydir" is specified for mkimage it is used as a prefix in
+"key id" and is appended with "key-name-hint".
+
+Generic engine key ids:
+ "<keydir><key-name-hint>"
+
+or
+ "< key-name-hint>"
+
+In order to set the pin in the HSM, an environment variable "MKIMAGE_SIGN_PIN"
+can be specified.
+
+The following examples use the Nitrokey Pro using pkcs11 engine. Instructions
+for other devices may vary.
+
+Notes on pkcs11 engine setup:
+
+Make sure p11-kit, opensc are installed and that p11-kit is setup to use opensc.
+/usr/share/p11-kit/modules/opensc.module should be present on your system.
+
+
+Generating Keys On the Nitrokey::
+
+ $ gpg --card-edit
+
+ Reader ...........: Nitrokey Nitrokey Pro (xxxxxxxx0000000000000000) 00 00
+ Application ID ...: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
+ Version ..........: 2.1
+ Manufacturer .....: ZeitControl
+ Serial number ....: xxxxxxxx
+ Name of cardholder: [not set]
+ Language prefs ...: de
+ Sex ..............: unspecified
+ URL of public key : [not set]
+ Login data .......: [not set]
+ Signature PIN ....: forced
+ Key attributes ...: rsa2048 rsa2048 rsa2048
+ Max. PIN lengths .: 32 32 32
+ PIN retry counter : 3 0 3
+ Signature counter : 0
+ Signature key ....: [none]
+ Encryption key....: [none]
+ Authentication key: [none]
+ General key info..: [none]
+
+ gpg/card> generate
+ Make off-card backup of encryption key? (Y/n) n
+
+ Please note that the factory settings of the PINs are
+ PIN = '123456' Admin PIN = '12345678'
+ You should change them using the command --change-pin
+
+ What keysize do you want for the Signature key? (2048) 4096
+ The card will now be re-configured to generate a key of 4096 bits
+ Note: There is no guarantee that the card supports the requested size.
+ If the key generation does not succeed, please check the
+ documentation of your card to see what sizes are allowed.
+ What keysize do you want for the Encryption key? (2048) 4096
+ The card will now be re-configured to generate a key of 4096 bits
+ What keysize do you want for the Authentication key? (2048) 4096
+ The card will now be re-configured to generate a key of 4096 bits
+ Please specify how long the key should be valid.
+ 0 = key does not expire
+ <n> = key expires in n days
+ <n>w = key expires in n weeks
+ <n>m = key expires in n months
+ <n>y = key expires in n years
+ Key is valid for? (0)
+ Key does not expire at all
+ Is this correct? (y/N) y
+
+ GnuPG needs to construct a user ID to identify your key.
+
+ Real name: John Doe
+ Email address: john.doe@email.com
+ Comment:
+ You selected this USER-ID:
+ "John Doe <john.doe@email.com>"
+
+ Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
+
+
+Using p11tool to get the token URL:
+
+Depending on system configuration, gpg-agent may need to be killed first::
+
+ $ p11tool --provider /usr/lib/opensc-pkcs11.so --list-tokens
+ Token 0:
+ URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29
+ Label: OpenPGP card (User PIN (sig))
+ Type: Hardware token
+ Manufacturer: ZeitControl
+ Model: PKCS#15 emulated
+ Serial: 000xxxxxxxxx
+ Module: (null)
+
+
+ Token 1:
+ URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%29
+ Label: OpenPGP card (User PIN)
+ Type: Hardware token
+ Manufacturer: ZeitControl
+ Model: PKCS#15 emulated
+ Serial: 000xxxxxxxxx
+ Module: (null)
+
+Use the portion of the signature token URL after "pkcs11:" as the keydir argument (-k) to mkimage below.
+
+
+Use the URL of the token to list the private keys::
+
+ $ p11tool --login --provider /usr/lib/opensc-pkcs11.so --list-privkeys \
+ "pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29"
+ Token 'OpenPGP card (User PIN (sig))' with URL 'pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29' requires user PIN
+ Enter PIN:
+ Object 0:
+ URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29;id=%01;object=Signature%20key;type=private
+ Type: Private key
+ Label: Signature key
+ Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
+ ID: 01
+
+Use the label, in this case "Signature key" as the key-name-hint in your FIT.
+
+Create the fitImage::
+
+ $ ./tools/mkimage -f fit-image.its fitImage
+
+
+Sign the fitImage with the hardware key::
+
+ $ ./tools/mkimage -F -k \
+ "model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29" \
+ -K u-boot.dtb -N pkcs11 -r fitImage
+
+
+Future Work
+-----------
+
+- Roll-back protection using a TPM is done using the tpm command. This can
+ be scripted, but we might consider a default way of doing this, built into
+ bootm.
+
+
+Possible Future Work
+--------------------
+
+- More sandbox tests for failure modes
+- Passwords for keys/certificates
+- Perhaps implement OAEP
+- Enhance bootm to permit scripted signature verification (so that a script
+ can verify an image but not actually boot it)
+
+
+.. sectionauthor:: Simon Glass <sjg@chromium.org>, 1-1-13
diff --git a/doc/usage/fit/verified-boot.rst b/doc/usage/fit/verified-boot.rst
new file mode 100644
index 00000000000..301207711db
--- /dev/null
+++ b/doc/usage/fit/verified-boot.rst
@@ -0,0 +1,107 @@
+.. SPDX-License-Identifier: GPL-2.0+
+
+U-Boot Verified Boot
+====================
+
+Introduction
+------------
+
+Verified boot here means the verification of all software loaded into a
+machine during the boot process to ensure that it is authorised and correct
+for that machine.
+
+Verified boot extends from the moment of system reset to as far as you wish
+into the boot process. An example might be loading U-Boot from read-only
+memory, then loading a signed kernel, then using the kernel's dm-verity
+driver to mount a signed root filesystem.
+
+A key point is that it is possible to field-upgrade the software on machines
+which use verified boot. Since the machine will only run software that has
+been correctly signed, it is safe to read software from an updatable medium.
+It is also possible to add a secondary signed firmware image, in read-write
+memory, so that firmware can easily be upgraded in a secure manner.
+
+
+Signing
+-------
+
+Verified boot uses cryptographic algorithms to 'sign' software images.
+Images are signed using a private key known only to the signer, but can
+be verified using a public key. As its name suggests the public key can be
+made available without risk to the verification process. The private and
+public keys are mathematically related. For more information on how this
+works look up "public key cryptography" and "RSA" (a particular algorithm).
+
+The signing and verification process looks something like this::
+
+
+ Signing Verification
+ ======= ============
+
+ +--------------+ *
+ | RSA key pair | * +---------------+
+ | .key .crt | * | Public key in |
+ +--------------+ +------> public key ----->| trusted place |
+ | | * +---------------+
+ | | * |
+ v | * v
+ +---------+ | * +--------------+
+ | |---------+ * | |
+ | signer | * | U-Boot |
+ | |---------+ * | signature |--> yes/no
+ +---------+ | * | verification |
+ ^ | * | |
+ | | * +--------------+
+ | | * ^
+ +----------+ | * |
+ | Software | +----> signed image -------------+
+ | image | *
+ +----------+ *
+
+
+The signature algorithm relies only on the public key to do its work. Using
+this key it checks the signature that it finds in the image. If it verifies
+then we know that the image is OK.
+
+The public key from the signer allows us to verify and therefore trust
+software from updatable memory.
+
+It is critical that the public key be secure and cannot be tampered with.
+It can be stored in read-only memory, or perhaps protected by other on-chip
+crypto provided by some modern SOCs. If the public key can be changed, then
+the verification is worthless.
+
+
+Chaining Images
+---------------
+
+The above method works for a signer providing images to a run-time U-Boot.
+It is also possible to extend this scheme to a second level, like this:
+
+#. Master private key is used by the signer to sign a first-stage image.
+#. Master public key is placed in read-only memory.
+#. Secondary private key is created and used to sign second-stage images.
+#. Secondary public key is placed in first stage images
+#. We use the master public key to verify the first-stage image. We then
+ use the secondary public key in the first-stage image to verify the second-
+ state image.
+#. This chaining process can go on indefinitely. It is recommended to use a
+ different key at each stage, so that a compromise in one place will not
+ affect the whole change.
+
+
+Flattened Image Tree (FIT)
+--------------------------
+
+The FIT format is already widely used in U-Boot. It is a flattened device
+tree (FDT) in a particular format, with images contained within. FITs
+include hashes to verify images, so it is relatively straightforward to
+add signatures as well.
+
+The public key can be stored in U-Boot's CONFIG_OF_CONTROL device tree in
+a standard place. Then when a FIT is loaded it can be verified using that
+public key. Multiple keys and multiple signatures are supported.
+
+See :doc:`signature` for more information.
+
+.. sectionauthor:: Simon Glass <sjg@chromium.org> 1-1-13