aboutsummaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/davinci_nand.c
diff options
context:
space:
mode:
authorMiquel Raynal2018-08-16 17:30:07 +0200
committerJagan Teki2018-09-20 20:10:49 +0530
commita430fa06a4ac50e785fdbfb7f43c3cb14b35619c (patch)
tree08c848b10a9dc1bc865096f0bdce248218512e4d /drivers/mtd/nand/davinci_nand.c
parentce9bdc87436ef91129876c9b16fcf5111eea69aa (diff)
mtd: move NAND files into a raw/ subdirectory
NAND flavors, like serial and parallel, have a lot in common and would benefit to share code. Let's move raw (parallel) NAND specific code in a raw/ subdirectory, to ease the addition of a core file in nand/ and the introduction of a spi/ subdirectory specific to SPI NANDs. Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Diffstat (limited to 'drivers/mtd/nand/davinci_nand.c')
-rw-r--r--drivers/mtd/nand/davinci_nand.c833
1 files changed, 0 insertions, 833 deletions
diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c
deleted file mode 100644
index 305e68ad493..00000000000
--- a/drivers/mtd/nand/davinci_nand.c
+++ /dev/null
@@ -1,833 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0+
-/*
- * NAND driver for TI DaVinci based boards.
- *
- * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
- *
- * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
- */
-
-/*
- *
- * linux/drivers/mtd/nand/nand_davinci.c
- *
- * NAND Flash Driver
- *
- * Copyright (C) 2006 Texas Instruments.
- *
- * ----------------------------------------------------------------------------
- *
- * ----------------------------------------------------------------------------
- *
- * Overview:
- * This is a device driver for the NAND flash device found on the
- * DaVinci board which utilizes the Samsung k9k2g08 part.
- *
- Modifications:
- ver. 1.0: Feb 2005, Vinod/Sudhakar
- -
- */
-
-#include <common.h>
-#include <asm/io.h>
-#include <nand.h>
-#include <asm/ti-common/davinci_nand.h>
-
-/* Definitions for 4-bit hardware ECC */
-#define NAND_TIMEOUT 10240
-#define NAND_ECC_BUSY 0xC
-#define NAND_4BITECC_MASK 0x03FF03FF
-#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
-#define ECC_STATE_NO_ERR 0x0
-#define ECC_STATE_TOO_MANY_ERRS 0x1
-#define ECC_STATE_ERR_CORR_COMP_P 0x2
-#define ECC_STATE_ERR_CORR_COMP_N 0x3
-
-/*
- * Exploit the little endianness of the ARM to do multi-byte transfers
- * per device read. This can perform over twice as quickly as individual
- * byte transfers when buffer alignment is conducive.
- *
- * NOTE: This only works if the NAND is not connected to the 2 LSBs of
- * the address bus. On Davinci EVM platforms this has always been true.
- */
-static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- const u32 *nand = chip->IO_ADDR_R;
-
- /* Make sure that buf is 32 bit aligned */
- if (((int)buf & 0x3) != 0) {
- if (((int)buf & 0x1) != 0) {
- if (len) {
- *buf = readb(nand);
- buf += 1;
- len--;
- }
- }
-
- if (((int)buf & 0x3) != 0) {
- if (len >= 2) {
- *(u16 *)buf = readw(nand);
- buf += 2;
- len -= 2;
- }
- }
- }
-
- /* copy aligned data */
- while (len >= 4) {
- *(u32 *)buf = __raw_readl(nand);
- buf += 4;
- len -= 4;
- }
-
- /* mop up any remaining bytes */
- if (len) {
- if (len >= 2) {
- *(u16 *)buf = readw(nand);
- buf += 2;
- len -= 2;
- }
-
- if (len)
- *buf = readb(nand);
- }
-}
-
-static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
- int len)
-{
- struct nand_chip *chip = mtd_to_nand(mtd);
- const u32 *nand = chip->IO_ADDR_W;
-
- /* Make sure that buf is 32 bit aligned */
- if (((int)buf & 0x3) != 0) {
- if (((int)buf & 0x1) != 0) {
- if (len) {
- writeb(*buf, nand);
- buf += 1;
- len--;
- }
- }
-
- if (((int)buf & 0x3) != 0) {
- if (len >= 2) {
- writew(*(u16 *)buf, nand);
- buf += 2;
- len -= 2;
- }
- }
- }
-
- /* copy aligned data */
- while (len >= 4) {
- __raw_writel(*(u32 *)buf, nand);
- buf += 4;
- len -= 4;
- }
-
- /* mop up any remaining bytes */
- if (len) {
- if (len >= 2) {
- writew(*(u16 *)buf, nand);
- buf += 2;
- len -= 2;
- }
-
- if (len)
- writeb(*buf, nand);
- }
-}
-
-static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
-
- if (ctrl & NAND_CTRL_CHANGE) {
- IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
-
- if (ctrl & NAND_CLE)
- IO_ADDR_W |= MASK_CLE;
- if (ctrl & NAND_ALE)
- IO_ADDR_W |= MASK_ALE;
- this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
- }
-
- if (cmd != NAND_CMD_NONE)
- writeb(cmd, IO_ADDR_W);
-}
-
-#ifdef CONFIG_SYS_NAND_HW_ECC
-
-static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
-{
- u_int32_t ecc = 0;
-
- ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
- CONFIG_SYS_NAND_CS - 2]));
-
- return ecc;
-}
-
-static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
-{
- u_int32_t val;
-
- /* reading the ECC result register resets the ECC calculation */
- nand_davinci_readecc(mtd);
-
- val = __raw_readl(&davinci_emif_regs->nandfcr);
- val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
- val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
- __raw_writel(val, &davinci_emif_regs->nandfcr);
-}
-
-static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
-{
- u_int32_t tmp;
-
- tmp = nand_davinci_readecc(mtd);
-
- /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
- * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
- tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
-
- /* Invert so that erased block ECC is correct */
- tmp = ~tmp;
-
- *ecc_code++ = tmp;
- *ecc_code++ = tmp >> 8;
- *ecc_code++ = tmp >> 16;
-
- /* NOTE: the above code matches mainline Linux:
- * .PQR.stu ==> ~PQRstu
- *
- * MontaVista/TI kernels encode those bytes differently, use
- * complicated (and allegedly sometimes-wrong) correction code,
- * and usually shipped with U-Boot that uses software ECC:
- * .PQR.stu ==> PsQRtu
- *
- * If you need MV/TI compatible NAND I/O in U-Boot, it should
- * be possible to (a) change the mangling above, (b) reverse
- * that mangling in nand_davinci_correct_data() below.
- */
-
- return 0;
-}
-
-static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
-{
- struct nand_chip *this = mtd_to_nand(mtd);
- u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
- (read_ecc[2] << 16);
- u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
- (calc_ecc[2] << 16);
- u_int32_t diff = ecc_calc ^ ecc_nand;
-
- if (diff) {
- if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
- /* Correctable error */
- if ((diff >> (12 + 3)) < this->ecc.size) {
- uint8_t find_bit = 1 << ((diff >> 12) & 7);
- uint32_t find_byte = diff >> (12 + 3);
-
- dat[find_byte] ^= find_bit;
- pr_debug("Correcting single "
- "bit ECC error at offset: %d, bit: "
- "%d\n", find_byte, find_bit);
- return 1;
- } else {
- return -EBADMSG;
- }
- } else if (!(diff & (diff - 1))) {
- /* Single bit ECC error in the ECC itself,
- nothing to fix */
- pr_debug("Single bit ECC error in " "ECC.\n");
- return 1;
- } else {
- /* Uncorrectable error */
- pr_debug("ECC UNCORRECTED_ERROR 1\n");
- return -EBADMSG;
- }
- }
- return 0;
-}
-#endif /* CONFIG_SYS_NAND_HW_ECC */
-
-#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
-static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
-#if defined(CONFIG_SYS_NAND_PAGE_2K)
- .eccbytes = 40,
-#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
- .eccpos = {
- 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- },
- .oobfree = {
- {2, 4}, {16, 6}, {32, 6}, {48, 6},
- },
-#else
- .eccpos = {
- 24, 25, 26, 27, 28,
- 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
- 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
- 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
- 59, 60, 61, 62, 63,
- },
- .oobfree = {
- {.offset = 2, .length = 22, },
- },
-#endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
-#elif defined(CONFIG_SYS_NAND_PAGE_4K)
- .eccbytes = 80,
- .eccpos = {
- 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
- 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
- 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
- 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
- 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
- 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
- 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
- 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
- },
- .oobfree = {
- {.offset = 2, .length = 46, },
- },
-#endif
-};
-
-#if defined CONFIG_KEYSTONE_RBL_NAND
-static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
-#if defined(CONFIG_SYS_NAND_PAGE_2K)
- .eccbytes = 40,
- .eccpos = {
- 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- },
- .oobfree = {
- {.offset = 2, .length = 4, },
- {.offset = 16, .length = 6, },
- {.offset = 32, .length = 6, },
- {.offset = 48, .length = 6, },
- },
-#elif defined(CONFIG_SYS_NAND_PAGE_4K)
- .eccbytes = 80,
- .eccpos = {
- 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
- 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
- 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
- 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
- 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
- 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
- },
- .oobfree = {
- {.offset = 2, .length = 4, },
- {.offset = 16, .length = 6, },
- {.offset = 32, .length = 6, },
- {.offset = 48, .length = 6, },
- {.offset = 64, .length = 6, },
- {.offset = 80, .length = 6, },
- {.offset = 96, .length = 6, },
- {.offset = 112, .length = 6, },
- },
-#endif
-};
-
-#ifdef CONFIG_SYS_NAND_PAGE_2K
-#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
-#elif defined(CONFIG_SYS_NAND_PAGE_4K)
-#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
-#endif
-
-/**
- * nand_davinci_write_page - write one page
- * @mtd: MTD device structure
- * @chip: NAND chip descriptor
- * @buf: the data to write
- * @oob_required: must write chip->oob_poi to OOB
- * @page: page number to write
- * @raw: use _raw version of write_page
- */
-static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint32_t offset, int data_len,
- const uint8_t *buf, int oob_required,
- int page, int raw)
-{
- int status;
- int ret = 0;
- struct nand_ecclayout *saved_ecc_layout;
-
- /* save current ECC layout and assign Keystone RBL ECC layout */
- if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
- saved_ecc_layout = chip->ecc.layout;
- chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
- mtd->oobavail = chip->ecc.layout->oobavail;
- }
-
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
-
- if (unlikely(raw)) {
- status = chip->ecc.write_page_raw(mtd, chip, buf,
- oob_required, page);
- } else {
- status = chip->ecc.write_page(mtd, chip, buf,
- oob_required, page);
- }
-
- if (status < 0) {
- ret = status;
- goto err;
- }
-
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
-
- if (status & NAND_STATUS_FAIL) {
- ret = -EIO;
- goto err;
- }
-
-err:
- /* restore ECC layout */
- if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
- chip->ecc.layout = saved_ecc_layout;
- mtd->oobavail = saved_ecc_layout->oobavail;
- }
-
- return ret;
-}
-
-/**
- * nand_davinci_read_page_hwecc - hardware ECC based page read function
- * @mtd: mtd info structure
- * @chip: nand chip info structure
- * @buf: buffer to store read data
- * @oob_required: caller requires OOB data read to chip->oob_poi
- * @page: page number to read
- *
- * Not for syndrome calculating ECC controllers which need a special oob layout.
- */
-static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int oob_required, int page)
-{
- int i, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- uint32_t *eccpos;
- uint8_t *p = buf;
- uint8_t *ecc_code = chip->buffers->ecccode;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;
-
- /* save current ECC layout and assign Keystone RBL ECC layout */
- if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
- chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
- mtd->oobavail = chip->ecc.layout->oobavail;
- }
-
- eccpos = chip->ecc.layout->eccpos;
-
- /* Read the OOB area first */
- chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
- chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
-
- for (i = 0; i < chip->ecc.total; i++)
- ecc_code[i] = chip->oob_poi[eccpos[i]];
-
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- int stat;
-
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, p, eccsize);
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
-
- stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
- if (stat < 0)
- mtd->ecc_stats.failed++;
- else
- mtd->ecc_stats.corrected += stat;
- }
-
- /* restore ECC layout */
- if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
- chip->ecc.layout = saved_ecc_layout;
- mtd->oobavail = saved_ecc_layout->oobavail;
- }
-
- return 0;
-}
-#endif /* CONFIG_KEYSTONE_RBL_NAND */
-
-static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
-{
- u32 val;
-
- switch (mode) {
- case NAND_ECC_WRITE:
- case NAND_ECC_READ:
- /*
- * Start a new ECC calculation for reading or writing 512 bytes
- * of data.
- */
- val = __raw_readl(&davinci_emif_regs->nandfcr);
- val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
- val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
- val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
- val |= DAVINCI_NANDFCR_4BIT_ECC_START;
- __raw_writel(val, &davinci_emif_regs->nandfcr);
- break;
- case NAND_ECC_READSYN:
- val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
- break;
- default:
- break;
- }
-}
-
-static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
-{
- int i;
-
- for (i = 0; i < 4; i++) {
- ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
- NAND_4BITECC_MASK;
- }
-
- return 0;
-}
-
-static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
- const uint8_t *dat,
- uint8_t *ecc_code)
-{
- unsigned int hw_4ecc[4];
- unsigned int i;
-
- nand_davinci_4bit_readecc(mtd, hw_4ecc);
-
- /*Convert 10 bit ecc value to 8 bit */
- for (i = 0; i < 2; i++) {
- unsigned int hw_ecc_low = hw_4ecc[i * 2];
- unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];
-
- /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
- *ecc_code++ = hw_ecc_low & 0xFF;
-
- /*
- * Take 2 bits as LSB bits from val1 (count1=0) or val5
- * (count1=1) and 6 bits from val2 (count1=0) or
- * val5 (count1=1)
- */
- *ecc_code++ =
- ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);
-
- /*
- * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
- * 4 bits from val3 (count1=0) or val6 (count1=1)
- */
- *ecc_code++ =
- ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);
-
- /*
- * Take 6 bits from val3(count1=0) or val6 (count1=1) and
- * 2 bits from val4 (count1=0) or val7 (count1=1)
- */
- *ecc_code++ =
- ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);
-
- /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
- *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
- }
-
- return 0;
-}
-
-static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
- uint8_t *read_ecc, uint8_t *calc_ecc)
-{
- int i;
- unsigned int hw_4ecc[4];
- unsigned int iserror;
- unsigned short *ecc16;
- unsigned int numerrors, erroraddress, errorvalue;
- u32 val;
-
- /*
- * Check for an ECC where all bytes are 0xFF. If this is the case, we
- * will assume we are looking at an erased page and we should ignore
- * the ECC.
- */
- for (i = 0; i < 10; i++) {
- if (read_ecc[i] != 0xFF)
- break;
- }
- if (i == 10)
- return 0;
-
- /* Convert 8 bit in to 10 bit */
- ecc16 = (unsigned short *)&read_ecc[0];
-
- /*
- * Write the parity values in the NAND Flash 4-bit ECC Load register.
- * Write each parity value one at a time starting from 4bit_ecc_val8
- * to 4bit_ecc_val1.
- */
-
- /*Take 2 bits from 8th byte and 8 bits from 9th byte */
- __raw_writel(((ecc16[4]) >> 6) & 0x3FF,
- &davinci_emif_regs->nand4biteccload);
-
- /* Take 4 bits from 7th byte and 6 bits from 8th byte */
- __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
- &davinci_emif_regs->nand4biteccload);
-
- /* Take 6 bits from 6th byte and 4 bits from 7th byte */
- __raw_writel((ecc16[3] >> 2) & 0x3FF,
- &davinci_emif_regs->nand4biteccload);
-
- /* Take 8 bits from 5th byte and 2 bits from 6th byte */
- __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
- &davinci_emif_regs->nand4biteccload);
-
- /*Take 2 bits from 3rd byte and 8 bits from 4th byte */
- __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
- &davinci_emif_regs->nand4biteccload);
-
- /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
- __raw_writel(((ecc16[1]) >> 4) & 0x3FF,
- &davinci_emif_regs->nand4biteccload);
-
- /* Take 6 bits from 1st byte and 4 bits from 2nd byte */
- __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
- &davinci_emif_regs->nand4biteccload);
-
- /* Take 10 bits from 0th and 1st bytes */
- __raw_writel((ecc16[0]) & 0x3FF,
- &davinci_emif_regs->nand4biteccload);
-
- /*
- * Perform a dummy read to the EMIF Revision Code and Status register.
- * This is required to ensure time for syndrome calculation after
- * writing the ECC values in previous step.
- */
-
- val = __raw_readl(&davinci_emif_regs->nandfsr);
-
- /*
- * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
- * A syndrome value of 0 means no bit errors. If the syndrome is
- * non-zero then go further otherwise return.
- */
- nand_davinci_4bit_readecc(mtd, hw_4ecc);
-
- if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
- return 0;
-
- /*
- * Clear any previous address calculation by doing a dummy read of an
- * error address register.
- */
- val = __raw_readl(&davinci_emif_regs->nanderradd1);
-
- /*
- * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
- * register to 1.
- */
- __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
- &davinci_emif_regs->nandfcr);
-
- /*
- * Wait for the corr_state field (bits 8 to 11) in the
- * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
- * Otherwise ECC calculation has not even begun and the next loop might
- * fail because of a false positive!
- */
- i = NAND_TIMEOUT;
- do {
- val = __raw_readl(&davinci_emif_regs->nandfsr);
- val &= 0xc00;
- i--;
- } while ((i > 0) && !val);
-
- /*
- * Wait for the corr_state field (bits 8 to 11) in the
- * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
- */
- i = NAND_TIMEOUT;
- do {
- val = __raw_readl(&davinci_emif_regs->nandfsr);
- val &= 0xc00;
- i--;
- } while ((i > 0) && val);
-
- iserror = __raw_readl(&davinci_emif_regs->nandfsr);
- iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
- iserror = iserror >> 8;
-
- /*
- * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
- * corrected (five or more errors). The number of errors
- * calculated (err_num field) differs from the number of errors
- * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
- * correction complete (errors on bit 8 or 9).
- * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
- * complete (error exists).
- */
-
- if (iserror == ECC_STATE_NO_ERR) {
- val = __raw_readl(&davinci_emif_regs->nanderrval1);
- return 0;
- } else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
- val = __raw_readl(&davinci_emif_regs->nanderrval1);
- return -EBADMSG;
- }
-
- numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
- & 0x3) + 1;
-
- /* Read the error address, error value and correct */
- for (i = 0; i < numerrors; i++) {
- if (i > 1) {
- erroraddress =
- ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
- (16 * (i & 1))) & 0x3FF);
- erroraddress = ((512 + 7) - erroraddress);
- errorvalue =
- ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
- (16 * (i & 1))) & 0xFF);
- } else {
- erroraddress =
- ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
- (16 * (i & 1))) & 0x3FF);
- erroraddress = ((512 + 7) - erroraddress);
- errorvalue =
- ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
- (16 * (i & 1))) & 0xFF);
- }
- /* xor the corrupt data with error value */
- if (erroraddress < 512)
- dat[erroraddress] ^= errorvalue;
- }
-
- return numerrors;
-}
-#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
-
-static int nand_davinci_dev_ready(struct mtd_info *mtd)
-{
- return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
-}
-
-static void nand_flash_init(void)
-{
- /* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
- * Instead, have your board_init() set EMIF timings, based on its
- * knowledge of the clocks and what devices are hooked up ... and
- * don't even do that unless no UBL handled it.
- */
-#ifdef CONFIG_SOC_DM644X
- u_int32_t acfg1 = 0x3ffffffc;
-
- /*------------------------------------------------------------------*
- * NAND FLASH CHIP TIMEOUT @ 459 MHz *
- * *
- * AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
- * AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
- * *
- *------------------------------------------------------------------*/
- acfg1 = 0
- | (0 << 31) /* selectStrobe */
- | (0 << 30) /* extWait */
- | (1 << 26) /* writeSetup 10 ns */
- | (3 << 20) /* writeStrobe 40 ns */
- | (1 << 17) /* writeHold 10 ns */
- | (1 << 13) /* readSetup 10 ns */
- | (5 << 7) /* readStrobe 60 ns */
- | (1 << 4) /* readHold 10 ns */
- | (3 << 2) /* turnAround ?? ns */
- | (0 << 0) /* asyncSize 8-bit bus */
- ;
-
- __raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */
-
- /* NAND flash on CS2 */
- __raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
-#endif
-}
-
-void davinci_nand_init(struct nand_chip *nand)
-{
-#if defined CONFIG_KEYSTONE_RBL_NAND
- int i;
- struct nand_ecclayout *layout;
-
- layout = &nand_keystone_rbl_4bit_layout_oobfirst;
- layout->oobavail = 0;
- for (i = 0; layout->oobfree[i].length &&
- i < ARRAY_SIZE(layout->oobfree); i++)
- layout->oobavail += layout->oobfree[i].length;
-
- nand->write_page = nand_davinci_write_page;
- nand->ecc.read_page = nand_davinci_read_page_hwecc;
-#endif
- nand->chip_delay = 0;
-#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
- nand->bbt_options |= NAND_BBT_USE_FLASH;
-#endif
-#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
- nand->options |= NAND_NO_SUBPAGE_WRITE;
-#endif
-#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
- nand->options |= NAND_BUSWIDTH_16;
-#endif
-#ifdef CONFIG_SYS_NAND_HW_ECC
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.size = 512;
- nand->ecc.bytes = 3;
- nand->ecc.strength = 1;
- nand->ecc.calculate = nand_davinci_calculate_ecc;
- nand->ecc.correct = nand_davinci_correct_data;
- nand->ecc.hwctl = nand_davinci_enable_hwecc;
-#else
- nand->ecc.mode = NAND_ECC_SOFT;
-#endif /* CONFIG_SYS_NAND_HW_ECC */
-#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
- nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
- nand->ecc.size = 512;
- nand->ecc.bytes = 10;
- nand->ecc.strength = 4;
- nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
- nand->ecc.correct = nand_davinci_4bit_correct_data;
- nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
- nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
-#endif
- /* Set address of hardware control function */
- nand->cmd_ctrl = nand_davinci_hwcontrol;
-
- nand->read_buf = nand_davinci_read_buf;
- nand->write_buf = nand_davinci_write_buf;
-
- nand->dev_ready = nand_davinci_dev_ready;
-
- nand_flash_init();
-}
-
-int board_nand_init(struct nand_chip *chip) __attribute__((weak));
-
-int board_nand_init(struct nand_chip *chip)
-{
- davinci_nand_init(chip);
- return 0;
-}